Academic literature on the topic 'POLARIDAD NEURONAL'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'POLARIDAD NEURONAL.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "POLARIDAD NEURONAL"

1

Namba, Takashi, Yasuhiro Funahashi, Shinichi Nakamuta, Chundi Xu, Tetsuya Takano, and Kozo Kaibuchi. "Extracellular and Intracellular Signaling for Neuronal Polarity." Physiological Reviews 95, no. 3 (July 2015): 995–1024. http://dx.doi.org/10.1152/physrev.00025.2014.

Full text
Abstract:
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
APA, Harvard, Vancouver, ISO, and other styles
2

Hammond, Jennetta W., Chun-Fang Huang, Stefanie Kaech, Catherine Jacobson, Gary Banker, and Kristen J. Verhey. "Posttranslational Modifications of Tubulin and the Polarized Transport of Kinesin-1 in Neurons." Molecular Biology of the Cell 21, no. 4 (February 15, 2010): 572–83. http://dx.doi.org/10.1091/mbc.e09-01-0044.

Full text
Abstract:
Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1–mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence the ability of Kinesin-1 motors to distinguish microtubule tracks during neuronal development. We detected no difference in microtubule stability between axons and minor neurites in polarized stage 3 hippocampal neurons. In contrast, microtubule modifications were enriched in a subset of neurites in unpolarized stage 2 cells and the developing axon in polarized stage 3 cells. This enrichment correlated with the selective accumulation of constitutively active Kinesin-1 motors. Increasing tubulin acetylation, without altering the levels of other tubulin modifications, did not alter the selectivity of Kinesin-1 accumulation in polarized cells. However, globally enhancing tubulin acetylation, detyrosination, and polyglutamylation by Taxol treatment or inhibition of glycogen synthase kinase 3β decreased the selectivity of Kinesin-1 translocation and led to the formation of multiple axons. Although microtubule acetylation enhances the motility of Kinesin-1, the preferential translocation of Kinesin-1 on axonal microtubules in polarized neuronal cells is not determined by acetylation alone but is probably specified by a combination of tubulin modifications.
APA, Harvard, Vancouver, ISO, and other styles
3

Yuan, Xiao-bing, Zheng-hong Zhang, and Jian Jiang. "Traction of neuronal migration by polarized adhesion." Neuroscience Research 71 (September 2011): e28. http://dx.doi.org/10.1016/j.neures.2011.07.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krapp, Holger G. "Sensory Integration: Neuronal Filters for Polarized Light Patterns." Current Biology 24, no. 18 (September 2014): R840—R841. http://dx.doi.org/10.1016/j.cub.2014.08.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tas, Roderick P., Anaël Chazeau, Bas M. C. Cloin, Maaike L. A. Lambers, Casper C. Hoogenraad, and Lukas C. Kapitein. "Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport." Neuron 96, no. 6 (December 2017): 1264–71. http://dx.doi.org/10.1016/j.neuron.2017.11.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Witte, Harald, Dorothee Neukirchen, and Frank Bradke. "Microtubule stabilization specifies initial neuronal polarization." Journal of Cell Biology 180, no. 3 (February 11, 2008): 619–32. http://dx.doi.org/10.1083/jcb.200707042.

Full text
Abstract:
Axon formation is the initial step in establishing neuronal polarity. We examine here the role of microtubule dynamics in neuronal polarization using hippocampal neurons in culture. We see increased microtubule stability along the shaft in a single neurite before axon formation and in the axon of morphologically polarized cells. Loss of polarity or formation of multiple axons after manipulation of neuronal polarity regulators, synapses of amphids defective (SAD) kinases, and glycogen synthase kinase-3β correlates with characteristic changes in microtubule turnover. Consistently, changing the microtubule dynamics is sufficient to alter neuronal polarization. Application of low doses of the microtubule-destabilizing drug nocodazole selectively reduces the formation of future dendrites. Conversely, low doses of the microtubule-stabilizing drug taxol shift polymerizing microtubules from neurite shafts to process tips and lead to the formation of multiple axons. Finally, local stabilization of microtubules using a photoactivatable analogue of taxol induces axon formation from the activated area. Thus, local microtubule stabilization in one neurite is a physiological signal specifying neuronal polarization.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Zhengrong, Honglin Xu, Yuejia Li, Mengge Yang, Rui Zhang, Aki Shiraishi, Hiroshi Kiyonari, et al. "CAMSAP1 breaks the homeostatic microtubule network to instruct neuronal polarity." Proceedings of the National Academy of Sciences 117, no. 36 (August 24, 2020): 22193–203. http://dx.doi.org/10.1073/pnas.1913177117.

Full text
Abstract:
The establishment of axon/dendrite polarity is fundamental for neurons to integrate into functional circuits, and this process is critically dependent on microtubules (MTs). In the early stages of the establishment process, MTs in axons change dramatically with the morphological building of neurons; however, how the MT network changes are triggered is unclear. Here we show that CAMSAP1 plays a decisive role in the neuronal axon identification process by regulating the number of MTs. Neurons lacking CAMSAP1 form a multiple axon phenotype in vitro, while the multipolar-bipolar transition and radial migration are blocked in vivo. We demonstrate that the polarity regulator MARK2 kinase phosphorylates CAMSAP1 and affects its ability to bind to MTs, which in turn changes the protection of MT minus-ends and also triggers asymmetric distribution of MTs. Our results indicate that the polarized MT network in neurons is a decisive factor in establishing axon/dendritic polarity and is initially triggered by polarized signals.
APA, Harvard, Vancouver, ISO, and other styles
8

Carmichael, Stephen W., and W. Stephen Brimijoin. "Looking at Slow Axonal Transport." Microscopy Today 4, no. 9 (November 1996): 3–5. http://dx.doi.org/10.1017/s1551929500065299.

Full text
Abstract:
Neurons are about as polarized as cells ever get. Their axonal process can extend a distance that is up to a million times the diameter of the nerve cell body. Axons have none of the ribosomal machinery responsible for protein synthesis, so all neuronal proteins and peptides must be manufactured near the nucleus and carried out to the periphery. This distribution involves at least two distinct mechanisms, fast axonal transport, moving at almost 500 mm per day, and slow axonal transport, moving only 0.1 to 3 mm per day. It turns out that proteins of the neuronal cytoskeleton, along with many soluble cytosolic proteins, are transported exclusively by the slower process.
APA, Harvard, Vancouver, ISO, and other styles
9

Poyatos, Irene, Francesca Ruberti, Rodrigo Martı́nez-Maza, Cecilio Giménez, Carlos G. Dotti, and Francisco Zafra. "Polarized Distribution of Glycine Transporter Isoforms in Epithelial and Neuronal Cells." Molecular and Cellular Neuroscience 15, no. 1 (January 2000): 99–111. http://dx.doi.org/10.1006/mcne.1999.0807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simon, Anne C., Claude Loverdo, Anne-Lise Gaffuri, Michel Urbanski, Delphine Ladarre, Damien Carrel, Isabelle Rivals, et al. "Activation-dependent plasticity of polarized GPCR distribution on the neuronal surface." Journal of Molecular Cell Biology 5, no. 4 (April 11, 2013): 250–65. http://dx.doi.org/10.1093/jmcb/mjt014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "POLARIDAD NEURONAL"

1

Barry, Joshua. "Function and Mechanism of Polarized Targeting of Neuronal Membrane Proteins." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373971273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Shun-Jen. "The Molecular Mechanisms Underlying the Polarized Distribution of Drosophila Dscam in Neurons: A Dissertation." eScholarship@UMMS, 2008. https://escholarship.umassmed.edu/gsbs_diss/390.

Full text
Abstract:
Neurons exhibit highly polarized structures, including two morphologically and functionally distinct domains, axons and dendrites. Dendrites and axons receive versus send information, and proper execution of each requires different sets of molecules. Differential distribution of membrane proteins in distinct neuronal compartments plays essential roles in neuronal functions. The major goal of my doctoral thesis was to study the molecular mechanisms that govern the differential distribution of membrane proteins in neurons, using the Drosophilalarval mushroom body (MB) as a model system. My work was initiated by an observation of differential distribution of distinct Dscam isoforms in neurons. Dscam stands for Down Syndrome Cell Adhesion Molecule, which is a Drosophila homolog of human DSCAM. According to genomic analysis, DrosophilaDscam gene can generate more than 38,000 isoforms through alternative splicing in its exons 4, 6, 9 and 17. All Dscam isoforms share similar domain structures, with 10 immunoglobulin domains and 6 fibronectin type III repeats in the ectodomain, a single transmembrane domain and a cytoplasmic endodomain. There are two alternative exons in exon 17 (17.1 and 17.2), which encodes Dscam’s transmembrane domain. Interestingly, in ectopic expression, Dscam isoforms carrying exon 17.1 (Dscam[TM1]) can be preferentially localized to dendrites and cell bodies, while Dscam isoforms carrying exon 17.2 (Dscam[TM2]) are distributed throughout the entire neuron including axons and dendrites. To unravel the mechanisms involved in the differential distribution of Dscam[TM1] versus Dscam[TM2], I conducted a mosaic genetic screening to identify the possible factors affecting dendritic distribution of Dscam[TM1], established an in vivoTARGET system to better distinguish the differential distribution of Dscam, identified the axonal and dendritic targeting motifs of Dscam molecules and further showed that Dscam’s differential roles in dendrites versus axons are correlated with its localization. Several mutants affecting dendritic distribution of Dscam[TM1] have been identified using a MARCM genetic screen. Three of these mutants (Dlis1, Dmn and p24) are components of the dynein/dynactin complex. Silencing of other dynein/dynactin subunits and blocking dynein function with a dominant-negative Glued mutant also resulted in mislocalization of Dscam[TM1] from dendrites to axons. However, microtubule polarity in the mutant axons was maintained. Taken together, this was the first demonstration that the dynein/dynactin complex is involved in the polarized distribution of membrane proteins in neurons. To further examine how dynein/dynactin is involved in the dendritic distribution of Dscam[TM1], I compromised dynenin/dynactin function with dominant-negative Glued and transiently induced Dscam[TM1] expression. The results suggested that dynein/dynactin may not be directly involved in the targeting of newly synthesized Dscam[TM1] to dendrites. Instead, it plays a role in maintaining dendritic restriction of Dscam[TM1]. Notably, dynein/dynactin dysfunction did not alter distribution of another dendritic transmembrane protein Rdl (Resistant to Dieldrin), supporting involvement of diverse mechanisms in distributing distinct molecules to the dendritic membrane. To identify the targeting motifs of Dscam, I incorporated the TARGET (Temporal and regional gene expression targeting) system into mushroom body (MB) neurons, and this allowed the demonstration of the differential distribution of Dscam[TM1] and Dscam[TM2] with more clarity than conventional overexpression techniques. Using the TARGET system, I identified an axonal targeting motif located in the cytoplasmic juxtamemebrane domain of Dscam[TM2]. This axonal targeting motif is dominant over the dendritic targeting motif located in Dscam’s ectodomain. Scanning alanine mutagenesis demonstrated that two amino acids in the axonal targeting motif were essential for Dscam’s axonal distribution. Interestingly, swapping the cytoplasmic juxtamembrane portions between TM1 and TM2 not only reversed TM1’s and TM2’s differential distribution patterns but also their functional properties in dendrites versus axons. My thesis research also involved studying endodomain diversity of Dscam isoforms. Besides the diversity originally found in the ectodomain and transmembrane domain of Dscam, my colleagues and I further demonstrated the existence of four additional endodomain variants. These four variants are generated by skipping or retaining exon 19 or exon 23 through independent alternative splicing. Interestingly, different Dscam endodomain isoforms are expressed at different developmental stages and in different areas of the nervous system. Through isoform-specific RNA interference, we showed the differential involvement of distinct Dscam endodomains in specific neuronal morphogenetic processes. Analysis of the primary sequence of the Dscam endodomain indicated that endodomain variants may confer activation of different signaling pathways and functional roles in neuronal morphogenesis. In Summary, my thesis work identified and characterized several previously unknown mechanisms related to the differential distribution of membrane proteins in neurons. I showed that there may be a dynein/dynactin-independent mechanism for selective transport of dendritic membrane proteins to dendrites. Second, dynein/dynactin plays a maintenance role in dendritic restriction of Dscam[TM1]. Third, different membrane proteins may require distinct combinations of mechanisms to be properly targeted and maintained in certain neuronal compartments. Further analysis of the mutants indentified from my genetic screen will definitely help to resolve the missing pieces of the puzzle. These findings provide novel mechanistic insight into the differential distribution of membrane proteins in polarized neurons.
APA, Harvard, Vancouver, ISO, and other styles
3

Mestres, Lascano Iván. "Análisis funcional in situ de módulos polarizadores proteicos durante el desarrollo neuronal." Doctoral thesis, 2019. http://hdl.handle.net/11086/11596.

Full text
Abstract:
Tesis (Grado Doctor en Ciencias Biológicas)--Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Lugar de Trabajo: Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. INIMEC-CONICET-Universidad Nacional de Córdoba. 2013. 103 h. + CD. tabls.; grafs.; ilus. Contiene Referencia Bibliográfica. Título y Abstract en español e inglés.
Durante el desarrollo embrionario de la corteza cerebral las neuronas deben migrar desde su posición de origen en la zona ventricular hacia su posición final en la placa cortical, de acuerdo a un patrón de adentro hacia afuera. Durante la migración neuronal, el proceso conductor de estas células evalúa el ambiente local en búsqueda de señales quimiotácticas que le guíen hacia su capa adecuada. Al mismo tiempo, las neuronas establecen contacto con la matriz extracelular y células vecinas a través de proteínas de adhesión. Estos contactos adhesivos proveen de la tensión mecánica necesaria para mantener la forma y motilidad celular. Se ha establecido claramente que estas células altamente polarizadas, necesitan reajustar permanentemente los niveles de expresión de una variedad de receptores y proteínas de adhesión celular en su membrana para poder acoplar su programa de desarrollo con el tejido circundante. En este trabajo, estudiamos tres proteínas encargadas de controlar la expresión de proteínas de membrana a través de su actividad en el envío secretorio (PKD1 y BARS) o en la remoción/inserción de membrana (SARA). La disminución de la expresión de cualquiera de ellas conduce a fallas en la migración neuronal, transición de la morfología multipolar a bipolar u orientación radial. En cuanto a los fenotipos observados por el silenciamiento de PKD1 o BARS, señalamos que el receptor de Reelina, ApoER2, queda retenido en el soma, en lugar de ser enviado al proceso conductor. Es plausible que la falta de señalización de Reelina, mediada por una localización incorrecta del receptor ApoER2, concluya en una disminución de la tensión en el proceso conductor, a través de n-cofilina. Por otra parte, la supresión de SARA in vitro aumenta los niveles de L1-CAM en la superficie celular. Lo mismo parece ser el caso in vivo, ya que la sobre-expresión de L1-CAM resulta en los mismos fenotipos causados por el silenciamiento de SARA. A su vez, lo contrario también resultó ser cierto: la disminución conjunta de la expresión de SARA y L1-CAM rescata la migración y orientación neuronal, a los niveles del control. En resumen, los resultados presentados aquí muestran cómo la desregulación de la maquinaria secretoria o endosomal conduce a errores en la expresión de proteínas de membrana claves en la transducción de señales quimiotácticas (ej. ApoER2) o en el establecimiento de contactos adhesivos (ej. L1-CAM). Todo lo cual, trae aparejado consecuencias significativas en el desarrollo neuronal y la formación global del cerebro.
APA, Harvard, Vancouver, ISO, and other styles
4

Bustos, Julia Florentyna. "Efectos diferenciales de Sec3 y Sec8 en el establecimiento de la polaridad neuronal y la formaciòn del neocortex." Doctoral thesis, 2019. http://hdl.handle.net/11086/13286.

Full text
Abstract:
Tesis (Doctora en Ciencias Químicas) - - Universidad Nacional de Córdoba. Facultad de Ciencias Químicas, 2019.
Las neuronas son células altamente polarizadas con dominios estructural y funcionalmente distintos llamados axones y dendritas. Esta polarización permite el flujo direccional de información en el sistema nervioso central, por lo que el establecimiento y mantenimiento de la polarización neuronal es crucial para el correcto desarrollo y la función. Los mecanismos de señalización subyacentes iniciales de establecimiento de la polaridad neuronal requieren de la formación de un axón funcional. Las señales iniciales que determinan la formación de esta prolongación son en parte desconocidas. Para que el proceso de especificación axonal sea posible son esenciales dos procesos interconectados: el ensamblado y estabilización del citoesqueleto y la expansión rápida de la membrana plasmática. La expansión de membrana se produce por la fusión de vesículas precursoras de plasmalema (PPVs) en el cono de crecimiento, una estructura que lidera el axón. La fusión de las vesículas a membrana se encuentra regulada y es clasificada como parte de un proceso de exocitosis regulada con fines no secretorios. En este tipo de exocitosis, se presentan varios niveles de regulación que incluyen señales externas y mecanismos intracelulares. La exocitosis de PPVs se encuentra regulada por la estimulación externa del factor de crecimiento IGF1. Sin embargo, los procesos regulatorios de fusión de estas vesículas previos a la fusión se encuentran poco descriptos. Previo al proceso de fusión, se ha demostrado que es necesaria una interacción física entre la vesícula que va a expandir la membrana y la membrana plasmática. Este proceso está mediado por complejos de tethering, cuyo rol activo en la polaridad neuronal aún se desconoce. Un complejo de tethering candidato para la regulación de la fusión de los PPVs es el complejo exocisto, del cual la composición total en neuronas aún es desconocida. El complejo exocisto es un complejo octamérico altamente conservado en diversas especies formado por las subunidades proteicas Sec3, Sec8, Sec5, Sec15, Sec10, Sec6, Exo84 y Exo70. Algunos indicios plantean que su rol en la polaridad neuronal sería esencial ya que en neuronas piramidales de hipocampo el IGF-1 desencadena que la subunidad Exo70 presente - 8 - en el complejo exocisto se trasloque a la membrana pudiendo ser este el primer paso en la formación del complejo. Además, el silenciamiento de Exo70 en neuronas piramidales de hipocampo inhibe la formación de axones. En la presente tesis determinamos cuales de las proteínas del complejo exocisto están presentes en los cultivos de neuronas piramidales hipocampo desde estadios tempranos previos al proceso de polarización neuronal como así también la localización subcelular en conos de crecimiento y axones. Se ha logrado un gran progreso en nuestra comprensión de cómo las neuronas establecen su polaridad mediante el uso de neuronas del hipocampo cultivadas, mientras que los avances tecnológicos recientes han permitido el análisis in vivo de la especificación y elongación de los axones. En cuanto al estudio de su rol funcional en polaridad neuronal determinamos que dos proteínas de este complejo tienen efectos distintos en la diferenciación neuronal tanto en modelos in vivo como in vitro. El silenciamiento de Sec3 en cultivos de hipocampo y en experimentos de electroporación in útero provoca anomalías en la polaridad neuronal. En contraste, los efectos de suprimir Sec8 no incluyen defectos en la migración neuronal y la polaridad. Todo esto demuestra que la regulación en pasos previos a la fusión de vesículas cuyo rol es la expansión de la membrana son necesarios para la polaridad neuronal.
2022
APA, Harvard, Vancouver, ISO, and other styles
5

Saucedo, Daniela Macarena. "Estudio de la función de la proteína MAP6D1 en el Aparato de Golgi y el mantenimiento de la polaridad neuronal." Bachelor's thesis, 2018. http://hdl.handle.net/11086/6559.

Full text
Abstract:
Tesina (Grado en Ciencias Biológicas)--Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Lugar de Trabajo: Instituto de Investigación Médica Mercedes y Martín Ferreyra. INIMEC-CONICET-U.N.C. 2018. 46 h.; ils. col.; grfs.; tabls. Contiene Referencia Bibliográfica.
Las neuronas son células altamente polarizadas de las cuales se extienden varias dendritas cortas y gruesas, y un axón funcionalmente distintivo largo, delgado y muy ramificado, que se diferencian no solo en su morfología, sino también en las proteínas de membrana y organelas. En las neuronas piramidales, el Aparato de Golgi tiene una distribución polarizada que juega un importante rol en el desarrollo y mante nimiento de la polaridad neuronal. Además, se complementa con estaciones de Golgi satelitales (GOPs por sus siglas en inglés Golgi outpost) en las dendritas, los cuales juegan un papel crucial en la plasticidad neuronal y en el desarrollo del árbol dendrítico. Sin embargo, siguen existiendo muchas pre- guntas sobre los mecanismos que regulan la distribución espacial del Aparato de Golgi. Map6D1 es una proteína cuya expresión está altamente regulada en neuronas diferenciadas y contiene dos dominios funcionales importantes: un dominio amino terminal que puede interactuar con las membranas del Aparato de Golgi a través de la palmitoilación de residuos cisteína, y un dominio Mn que tiene la habili dad de interactuar con los microtúbulos. En neuronas en cultivo, Map6D1 se localiza en el Aparato de Golgi somático y en los GOPs de los compartimentos dendríticos. Nuestras observaciones sugieren que Map6D1 puede actuar como un regulador de la organización y posicionamiento del Aparato de Golgi en neuronas piramidales, un fenómeno que puede ser de gran importancia para generar y mantener la forma del árbol dendrítico y la polaridad neuronal. En este trabajo nos proponemos a analizar la participa ción de MAP6d1 en la regulación de la organización, estructura y dinámica del Aparato de Golgi en neuronas en desarrollo en cultivo, y su influencia en la formación y mantenimiento de la polaridad neuronal.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "POLARIDAD NEURONAL"

1

Katoh, Kaoru, Fumiko Yoshida, and Ryoki Ishikawa. "Actin Dynamics in Neuronal Growth Cone Revealed With a Polarized Light Microscopy." In Advances in Experimental Medicine and Biology, 347–59. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9029-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Irving, Andrew J., Neil A. McDonald, and Tibor Harkany. "CB1 Cannabinoid Receptors: Molecular Biology, Second Messenger Coupling and Polarized Trafficking in Neurons." In Cannabinoids and the Brain, 59–73. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74349-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Farías, Ginny G., Dylan J. Britt, and Juan S. Bonifacino. "Imaging the Polarized Sorting of Proteins from the Golgi Complex in Live Neurons." In The Golgi Complex, 13–30. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6463-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fritzsch, Bernd, and Hernán López-Schier. "Evolution of Polarized Hair Cells in Aquatic Vertebrates and Their Connection to Directionally Sensitive Neurons." In Flow Sensing in Air and Water, 271–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41446-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ladarre, Delphine, and Zsolt Lenkei. "Cell-Autonomous Endocannabinoid Production Shapes Polarized and Dynamic Distribution and Signaling Patterns of Cannabinoid CB1 Receptors in Neurons." In Endocannabinoids and Lipid Mediators in Brain Functions, 79–107. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57371-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

WEHNER, RÜDIGER. "DESERT ANT NAVIGATION: STEERING BY POLARIZED SKYLIGHT." In Neuronal Coding Of Perceptual Systems, 203–10. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811899_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

YEAMAN, CHARLES. "Protein Trafficking in the Exocytic Pathway of Polarized Epithelial Cells." In Protein Trafficking in Neurons, 271–303. Elsevier, 2007. http://dx.doi.org/10.1016/b978-012369437-9/50020-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography