Academic literature on the topic 'Poisson integral'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poisson integral.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Poisson integral"

1

Mehrazin, Hashem. "Laplace equation and Poisson integral." Applied Mathematics and Computation 145, no. 2-3 (2003): 451–63. http://dx.doi.org/10.1016/s0096-3003(02)00499-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Valtancoli, P. "Path integral and noncommutative Poisson brackets." Journal of Mathematical Physics 56, no. 6 (2015): 063501. http://dx.doi.org/10.1063/1.4922107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goli, M., and M. Najafi-Alamdari. "Planar, spherical and ellipsoidal approximations of Poisson's integral in near zone." Journal of Geodetic Science 1, no. 1 (2011): 17–24. http://dx.doi.org/10.2478/v10156-010-0003-6.

Full text
Abstract:
Planar, spherical and ellipsoidal approximations of Poisson's integral in near zonePlanar, spherical, and ellipsoidal approximations of Poisson's integral for downward continuation (DWC) of gravity anomalies are discussed in this study. The planar approximation of Poisson integral is assessed versus the spherical and ellipsoidal approximations by examining the outcomes of DWC and finally the geoidal heights. We present the analytical solution of Poisson's kernel in the point-mean discretization model that speed up computation time 500 times faster than spherical Poisson kernel while preserving a good numerical accuracy. The new formulas are very simple and stable even for regions with very low height. It is shown that the maximum differences between spherical and planar DWC as well as planar and ellipsoidal DWC are about 6 mm and 18 mm respectively in the geoidal heights for a rough mountainous area such as Iran.
APA, Harvard, Vancouver, ISO, and other styles
4

Su, Baiyun. "Dirichlet Problem for the Schrödinger Operator in a Half Space." Abstract and Applied Analysis 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/578197.

Full text
Abstract:
For continuous boundary data, the modified Poisson integral is used to write solutions to the half space Dirichlet problem for the Schrödinger operator. Meanwhile, a solution of the Poisson integral for any continuous boundary function is also given explicitly by the Poisson integral with the generalized Poisson kernel depending on this boundary function.
APA, Harvard, Vancouver, ISO, and other styles
5

Pavlovic, M. "Integral Means of the Poisson Integral of a Discrete Measure." Journal of Mathematical Analysis and Applications 184, no. 2 (1994): 229–42. http://dx.doi.org/10.1006/jmaa.1994.1196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Hongwei. "Four Ways to Evaluate a Poisson Integral." Mathematics Magazine 75, no. 4 (2002): 290. http://dx.doi.org/10.2307/3219167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orsingher, Enzo, and Federico Polito. "On the integral of fractional Poisson processes." Statistics & Probability Letters 83, no. 4 (2013): 1006–17. http://dx.doi.org/10.1016/j.spl.2012.12.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Tonglin, and Wei Lin. "Fast wavelet algorithm of the Poisson integral." Applied Mathematics and Computation 96, no. 2-3 (1998): 127–44. http://dx.doi.org/10.1016/s0096-3003(97)10111-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Hongwei. "Four Ways to Evaluate a Poisson Integral." Mathematics Magazine 75, no. 4 (2002): 290–94. http://dx.doi.org/10.1080/0025570x.2002.11953148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steutel, F. W. "Poisson Processes and a Bessel Function Integral." SIAM Review 27, no. 1 (1985): 73–77. http://dx.doi.org/10.1137/1027004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography