Academic literature on the topic 'Polariton laser'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polariton laser.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polariton laser"
Wei, Cong, and Yong Sheng Zhao. "Electrically pumped polariton lasers." J. Mater. Chem. C 2, no. 13 (2014): 2295–97. http://dx.doi.org/10.1039/c3tc32427c.
Full textDietrich, Christof P., Anja Steude, Laura Tropf, Marcel Schubert, Nils M. Kronenberg, Kai Ostermann, Sven Höfling, and Malte C. Gather. "An exciton-polariton laser based on biologically produced fluorescent protein." Science Advances 2, no. 8 (August 2016): e1600666. http://dx.doi.org/10.1126/sciadv.1600666.
Full textOhtani, Keita, Bo Meng, Martin Franckié, Lorenzo Bosco, Camille Ndebeka-Bandou, Mattias Beck, and Jérôme Faist. "An electrically pumped phonon-polariton laser." Science Advances 5, no. 7 (July 2019): eaau1632. http://dx.doi.org/10.1126/sciadv.aau1632.
Full textКотова, Л. В., P. G. Savvidis, L. Besombes, and В. П. Кочерешко. "Поляритонные моды в цилиндрическом микрорезонаторе в режим поляритонного лазера." Физика твердого тела 63, no. 5 (2021): 610. http://dx.doi.org/10.21883/ftt.2021.05.50809.001.
Full textPile, David. "Organic polariton laser." Nature Photonics 4, no. 6 (June 2010): 402. http://dx.doi.org/10.1038/nphoton.2010.136.
Full textMoskalenko, S. A., and I. M. Tiginyanu. "Exciton-polariton laser." Low Temperature Physics 42, no. 5 (May 2016): 330–39. http://dx.doi.org/10.1063/1.4948615.
Full textButov, Leonid V. "A polariton laser." Nature 447, no. 7144 (May 2007): 540–41. http://dx.doi.org/10.1038/447540a.
Full textKavokin, Alexey, Guillaume Malpuech, and Fabrice P. Laussy. "Polariton laser and polariton superfluidity in microcavities." Physics Letters A 306, no. 4 (January 2003): 187–99. http://dx.doi.org/10.1016/s0375-9601(02)01579-7.
Full textSavvidis, Pavlos G. "A practical polariton laser." Nature Photonics 8, no. 8 (July 31, 2014): 588–89. http://dx.doi.org/10.1038/nphoton.2014.176.
Full textHarder, Tristan H., Meng Sun, Oleg A. Egorov, Ihor Vakulchyk, Johannes Beierlein, Philipp Gagel, Monika Emmerling, et al. "Coherent Topological Polariton Laser." ACS Photonics 8, no. 5 (April 14, 2021): 1377–84. http://dx.doi.org/10.1021/acsphotonics.0c01958.
Full textDissertations / Theses on the topic "Polariton laser"
Li, Feng. "Fabrication et caractérisation des microcavités à base de ZnO en régime de couplage fort : laser à polaritons." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00944656.
Full textPisanello, Ferruccio. "Single photon sources based on colloidal nanocrystals and two photon polariton laser." Paris 6, 2011. http://www.theses.fr/2011PA066675.
Full textCristofolini, Peter. "Optical control of polariton condensation and dipolaritons in coupled quantum wells." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247219.
Full textPisanello, Ferruccio. "Sources de photons uniques à base de nanocristaux colloïdaux et laser à polariton excité à deux photons." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00624532.
Full textHöfner, Michael. "Lasing and strong coupling in inorganic and organic photonic structures." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17519.
Full textThis thesis presents the investigation of strong coupling and lasing in structures using ZnO, ZnCdO or organic molecules as active material. The ZnCdO based multi quantum well structures reach the lasing threshold by using scattering at air holes as the optical feedback. Such emitters are called random lasers. The dynamics of their emission under quasi-stationary condition is the point of interest presented. Highly reproducible excitations are used to investigate the single shot dynamics and their shot to shot differences. The experimental data is qualitatively reproduced by numerical simulation and interpreted by means of network theory. The more common optical feedback by a cavity is applied in the investigation of the molecule L4P and its spiro-derivatives. Using two identical SiO2/ZrO2 based Bragg reflectors surrounding an active layer of L4P-SP2 in a polymer matrix of approximately 12 microns thickness reached single mode lasing (weak coupling). Reducing the active layer thickness to half the resonance wavelength pushes the system into the strong coupling regime. Angular resolved reflectivity shows the anticrossing of the tuned cavity resonance to two vibronic transitions of the molecule. The Rabi-splitting to both vibronic resonances reaches around 90 meV. The energetic position in resonance to ZnO makes this molecule a promising candidate for a hybrid inorganic/organic microcavity in the strong coupling regime. This is used in a partially epitaxially grown microcavity composed of a ZnMgO based Bragg reflector (alternating layers of different Mg content) and six quantum wells. This is followed by a spincoated layer of L4P in a polymer matrix. The cavity is finished by a dielectric mirror. Low temperature reflectivity shows a clear anticrossing reaching an equal mixing of all resonances for the middle branch.
Faure, Stéphane. "Interaction lumière-matière dans les microcavités massives à base de ZnO : du couplage fort à température ambiante vers le laser à polariton." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2009. http://tel.archives-ouvertes.fr/tel-00583517.
Full textJamadi, Omar. "Spectroscopie de condensats polaritoniques dans des microcavités et guides d’onde à base de GaN et ZnO." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC031/document.
Full textThis manuscript is devoted to polariton condensates in two wide band gap semiconductors: GaN and ZnO. The first part of this work focuses on the study by optical spectroscopy of two planar microcavities (one of GaN, the other of ZnO) sharing the same structure and the same photonic properties. The strong coupling and polariton lasing regime have been observed from 5 K to 300 K in both microcavities. The realization of phase diagrams has pointed out the inconstant impact of resonances with LO phonons on the lowering of the laser threshold. The study of the GaN microcavity has been pushed to 350 K and we have demonstrated, for the first time at this temperature, the persistence of the strong coupling regime and the polariton laser under optimal excitation conditions. The second part of this work is focused on ZnO waveguides. Besides the observation of strong coupling regime from 5 K to 300 K, our study has highlighted a new lasing effect in this geometry: the horizontal polariton laser
Mallet, Emilien. "Etude des propriétés polaritoniques de ZnO et GaN. Application à l'étude de l'effet laser à polaritons dans une microcavité." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22482/document.
Full textThis manuscript is devoted to the physics of polaritons in two wide band gap semiconductor : ZnO and GaN. The polaritonic parameters of these materials have been accurately determined through a study which combines linear and non-linear spectroscopies (continuous reflectivity, autocorrelation, photoluminescence and degenerate four-wave mixing). The interpretation of these results lead to a better understanding of the interaction processes in the semiconductor : the important role played by the polariton-LO phonon interactions in the polaritonic damping is highlighted and particularly for ZnO. This preliminary work on bulk samples is essential for a suitable study of polariton lasing in microcavities like it is presented in the second part of this manuscript. For this study, two similar microcavities, one based on ZnO and another on GaN. The photonic properties of these structures are at the state of the art : they have a good quality factor (Q ≈ 1,000) and have a low photon disorder. The strong coupling regime and the polariton lasing are observed to room temperature. Finally, the establishment of phase diagrams allows to highlight the important role of LO phonons in reduction of the laser threshold
Brückner, R., V. G. Lyssenko, S. Hofmann, and K. Leo. "Lasing of Tamm states in highly efficient organic devices based on small-molecule organic semiconductors." Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36129.
Full textMédard, François-Régis. "Conception et spectroscopie de microcavités à base de ZnO en régime de couplage fort pour l'obtention d'un laser à polaritons." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2010. http://tel.archives-ouvertes.fr/tel-00557136.
Full textBooks on the topic "Polariton laser"
The coincidence of opposites: William Golding's later fiction. Sheffield, England: Sheffield Academic Press, 1995.
Find full textKavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Strong Coupling: Polariton Bose Condensation. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.003.0008.
Full textKavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Polariton Devices. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.003.0012.
Full textKavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Spin and polarisation. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.003.0009.
Full textRahimi-Iman, Arash. Polariton Physics: From Dynamic Bose–Einstein Condensates in Strongly‐Coupled Light–Matter Systems to Polariton Lasers. Springer, 2020.
Find full textInfrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons (Springer Tracts in Modern Physics). Springer, 2005.
Find full textAlqassas, Ahmad. A Unified Theory of Polarity Sensitivity. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197554883.001.0001.
Full textKatajala-Peltomaa, Sari. Demonic Possession and Lived Religion in Later Medieval Europe. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198850465.001.0001.
Full textKavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Microcavities. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.001.0001.
Full textRooth, Mats. Alternative Semantics. Edited by Caroline Féry and Shinichiro Ishihara. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199642670.013.19.
Full textBook chapters on the topic "Polariton laser"
Moskalenko, S. A., and I. Tiginyanu. "Exciton-polariton Laser." In 3rd International Conference on Nanotechnologies and Biomedical Engineering, 196–200. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-736-9_49.
Full textGippius, N. A., L. V. Keldysh, and S. G. Tikhodeev. "Polariton Waves Near the Threshold for Stimulated Scattering." In Laser Optics of Condensed Matter, 321–29. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-7341-8_41.
Full textMoskalenko, S. A., A. H. Rotaru, and Yu M. Shvera. "Quantum Fluctuations and Statistical Properties of Intense Polariton Waves." In Laser Optics of Condensed Matter, 331–36. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-7341-8_42.
Full textVallée, F., G. Gale, and C. Flytzanis. "Evolution in Real Time and Space of Short Polariton Pulses in Crystals." In Laser Optics of Condensed Matter, 19–26. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3726-7_3.
Full textLi, Yan, Zhaopei Liu, Haibo Cui, Hong Yang, and Qihuang Gong. "Femtosecond laser induced two-photon polymerization of dielectric-loaded surface plasmon-polariton nanowaveguides." In Proceedings of the 36th International MATADOR Conference, 549–52. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-432-6_121.
Full textChristmann, Gabriel, and Jeremy J. Baumberg. "The Future Prospects of Room-Temperature Polariton Lasers." In Exciton Polaritons in Microcavities, 329–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24186-4_13.
Full textLeskova, T. A., I. Merkhasin, and V. M. Agranovich. "A Theory of Diffraction of Waveguide Polaritons." In Laser Optics of Condensed Matter, 347. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3726-7_47.
Full textSchubert, Mathias. "Polaritons in Semiconductor Layer Structures." In Springer Tracts in Modern Physics, 45–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-44701-6_4.
Full textLipatov, N. I., Yu N. Polivanov, and R. Sh Sayakhov. "Raman Scattering of Light from Coherently Excited Surface Polaritons." In Laser Optics of Condensed Matter, 169–72. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-7341-8_21.
Full textAaviksoo, J., A. Freiberg, J. Lippmaa, and T. Reinot. "Picosecond Dynamics of Excitonic Polaritons in the Bottleneck Region." In Laser Optics of Condensed Matter, 315–19. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-7341-8_40.
Full textConference papers on the topic "Polariton laser"
Höfling, S., C. Schneider, M. Amthor, N. Y. Kim, A. Rahimi-Iman, I. G. Savenko, I. A. Shelykh, et al. "Polariton Laser Diodes." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/acpc.2014.ath1b.2.
Full textGrandjean, Nicolas. "Polariton lasers." In 2012 IEEE 23rd International Semiconductor Laser Conference (ISLC). IEEE, 2012. http://dx.doi.org/10.1109/islc.2012.6348374.
Full textSeshadri, S. R. "Propagation Velocity of Surface Polariton." In Laser Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/ls.2014.lth4i.7.
Full textGrandjean, Nicolas, Gabirel Christmann, Eric Feltin, Jean-Francois Carlin, Alexei Altoukhov, Antonino Castiglia, and Raphael Butte. "Room-Temperature Polariton Laser." In 2008 66th Annual Device Research Conference (DRC). IEEE, 2008. http://dx.doi.org/10.1109/drc.2008.4800851.
Full textSchneider, C., N. Y. Kim, A. Rahimi-Iman, W. H. Nitsche, M. Lermer, M. Kamp, S. Reitzenstein, et al. "Exciton-polariton laser diodes." In 2010 IEEE 22nd International Semiconductor Laser Conference (ISLC). IEEE, 2010. http://dx.doi.org/10.1109/islc.2010.5642642.
Full textAmthor, M., J. Fischer, I. G. Savenko, I. A. Shelykh, A. Chernenko, A. Rahimi-Iman, V. D. Kulakovskii, et al. "Exciton-polariton laser diodes." In SPIE/COS Photonics Asia, edited by Zhiping Zhou and Kazumi Wada. SPIE, 2014. http://dx.doi.org/10.1117/12.2074122.
Full textSchneider, C., M. Amthor, N. Y. Kim, A. Rahimi-Iman, I. G. Savenko, I. A. Shelykh, V. D. Kulakovskii, et al. "Semiconductor Exciton-Polariton Lasers." In 2014 International Semiconductor Laser Conference (ISLC). IEEE, 2014. http://dx.doi.org/10.1109/islc.2014.134.
Full textKim, Seonghoon, Bo Zhang, Sebastian Brodbeck, Zhaorong Wang, Christian Schneider, Martin Kamp, Sven Höfling, and Hui Deng. "Coherent Polariton Lasing in a Designable Microcavity." In Laser Science. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ls.2016.lf2f.2.
Full textZhu, Wenqi, Cheng Zhang, Ting Xu, Amit Agrawal, and Henri J. Lezec. "Low-Threshold Surface-Plasmon-Polariton Laser Pumped by Surface Plasmon Polaritons." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.jw4g.3.
Full textHofling, Sven, Matthias Amthor, Arash Rahimi-Iman, Na Young Kim, Julian Fischer, Ivan G. Savenko, Vladimir D. Kulakovski, et al. "An electrically pumped polariton laser." In 2015 IEEE Photonics Conference (IPC). IEEE, 2015. http://dx.doi.org/10.1109/ipcon.2015.7323743.
Full textReports on the topic "Polariton laser"
Imamoglu, A. Electrically Pumped Microcavity Exciton Polariton Laser. Fort Belvoir, VA: Defense Technical Information Center, June 1999. http://dx.doi.org/10.21236/ada381621.
Full textBron, Walter E. Phonons, Polaritons, Electronic Carriers and Laser Damage. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada313796.
Full text