Academic literature on the topic 'Poly(3-hexylthiophene)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poly(3-hexylthiophene).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Poly(3-hexylthiophene)"

1

Guo, Yan, Lang Jiang, Xiaojing Ma, Wenping Hu, and Zhaohui Su. "Poly(3-hexylthiophene) monolayer nanowhiskers." Polymer Chemistry 4, no. 16 (2013): 4308. http://dx.doi.org/10.1039/c3py00728f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bauer, Peter, Michael Sommer, Johann Thurn, Martti Pärs, Jürgen Köhler, and Mukundan Thelakkat. "A photoswitchable poly(3-hexylthiophene)." Chemical Communications 49, no. 41 (2013): 4637. http://dx.doi.org/10.1039/c3cc41765d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hernández-Martínez, D., C. Martínez-Alonso, M. M. Castillo-Ortega, M. C. Arenas-Arrocena, and M. E. Nicho. "Preparation and characterization of electrospun fibers containing poly(3-hexylthiophene) and poly(3-hexylthiophene)/CdS." Synthetic Metals 209 (November 2015): 496–501. http://dx.doi.org/10.1016/j.synthmet.2015.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sansomboon, A., T. Jungwon, P. Pasitsuparoad, K. Subannajui, and T. Osotchan. "Fabrication and I-V Characterization with Monochromatic Light of Multilayer Poly(3-hexylthiophene)-CNT/C60 Thin Films on ITO Glass Substrate." Advanced Materials Research 770 (September 2013): 315–18. http://dx.doi.org/10.4028/www.scientific.net/amr.770.315.

Full text
Abstract:
Multilayer poly (3-hexylthiophene)-CNT/C60 thin films on ITO glass substrate was fabricated regarding to the function of each layer. Poly (3-hexylthiophene) (P3HT) is used as a donor layer and fullerene (C60) is used as an acceptor layer of the device. The carbon-nanotube (CNT) is homogeneously mixed in the donor layer to increase charge transportability. The structures of poly (3-hexylthiophene), poly (3-hexylthiophene)-CNT were fabricated in comparison of poly (3-hexylthiophene)-CNT/C60 thin films. The P3HT-CNT bulk heterojunction was deposited on ITO glass substrate by spin coating technique and then the C60 thin film was deposited on the P3HT by thermal evaporating technique. The I-V characteristic of ITO/P3HT-CNT/Al and ITO/P3HT-CNT/C60/Al were investigated in the monochromatic light. The result showed that the ITO/P3HT-CNT/Al structures respond with red and green light, and the ITO/P3HT-CNT/C60/Al structure responds with blue light. The UV absorption was measured and the result was consistence with the I-V characterization.
APA, Harvard, Vancouver, ISO, and other styles
5

Melis, Claudio, Luciano Colombo, and Alessandro Mattoni. "Self-Assembling of Poly(3-hexylthiophene)." Journal of Physical Chemistry C 115, no. 2 (December 21, 2010): 576–81. http://dx.doi.org/10.1021/jp109175b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heffner, Glenn W., and Dale S. Pearson. "Molecular characterization of poly(3-hexylthiophene)." Macromolecules 24, no. 23 (November 1991): 6295–99. http://dx.doi.org/10.1021/ma00023a035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

de Paula, F. R., L. Walmsley, E. C. Pereira, and A. J. A. de Oliveira. "Magnetic properties of poly(3-hexylthiophene)." Journal of Magnetism and Magnetic Materials 320, no. 14 (July 2008): e193-e195. http://dx.doi.org/10.1016/j.jmmm.2008.02.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gustafsson, G., O. Inganäs, M. Sundberg, and C. Svensson. "Rectifying metal/poly(3-hexylthiophene) contacts." Synthetic Metals 41, no. 1-2 (April 1991): 499–502. http://dx.doi.org/10.1016/0379-6779(91)91117-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hamaguchi, Maki, Hidetaka Nambu, and Katsumi Yoshino. "Electrogenerated Chemiluminescence from Poly(3-hexylthiophene)." Japanese Journal of Applied Physics 36, Part 2, No. 2A (February 1, 1997): L124—L126. http://dx.doi.org/10.1143/jjap.36.l124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kuo, C. S., F. G. Wakim, S. K. Sengupta, and S. K. Tripathy. "Schottky diodes using poly(3‐hexylthiophene)." Journal of Applied Physics 74, no. 4 (August 15, 1993): 2957–58. http://dx.doi.org/10.1063/1.355319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Poly(3-hexylthiophene)"

1

Dimopoulos, Alexandros Ioannis. "Characterization of poly(3-hexylthiophene) based Schottky diodes." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42227.

Full text
Abstract:
This thesis describes the fabrication and electrical characterization of Schottky diodes based on the polymer semiconductor poly(3-hexylthiophene). Printed electronics may not be able to benefit from high vacuum processing, either for economic or technical reasons. The aim was to observe the effects on performance when Schottky diodes were built at atmospheric pressure. 200 nm thick films of poly(3-hexylthiophene) were formed on glass substrates by spinning a 1 wt% polymer solution in chloroform. Vacuum deposited aluminum and gold where used for the Schottky and ohmic contacts respectively. Two types of diodes were manufactured. One type (Au bottom) had its Schottky junction formed by evaporating aluminum onto the polymer under high vacuum. The other (Al bottom) had its Schottky junction formed by depositing the polymer onto aluminum at atmospheric pressure. The final yield of usable devices was 35% for Au bottom and 22% for Al bottom. The hole density and bulk mobility were derived from both DC and AC measurements. The bulk mobility was found to range from 2×10⁻⁵ cm²V⁻¹s⁻¹ to 6×10⁻⁵ cm²V⁻¹s⁻¹. The hole density was determined to be between 5×10¹⁶ cm⁻³ and 3x10¹⁷ cm⁻³. DC measurements showed that Au bottom devices had a current rectification ratio of 2×10⁴ at ±2 V, 100 times greater than Al bottom devices. The space charge limited current (SCLC) had to be considered to successfully model the DC behaviour. The small signal behaviour was modeled with a 2nd order series/parallel circuit, which was determined through impedance spectroscopy. Small signal performance of both device types was predicted to be poor. The corner frequency was determined to be less than 100 Hz for Al bottom devices, and less than 1 kHz for Au bottom devices. Large signal frequency performance of the diodes was tested with a half-wave peak rectifier. The maximum operating frequency was measured to be 40 kHz for Au bottom devices and 10 kHz for Al bottom devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Miseikis, Lukas. "Attosecond transient absorption experiments in poly(3-hexylthiophene) targets." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/60582.

Full text
Abstract:
In this thesis I present the development of a new type of experiment that extends the avenues of common time resolved measurements in the attosecond science field. The work presented here brings the tools of attosecond science to study electron dynamics in the systems that are the central topic in plastic electronics. A new experimental scheme is designed to study exciton formation and evolution in organic semiconductor Poly(3-HexylThiophene) (P3HT) that is used in organic solar cells. A variation of attosecond transient absorption spectroscopy was proposed to study the dynamics. The challenges of this experimental arrangement were to prepare the correct laser targets and both pump and probe pulses. Here I present the development of solid state polymer targets that were used for the transient absorption experiments. These targets have been succesfully prepared as free standing films in the range of 50 nm - 200 nm thickness and their X-ray absorption spectra were measured. Carrier envelope phase stable laser pulses centered at 1750 nm were achieved in a few optical cycle regime via Hollow Core Fiber (HCF) compression scheme developed in house. These pulses were used to drive High Harmonic Generation (HHG) beyond the 160 eV energy range in a differentially pumped Ne gas target. Strong CEP dependent half cycle cutoofs were observed in the HHG spectra confirming isolated attosecond pulses. X-ray absorption spectrum in P3HT targets was measured using this new source. Two routes for the optical pump generation have been explored. 17 fs, 2 mJ pulse was obtained from the 1750 nm driver via the cascaded third harmonic generation process in a non linear crystal and characterised using the SHG-FROG technique. This pulse was implemented as an optical pump in the transient absorption experiment. An interferometric optical setup was constructed that combines both the pump and the probe generation and the delay control between them. The setup was used to obtain the initial transient absorption experiment data.
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Avinesh Avi. "Charge transport in semi-crystalline poly(3-hexylthiophene) (P3HT) structures." Thesis, Queen Mary, University of London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marchant, Stephen. "Materials characterisation of the processible conducting polymer, poly(3-hexylthiophene)." Thesis, University of Greenwich, 1992. http://gala.gre.ac.uk/6238/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuo, Kao-Yu. "Optimisation of poly(3-hexylthiophene-2,5-diyl) based photovoltaic devices." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

CESAR, BERTRAND. "Synthese et caracterisation de copolymeres blocs polystyrene-b-poly(3-hexylthiophene)." Université Louis Pasteur (Strasbourg) (1971-2008), 1995. http://www.theses.fr/1995STR13227.

Full text
Abstract:
Des copolymeres sequences polystyrene - poly(3-hexylthiophene) (ps-b-p3ht) ont ete synthetises et fractionnes. Leur caracterisation, par chromatographie d'exclusion sterique et spectroscopie uv-visible, a montre l'existence de copolymeres di et tri-blocs ainsi que d'agregats. La presence de triblocs est une donnee nouvelle concernant le mecanisme des reactions de propagation et de terminaison de la polymerisation oxydative des poly(3-alkylthiophenes). L'etude en solution, par diffusion de neutrons, de copolymeres fractionnes comportant une sequence polystyrene deuteriee a ete realisee. Elle a permis de mettre en evidence la structure lineaire des sequences p3ht, et une faible agregation de ces chaines a l'etat dope. L'etude a l'etat solide par calorimetrie differentielle et diffraction des rayons x, permet d'observer une separation en microphases des sequences ps et p3ht. L'obtention de morphologie en nids d'abeille, a partir de films de copolymeres dopes, est un argument en faveur de l'association en micelles des copolymeres, dans les conditions de l'experience. Le dopage p des copolymeres a ete effectue en solution et l'influence du temps d'exposition au dopage etudiee. Des mesures de conductivite en fonction de la frequence, montrent qu'une tres faible fraction en p3ht est necessaire pour obtenir des conductivites compatibles avec les absorbants hyperfrequences. L'etude des proprietes optoelectroniques de ces copolymeres, tant a l'etat neutre qu'a l'etat legerement dope, a permis l'elaboration de diodes electroluminescentes organiques dont les caracteristiques sont tres superieures a celles des diodes electroluminescentes developpees a partir de poly(3-alkylthiophenes)
APA, Harvard, Vancouver, ISO, and other styles
7

Gonfa, Belete Atomsa. "Fabrication of solar cells from poly(3-hexylthiophene) and ZnO Nanostructures." Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2289.

Full text
Abstract:
Mestrado em Ciência dos Materiais
As células fotovoltaicas à base de compostos orgânicos e de híbridos do tipo orgânico/inorgânico têm recebido bastante atenção devido à sua potencial aplicação como fonte de energia limpa e económica. A utilização de nanoestruturas neste tipo de dispositivos tem também recebido especial atenção já que o confinamento quântico a elas associado promove a percolação, facilitando a passagem dos portadores de carga o que aumenta a sua eficiência. Nesta tese foram preparados dispositivos fotovoltaicos “bulk heterojunction” através da mistura de poli(3-hexiltiofeno) com diferentes nanoestruturas de ZnO. As nanoestruturas de ZnO (nanopartículas, nanofios e naofibras) foram preparadas por diferentes técnicas e caracterizadas por XRD, espectroscopia no UV-Vis, SEM e TEM. As nanopartículas e os nanofios de ZnO foram preparadas por métodos químicos em solução e decomposição térmica de acetato de zinco dihidratado respectivamente. As naonofibras de ZnO foram preparadas por calcinação de nanofibras compostas por alcóol polivinílico e acetato de zinco preparadas por “electrospinning”. As nanoestruturas preparadas foram ainda funcionalizadas com o ácido pireno-1-carboxílico. As nanoestruturas preparadas, funcionalizadas ou não funcionalizadas, foram misturadas com soluções de P3HT de modo a preparar dispositivos fotovoltáticos em duas configurações distintas. Numa delas os eléctrodos consistem em ITO e o alumínio depositado por evaporação térmica, na outra, os eléctrodos consistem em ITO e tinta de prata. O primeiro tipo de configuração utilizou a seguinte sequência: vidro/ITO/PEDOT:PSS/camada fotoactiva/Al. Na segunda configuração a sequência utilizada foi: vidro/ITO/ZnO/ camada fotoactiva/ PEDOT:PSS/Ag. As camadas de PEDOT:PSS bem como as camadas fotoactivas foram depositadas por spin coating. A caracterização dos dispositivos foi feita através de medições da corrente-tensão sob condições simuladas de iluminação padrão. Os dispositivos preparados apresentaram actividade fotovoltaica mas a sua eficiência ainda precisa de ser melhorada. ABSTRACT: Organic and organic/inorganic hybrid solar cells have been receiving a significant amount of attention due to their potential to yield environmentally friendly and cheap source of energy. As a result they are being investigated widely. Making use of nanostructures in such devices has also received a great attention as they provide percolative pathways for charge carriers by quantum confinement, helping in the improvement of the efficiency of the devices. In this thesis bulk heterojunction photovoltaic devices have been produced by blending different ZnO nanostructures and surface functionalized ZnO nanostructures with poly- 3-hexylthiophene. ZnO nanostructures (nanoparticles, nanowires and nanofibers) have been produced by different techniques and characterized by XRD, UV-Visible spectroscopy and SEM. ZnO nanoparticles and ZnO nanowires were prepared by wet chemical synthesis and thermal decomposition of zinc acetate dihydrate respectively. ZnO nanofibers were prepared by calcination of polyvinyl alcohol/zinc acetate composite nanofiber, which had been produced by the electrospinning process. These nanostructures were also surface functionalized with pyrene-1-carboxylic acid and characterized. Subsequently, these nanostructures and their surface functionalized forms were used to fabricate photovoltaic devices by combining them with P3HT and its whiskers. The photovoltaic devices have been prepared in two different configurations. In some ITO and aluminium deposited by thermal evaporation were used as the electrodes, while in the others ITO and silver paste were used. The first set of devices had the order glass/ITO/PEDOT:PSS/photoactive layer/Al, while the latter had the order lass/ITO/ZnO/photoactive layer/ PEDOT:PSS/Ag paste. The PEDOT:PSS and the photoactive layers were deposited by spin coating of the suspension of PEDOT:PSS in water and the suspension of the ZnO nanostructures in the poly-3-hexylthiophene solution respectively. The photovoltaic cells were finally characterized by current-voltage characteristics measurement under simulated standard illumination conditions. The photovoltaic devices prepared have demonstrated photovoltaic properties, but their efficiencies need further improvement.
APA, Harvard, Vancouver, ISO, and other styles
8

Shu, Huihua Chin Bryan Allen. "Applications of poly (3-hexylthiophene) thin film as a hydrazine-sensitive chemiresistor." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/SHU_HUIHUA_8.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gadient, Jennifer N. "One-Pot In-Situ Synthesis of Poly(3-hexylthiophene)/Metal Oxide Composites." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo151114123960565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Erothu, Harikrishna. "Synthesis and photovoltaic applications of novel copolymers based on poly(3-hexylthiophene)." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14227/document.

Full text
Abstract:
Dans cette étude, des copolymères à blocs rigide-flexible comprenant des segments donneur [poly(3-hexylthiophène) régiorégulier, (rr-P3HT)] et accepteurs d’électrons (C60) ont été synthétisés. L’auto-assemblage en masse de ces copolymères à blocs avait pour objectif d’atteindre des morphologies dont la taille des domaines coïncide avec la distance idéale de transport de l’exciton (~10 nm) en vue d’utiliser ces systèmes comme matériaux de couche active dans les cellules photovoltaïques organiques de type P3HT-PCBM.La maîtrise et l'optimisation des conditions de synthèse de rr-P3HT de fonctionnalité terminale bien définie nous ont permis d'accéder à différentes architectures de copolymères linéaires di- et triblocs, constitués de P3HT comme bloc rigide et de polystyrène ou poly(4-vinylpyridine) comme bloc ‘flexible’. La fonctionnalisation du bloc flexible avec des dérivés du fullerène (C60 ou PCBM) a ensuite été réalisée et ces copolymères utilisés comme additifs pour stabiliser la morphologie de la couche active des cellules solaires organiques de type P3HT/PCBM. Les caractéristiques photovoltaïques des matériaux ainsi préparés ont été déterminées et corrélées aux analyses morphologiques de la couche active
The performance of organic photovoltaic cells mainly depends on the active layer nano-morphology. Rod-coil block copolymers (BCPs) are well known in their ability to self-assemble into well-ordered nanoscopic morphologies. BCPs containing electron-donor and acceptor segments are of particular interest for use in photovoltaic cells because electronic light-excited states exist over distances similar to the typical size of block copolymer domains (~10 nm). Therefore, we designed novel donor-acceptor BCPs to exploit this coincidence in dimensions. This thesis is focused on BCPs based on regioregular poly(3-hexylthiophene) (rr-P3HT) due to its high hole mobility and good processibility from various solvents. Simplified and versatile syntheses of donor-acceptor rod-coil di- and tri- BCPs consisting of the donor block P3HT (rod) and polystyrene or poly(4-vinylpyridine) (coil) blocks to carry the acceptor C60 in different ways were developed. These materials were used as surfactants to stabilize the nano-morphology of reference P3HT: [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) based devices. Photovoltaic characterizations were then tied to copolymer structural data with the help of AFM and a range of complementary characterization techniques
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Poly(3-hexylthiophene)"

1

Dicker, Gerald. Photogeneration & Dynamics of Charge Carriers in the Conjugated Polymer Poly (3-hexylthiophene). Delft Univ Pr, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Poly(3-hexylthiophene)"

1

Sista, Prakash, and Christine K. Luscombe. "Progress in the Synthesis of Poly (3-hexylthiophene)." In P3HT Revisited – From Molecular Scale to Solar Cell Devices, 1–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/12_2014_278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lögdlund, M., R. Lazzaroni, W. R. Salaneck, S. Stafström, J. O. Nilsson, X. Shuang, J. E. Österholm, and J. L. Brédas. "π-Electronic Structure of Poly(3-hexylthiophene) Studied by Photoelectron Spectroscopy." In Springer Series in Solid-State Sciences, 367–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83833-0_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmad, Zubair, Muhammad Awais, Mansoor Ani Najeeb, R. A. Shakoor, and Farid Touati. "Poly(3-Hexylthiophene) (P3HT), Poly(Gamma-Benzyl-l-Glutamate) (PBLG) and Poly(Methyl Methacrylate) (PMMA) as Energy Harvesting Materials." In Smart Polymer Nanocomposites, 95–118. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50424-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Weili, Ruigang Liu, and Yong Huang. "Tailoring the Morphology of the Poly(3-hexylthiophene)/C60Films and Charge Carrier Mobility." In ACS Symposium Series, 123–36. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1034.ch009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rikukawa, M., and M. F. Rubner. "Preparation of Multicomponent Langmuir—Blodgett Thin Films Composed of Poly(3-hexylthiophene) and 3-Octadecanoylpyrrole." In ACS Symposium Series, 64–75. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0493.ch006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dyreklev, P., O. Inganäs, J. Paloheimo, and H. Stubb. "Luminescence Quenching in Poly(3-hexylthiophene) by Charge Injection in a Field Effect Transistor." In Electronic Properties of Polymers, 365–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84705-9_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brinkmann, Martin, Lucia Hartmann, Navaphun Kayunkid, and David Djurado. "Understanding the Structure and Crystallization of Regioregular Poly (3-hexylthiophene) from the Perspective of Epitaxy." In P3HT Revisited – From Molecular Scale to Solar Cell Devices, 83–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/12_2014_280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaulachs, I., I. Muzikante, L. Gerca, G. Shlihta, M. Plotniece, M. Roze, J. Kalnachs, et al. "PV Effect of Fullerene/Poly(3-Hexylthiophene) Blend Sensitized By Phthalocyanine Having Infrared Absorption Ct Band." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1038–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rana, Debkumar, Patrice Donfack, and Arnulf Materny. "Effect of External Electric Field on Reorganization Energy in Poly(3-Hexylthiophene): An Investigation Based on Density Functional Theory." In Springer Proceedings in Physics, 369–77. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0202-6_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghijsen, J., R. Lazzaroni, V. Parenté, J. L. Brédas, A. Lachkar, A. Selmani, and R. L. Johnson. "Photoemission Study of Copper Deposition on the Conjugated Polymer Poly-3-hexylthiophene and Comparison with Quantum-chemical Calculations." In Proceedings of the 11th International Conference on Vacuum Ultraviolet Radiation Physics, 355–58. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82245-1.50089-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Poly(3-hexylthiophene)"

1

Samuel, Ifor D. W., Laura Magnani, Garry Rumbles, Ken Murray, Bradley M. Stone, Stephen C. Moratti, and Andrew B. Holmes. "Photoluminescence in poly(3-hexylthiophene)." In Optical Science, Engineering and Instrumentation '97, edited by Z. Valy Vardeny and Lewis J. Rothberg. SPIE, 1997. http://dx.doi.org/10.1117/12.279277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhattacharjee, Paromita, Parameswar Krishnan Iyer, and Harshal Bhalchandra Nemade. "Acoustoelectric Current in Poly(3-hexylthiophene)." In 2022 IEEE International Conference on Emerging Electronics (ICEE). IEEE, 2022. http://dx.doi.org/10.1109/icee56203.2022.10118355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laib, Jonathan P., Hui Zhan, Jason A. Deibel, Daniel M. Mittleman, Jeff Worne, and Douglas Natelson. "Photoconductive Properties of Regioregular Poly(3-hexylthiophene)." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4453171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sauvé, Geneviève, Rui Zhang, Shijun Jia, Tomasz Kowalewski, and Richard D. McCullough. "Synthesis, mobility, and conductivity of well-defined regioregular poly(3-hexylthiophene) and diblock copolymers of regioregular poly(3-hexylthiophene)." In SPIE Optics + Photonics, edited by Zhenan Bao and David J. Gundlach. SPIE, 2006. http://dx.doi.org/10.1117/12.681068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pochas, C. M., Hajime Yamagata, and F. C. Spano. "Two-dimensional polaron coherence in Poly(3-hexylthiophene)." In SPIE NanoScience + Engineering, edited by Natalie Banerji, Sophia C. Hayes, and Carlos Silva. SPIE, 2014. http://dx.doi.org/10.1117/12.2064182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, C. K., L. J. Richter, D. S. Germack, B. R. Conrad, D. A. Fischer, D. M. DeLongchamp, and D. J. Gundlach. "Spray deposited poly-3-hexylthiophene thin film transistors." In 2009 International Semiconductor Device Research Symposium (ISDRS 2009). IEEE, 2009. http://dx.doi.org/10.1109/isdrs.2009.5378131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ahlskog, M., and H. Stubb. "Stability studies on AuCl/sub 3/-doped poly(3-hexylthiophene)." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoshida, Manabu, Sei Uemura, Satoshi Hoshino, Takehito Kodzasa, and Toshihide Kamata. "Subthreshold behavior in nanoparticle-dispersed poly(3-hexylthiophene) FET." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Ananth Dodabalapur. SPIE, 2004. http://dx.doi.org/10.1117/12.559103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rahaman, Abdulla Bin, Atri Sarkar, and Debamalya Banerjee. "Temperature dependent charge transport in poly(3-hexylthiophene) diodes." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cavassin, Priscila, Isabelle Holzer, Olivier Bardagot, Julien Réhault, and Natalie Banerji. "Morphology of poly(3-hexylthiophene) dictates electrochemical doping mechanisms." In Organic Electronics and Photonics: Fundamentals and Devices III, edited by Sebastian Reineke, Koen Vandewal, and Wouter Maes. SPIE, 2022. http://dx.doi.org/10.1117/12.2623114.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Poly(3-hexylthiophene)"

1

Kline, R. The Dependence of Regioregular Poly(3-Hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/839719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography