Journal articles on the topic 'Polarizable molecular force field'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Polarizable molecular force field.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chelli, Riccardo, Roberto Righini, Salvatore Califano, and Piero Procacci. "Towards a polarizable force field for molecular liquids." Journal of Molecular Liquids 96-97 (April 2002): 87–100. http://dx.doi.org/10.1016/s0167-7322(01)00329-4.
Full textStarovoytov, Oleg N., Pengzhi Zhang, Piotr Cieplak, and Margaret S. Cheung. "Induced polarization restricts the conformational distribution of a light-harvesting molecular triad in the ground state." Physical Chemistry Chemical Physics 19, no. 34 (2017): 22969–80. http://dx.doi.org/10.1039/c7cp03177g.
Full textChaban, Vitaly V. "Force field development and simulations of senior dialkyl sulfoxides." Physical Chemistry Chemical Physics 18, no. 15 (2016): 10507–15. http://dx.doi.org/10.1039/c5cp08006a.
Full textHånde, Ragnhild, Vivien Ramothe, Stéphane Tesson, et al. "Classical Polarizable Force Field to Study Hydrated Hectorite: Optimization on DFT Calculations and Validation against XRD Data." Minerals 8, no. 5 (2018): 205. http://dx.doi.org/10.3390/min8050205.
Full textDuvail, Magali, Thomas Dumas, Amaury Paquet, Amaury Coste, Laurence Berthon, and Philippe Guilbaud. "UO22+ structure in solvent extraction phases resolved at molecular and supramolecular scales: a combined molecular dynamics, EXAFS and SWAXS approach." Physical Chemistry Chemical Physics 21, no. 15 (2019): 7894–906. http://dx.doi.org/10.1039/c8cp07230b.
Full textRiahi, Saleh, Benoît Roux, and Christopher N. Rowley. "QM/MM molecular dynamics simulations of the hydration of Mg(II) and Zn(II) ions." Canadian Journal of Chemistry 91, no. 7 (2013): 552–58. http://dx.doi.org/10.1139/cjc-2012-0515.
Full textThaunay, Florian, Jean-Pierre Dognon, Gilles Ohanessian, and Carine Clavaguéra. "Vibrational mode assignment of finite temperature infrared spectra using the AMOEBA polarizable force field." Physical Chemistry Chemical Physics 17, no. 39 (2015): 25968–77. http://dx.doi.org/10.1039/c5cp02270c.
Full textKnappeova, Barbora, Vojtech Mlynsky, Martin Pykal, et al. "Comprehensive Assessment of Force-Field Performance in Molecular Dynamics Simulations of DNA/RNA Hybrid Duplexes." Journal of Chemical Theory and Computations 20, no. 15 (2024): 6917–29. https://doi.org/10.5281/zenodo.14183169.
Full textDong, Dengpan, Xiaoyu Wei, Justin B. Hooper, Hongchao Pan, and Dmitry Bedrov. "Role of cationic groups on structural and dynamical correlations in hydrated quaternary ammonium-functionalized poly(p-phenylene oxide)-based anion exchange membranes." Physical Chemistry Chemical Physics 20, no. 29 (2018): 19350–62. http://dx.doi.org/10.1039/c8cp02211a.
Full textNottoli, Michele, Benedetta Mennucci, and Filippo Lipparini. "Excited state Born–Oppenheimer molecular dynamics through coupling between time dependent DFT and AMOEBA." Physical Chemistry Chemical Physics 22, no. 35 (2020): 19532–41. http://dx.doi.org/10.1039/d0cp03688a.
Full textZhang, Jing, Li-Dong Gong, and Zhong-Zhi Yang. "Recent Development and Applications of the ABEEM/MM Polarizable Force Field." Journal of Computational Biophysics and Chemistry 21, no. 04 (2022): 485–98. http://dx.doi.org/10.1142/s2737416521420084.
Full textBorodin, Oleg. "Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids." Journal of Physical Chemistry B 113, no. 33 (2009): 11463–78. http://dx.doi.org/10.1021/jp905220k.
Full textMeher, B. R., M. V. Satish Kumar, and Pradipta Bandyopadhyay. "Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields." Indian Journal of Physics 83, no. 1 (2009): 81–90. http://dx.doi.org/10.1007/s12648-009-0005-3.
Full textCheng, YingXing, and Toon Verstraelen. "A new framework for frequency-dependent polarizable force fields." Journal of Chemical Physics 157, no. 12 (2022): 124106. http://dx.doi.org/10.1063/5.0115151.
Full textJeong, Kyeong-jun, Jesse G. McDaniel, and Arun Yethiraj. "Deep Eutectic Solvents: Molecular Simulations with a First-Principles Polarizable Force Field." Journal of Physical Chemistry B 125, no. 26 (2021): 7177–86. http://dx.doi.org/10.1021/acs.jpcb.1c01692.
Full textNakayama, N., S. Obata, K. Ohta, and H. Goto. "Development of polarizable force field for the prediction of molecular crystal structures." Acta Crystallographica Section A Foundations of Crystallography 64, a1 (2008): C207. http://dx.doi.org/10.1107/s0108767308093355.
Full textLin, Fang-Yu, Pedro E. M. Lopes, Edward Harder, Benoît Roux, and Alexander D. MacKerell. "Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator." Journal of Chemical Information and Modeling 58, no. 5 (2018): 993–1004. http://dx.doi.org/10.1021/acs.jcim.8b00132.
Full textAinsworth, Richard I., Devis Di Tommaso, Jamieson K. Christie, and Nora H. de Leeuw. "Polarizable force field development and molecular dynamics study of phosphate-based glasses." Journal of Chemical Physics 137, no. 23 (2012): 234502. http://dx.doi.org/10.1063/1.4770295.
Full textKolafa, Jiř[idot], and Mark Ratner. "Oligomers of Poly(Ethylene Oxide): Molecular Dynamics with a Polarizable Force Field." Molecular Simulation 21, no. 1 (1998): 1–26. http://dx.doi.org/10.1080/08927029808022047.
Full textSzklarczyk, Oliwia M., Stephan J. Bachmann, and Wilfred F. van Gunsteren. "A polarizable empirical force field for molecular dynamics simulation of liquid hydrocarbons." Journal of Computational Chemistry 35, no. 10 (2014): 789–801. http://dx.doi.org/10.1002/jcc.23551.
Full textBernardino, Kalil, and Mauro C. C. Ribeiro. "Relating the structure and dynamics of ionic liquids under shear by means of reverse non-equilibrium molecular dynamics simulations." Physical Chemistry Chemical Physics 23, no. 25 (2021): 13984–95. http://dx.doi.org/10.1039/d1cp01205c.
Full textBaker, Christopher M. "Polarizable force fields for molecular dynamics simulations of biomolecules." Wiley Interdisciplinary Reviews: Computational Molecular Science 5, no. 2 (2015): 241–54. http://dx.doi.org/10.1002/wcms.1215.
Full textAn, Dong, Sara Y. Cheng, Teresa Head-Gordon, Lin Lin, and Jianfeng Lu. "Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation." Journal of Computational Physics 438 (August 2021): 110338. http://dx.doi.org/10.1016/j.jcp.2021.110338.
Full textHarder, Edward, Benoit Roux, and Alex D. MacKerell. "Molecular Dynamics Simulation of Phospholipid Bilayers and Monolayers Using a Polarizable Force Field." Biophysical Journal 98, no. 3 (2010): 10a. http://dx.doi.org/10.1016/j.bpj.2009.12.061.
Full textBelsare, Saurabh, Alexander Esser, Dominik Marx, and Teresa Head-Gordon. "Studying Solvation of Small Biomolecules via Molecular Dynamics using a Polarizable Force Field." Biophysical Journal 112, no. 3 (2017): 497a. http://dx.doi.org/10.1016/j.bpj.2016.11.2688.
Full textCao, Liaoran, Hong Ren, Jing Miao, Wei Guo, Yan Li, and Guohui Li. "Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions." Frontiers of Chemical Science and Engineering 10, no. 2 (2016): 203–12. http://dx.doi.org/10.1007/s11705-016-1572-4.
Full textJiang, H., K. D. Jordan, and C. E. Taylor. "Molecular Dynamics Simulations of Methane Hydrate Using Polarizable Force Fields." Journal of Physical Chemistry B 111, no. 23 (2007): 6486–92. http://dx.doi.org/10.1021/jp068505k.
Full textJaffrelot Inizan, Théo, Frédéric Célerse, Olivier Adjoua, et al. "High-resolution mining of the SARS-CoV-2 main protease conformational space: supercomputer-driven unsupervised adaptive sampling." Chemical Science 12, no. 13 (2021): 4889–907. http://dx.doi.org/10.1039/d1sc00145k.
Full textVázquez-Montelongo, Erik Antonio, José Enrique Vázquez-Cervantes, and G. Andrés Cisneros. "Current Status of AMOEBA–IL: A Multipolar/Polarizable Force Field for Ionic Liquids." International Journal of Molecular Sciences 21, no. 3 (2020): 697. http://dx.doi.org/10.3390/ijms21030697.
Full textLemkul, Justin A. "Same fold, different properties: polarizable molecular dynamics simulations of telomeric and TERRA G-quadruplexes." Nucleic Acids Research 48, no. 2 (2019): 561–75. http://dx.doi.org/10.1093/nar/gkz1154.
Full textWojtkowiak, Kamil, Aneta Jezierska, and Jarosław J. Panek. "Interactions between Artificial Channel Protein, Water Molecules, and Ions Based on Theoretical Approaches." Symmetry 14, no. 4 (2022): 691. http://dx.doi.org/10.3390/sym14040691.
Full textChu, Huiying, Xiangda Peng, Yan Li, Yuebin Zhang, and Guohui Li. "A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids." Molecules 23, no. 1 (2017): 77. http://dx.doi.org/10.3390/molecules23010077.
Full textWu, Johnny C., Jean-Philip Piquemal, Robin Chaudret, Peter Reinhardt, and Pengyu Ren. "Polarizable Molecular Dynamics Simulation of Zn(II) in Water Using the AMOEBA Force Field." Journal of Chemical Theory and Computation 6, no. 7 (2010): 2059–70. http://dx.doi.org/10.1021/ct100091j.
Full textLindert, Steffen, Denis Bucher, Peter Eastman, Vijay Pande, and J. Andrew McCammon. "Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units." Journal of Chemical Theory and Computation 9, no. 11 (2013): 4684–91. http://dx.doi.org/10.1021/ct400514p.
Full textLi, Hui, Janamejaya Chowdhary, Lei Huang, Xibing He, Alexander D. MacKerell, and Benoît Roux. "Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids." Journal of Chemical Theory and Computation 13, no. 9 (2017): 4535–52. http://dx.doi.org/10.1021/acs.jctc.7b00262.
Full textNoskov, Sergei Yu, Guillaume Lamoureux, and Benoît Roux. "Molecular Dynamics Study of Hydration in Ethanol−Water Mixtures Using a Polarizable Force Field†." Journal of Physical Chemistry B 109, no. 14 (2005): 6705–13. http://dx.doi.org/10.1021/jp045438q.
Full textNarui, Yoshie, Florencia Velez-Cortes, Zachary Johnson, and Marcos Sotomayor. "Steered Molecular Dynamics Simulations of Inner-Ear Cadherins using the Drude Polarizable Force Field." Biophysical Journal 110, no. 3 (2016): 177a. http://dx.doi.org/10.1016/j.bpj.2015.11.988.
Full textLagardère, Louis, Luc-Henri Jolly, Filippo Lipparini, et al. "Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields." Chemical Science 9, no. 4 (2018): 956–72. http://dx.doi.org/10.1039/c7sc04531j.
Full textEsser, Alexander, Saurabh Belsare, Dominik Marx, and Teresa Head-Gordon. "Mode specific THz spectra of solvated amino acids using the AMOEBA polarizable force field." Physical Chemistry Chemical Physics 19, no. 7 (2017): 5579–90. http://dx.doi.org/10.1039/c6cp07388c.
Full textBernardes, Carlos E. S. "DLPGEN: Preparing Molecular Dynamics Simulations with Support for Polarizable Force Fields." Journal of Chemical Information and Modeling 62, no. 6 (2022): 1471–78. http://dx.doi.org/10.1021/acs.jcim.1c01431.
Full textKognole, Abhishek A., Jumin Lee, Sang‐Jun Park, et al. "CHARMM‐GUI Drude prepper for molecular dynamics simulation using the classical Drude polarizable force field." Journal of Computational Chemistry 43, no. 5 (2021): 359–75. http://dx.doi.org/10.1002/jcc.26795.
Full textPacaud, Fabien, Jean-Marc Delaye, Thibault Charpentier, Laurent Cormier, and Mathieu Salanne. "Structural study of Na2O–B2O3–SiO2 glasses from molecular simulations using a polarizable force field." Journal of Chemical Physics 147, no. 16 (2017): 161711. http://dx.doi.org/10.1063/1.4992799.
Full textAsthana, Abhishek, and Dean R. Wheeler. "A polarizable reactive force field for water to enable molecular dynamics simulations of proton transport." Journal of Chemical Physics 138, no. 17 (2013): 174502. http://dx.doi.org/10.1063/1.4798457.
Full textXu, Tao, and ShiWei Yin. "Effective polarization energy of the naphthalene molecular crystal: a study on the polarizable force field." Science China Chemistry 57, no. 10 (2014): 1375–82. http://dx.doi.org/10.1007/s11426-014-5182-z.
Full textKönig, Gerhard, Frank Pickard, Jing Huang, et al. "A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes." Molecules 23, no. 10 (2018): 2695. http://dx.doi.org/10.3390/molecules23102695.
Full textZhang, Ling, and J. Ilja Siepmann. "Development of the trappe force field for ammonia." Collection of Czechoslovak Chemical Communications 75, no. 5 (2010): 577–91. http://dx.doi.org/10.1135/cccc2009540.
Full textChu, Huiying, Xiangda Peng, Yan Li, Yuebin Zhang, Hanyi Min, and Guohui Li. "Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids." Molecular Physics 116, no. 7-8 (2018): 1037–50. http://dx.doi.org/10.1080/00268976.2018.1436201.
Full textBedrov, Dmitry, Jean-Philip Piquemal, Oleg Borodin, Alexander D. MacKerell, Benoît Roux, and Christian Schröder. "Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields." Chemical Reviews 119, no. 13 (2019): 7940–95. http://dx.doi.org/10.1021/acs.chemrev.8b00763.
Full textHaskins, Justin B., Alper Kinaci, and Tahir Çağın. "Molecular Dynamics Simulations of Piezoelectric Materials for Energy Harvesting Applications." Materials Science Forum 792 (August 2014): 54–64. http://dx.doi.org/10.4028/www.scientific.net/msf.792.54.
Full textKaminski, George A., Harry A. Stern, B. J. Berne, and Richard A. Friesner. "Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry." Journal of Physical Chemistry A 108, no. 4 (2004): 621–27. http://dx.doi.org/10.1021/jp0301103.
Full text