Academic literature on the topic 'Poly(3-hexylthiophene)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poly(3-hexylthiophene).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Poly(3-hexylthiophene)"
Guo, Yan, Lang Jiang, Xiaojing Ma, Wenping Hu, and Zhaohui Su. "Poly(3-hexylthiophene) monolayer nanowhiskers." Polymer Chemistry 4, no. 16 (2013): 4308. http://dx.doi.org/10.1039/c3py00728f.
Full textBauer, Peter, Michael Sommer, Johann Thurn, Martti Pärs, Jürgen Köhler, and Mukundan Thelakkat. "A photoswitchable poly(3-hexylthiophene)." Chemical Communications 49, no. 41 (2013): 4637. http://dx.doi.org/10.1039/c3cc41765d.
Full textHernández-Martínez, D., C. Martínez-Alonso, M. M. Castillo-Ortega, M. C. Arenas-Arrocena, and M. E. Nicho. "Preparation and characterization of electrospun fibers containing poly(3-hexylthiophene) and poly(3-hexylthiophene)/CdS." Synthetic Metals 209 (November 2015): 496–501. http://dx.doi.org/10.1016/j.synthmet.2015.09.001.
Full textSansomboon, A., T. Jungwon, P. Pasitsuparoad, K. Subannajui, and T. Osotchan. "Fabrication and I-V Characterization with Monochromatic Light of Multilayer Poly(3-hexylthiophene)-CNT/C60 Thin Films on ITO Glass Substrate." Advanced Materials Research 770 (September 2013): 315–18. http://dx.doi.org/10.4028/www.scientific.net/amr.770.315.
Full textMelis, Claudio, Luciano Colombo, and Alessandro Mattoni. "Self-Assembling of Poly(3-hexylthiophene)." Journal of Physical Chemistry C 115, no. 2 (December 21, 2010): 576–81. http://dx.doi.org/10.1021/jp109175b.
Full textHeffner, Glenn W., and Dale S. Pearson. "Molecular characterization of poly(3-hexylthiophene)." Macromolecules 24, no. 23 (November 1991): 6295–99. http://dx.doi.org/10.1021/ma00023a035.
Full textde Paula, F. R., L. Walmsley, E. C. Pereira, and A. J. A. de Oliveira. "Magnetic properties of poly(3-hexylthiophene)." Journal of Magnetism and Magnetic Materials 320, no. 14 (July 2008): e193-e195. http://dx.doi.org/10.1016/j.jmmm.2008.02.045.
Full textGustafsson, G., O. Inganäs, M. Sundberg, and C. Svensson. "Rectifying metal/poly(3-hexylthiophene) contacts." Synthetic Metals 41, no. 1-2 (April 1991): 499–502. http://dx.doi.org/10.1016/0379-6779(91)91117-s.
Full textHamaguchi, Maki, Hidetaka Nambu, and Katsumi Yoshino. "Electrogenerated Chemiluminescence from Poly(3-hexylthiophene)." Japanese Journal of Applied Physics 36, Part 2, No. 2A (February 1, 1997): L124—L126. http://dx.doi.org/10.1143/jjap.36.l124.
Full textKuo, C. S., F. G. Wakim, S. K. Sengupta, and S. K. Tripathy. "Schottky diodes using poly(3‐hexylthiophene)." Journal of Applied Physics 74, no. 4 (August 15, 1993): 2957–58. http://dx.doi.org/10.1063/1.355319.
Full textDissertations / Theses on the topic "Poly(3-hexylthiophene)"
Dimopoulos, Alexandros Ioannis. "Characterization of poly(3-hexylthiophene) based Schottky diodes." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42227.
Full textMiseikis, Lukas. "Attosecond transient absorption experiments in poly(3-hexylthiophene) targets." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/60582.
Full textKumar, Avinesh Avi. "Charge transport in semi-crystalline poly(3-hexylthiophene) (P3HT) structures." Thesis, Queen Mary, University of London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538659.
Full textMarchant, Stephen. "Materials characterisation of the processible conducting polymer, poly(3-hexylthiophene)." Thesis, University of Greenwich, 1992. http://gala.gre.ac.uk/6238/.
Full textKuo, Kao-Yu. "Optimisation of poly(3-hexylthiophene-2,5-diyl) based photovoltaic devices." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648726.
Full textCESAR, BERTRAND. "Synthese et caracterisation de copolymeres blocs polystyrene-b-poly(3-hexylthiophene)." Université Louis Pasteur (Strasbourg) (1971-2008), 1995. http://www.theses.fr/1995STR13227.
Full textGonfa, Belete Atomsa. "Fabrication of solar cells from poly(3-hexylthiophene) and ZnO Nanostructures." Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2289.
Full textAs células fotovoltaicas à base de compostos orgânicos e de híbridos do tipo orgânico/inorgânico têm recebido bastante atenção devido à sua potencial aplicação como fonte de energia limpa e económica. A utilização de nanoestruturas neste tipo de dispositivos tem também recebido especial atenção já que o confinamento quântico a elas associado promove a percolação, facilitando a passagem dos portadores de carga o que aumenta a sua eficiência. Nesta tese foram preparados dispositivos fotovoltaicos “bulk heterojunction” através da mistura de poli(3-hexiltiofeno) com diferentes nanoestruturas de ZnO. As nanoestruturas de ZnO (nanopartículas, nanofios e naofibras) foram preparadas por diferentes técnicas e caracterizadas por XRD, espectroscopia no UV-Vis, SEM e TEM. As nanopartículas e os nanofios de ZnO foram preparadas por métodos químicos em solução e decomposição térmica de acetato de zinco dihidratado respectivamente. As naonofibras de ZnO foram preparadas por calcinação de nanofibras compostas por alcóol polivinílico e acetato de zinco preparadas por “electrospinning”. As nanoestruturas preparadas foram ainda funcionalizadas com o ácido pireno-1-carboxílico. As nanoestruturas preparadas, funcionalizadas ou não funcionalizadas, foram misturadas com soluções de P3HT de modo a preparar dispositivos fotovoltáticos em duas configurações distintas. Numa delas os eléctrodos consistem em ITO e o alumínio depositado por evaporação térmica, na outra, os eléctrodos consistem em ITO e tinta de prata. O primeiro tipo de configuração utilizou a seguinte sequência: vidro/ITO/PEDOT:PSS/camada fotoactiva/Al. Na segunda configuração a sequência utilizada foi: vidro/ITO/ZnO/ camada fotoactiva/ PEDOT:PSS/Ag. As camadas de PEDOT:PSS bem como as camadas fotoactivas foram depositadas por spin coating. A caracterização dos dispositivos foi feita através de medições da corrente-tensão sob condições simuladas de iluminação padrão. Os dispositivos preparados apresentaram actividade fotovoltaica mas a sua eficiência ainda precisa de ser melhorada. ABSTRACT: Organic and organic/inorganic hybrid solar cells have been receiving a significant amount of attention due to their potential to yield environmentally friendly and cheap source of energy. As a result they are being investigated widely. Making use of nanostructures in such devices has also received a great attention as they provide percolative pathways for charge carriers by quantum confinement, helping in the improvement of the efficiency of the devices. In this thesis bulk heterojunction photovoltaic devices have been produced by blending different ZnO nanostructures and surface functionalized ZnO nanostructures with poly- 3-hexylthiophene. ZnO nanostructures (nanoparticles, nanowires and nanofibers) have been produced by different techniques and characterized by XRD, UV-Visible spectroscopy and SEM. ZnO nanoparticles and ZnO nanowires were prepared by wet chemical synthesis and thermal decomposition of zinc acetate dihydrate respectively. ZnO nanofibers were prepared by calcination of polyvinyl alcohol/zinc acetate composite nanofiber, which had been produced by the electrospinning process. These nanostructures were also surface functionalized with pyrene-1-carboxylic acid and characterized. Subsequently, these nanostructures and their surface functionalized forms were used to fabricate photovoltaic devices by combining them with P3HT and its whiskers. The photovoltaic devices have been prepared in two different configurations. In some ITO and aluminium deposited by thermal evaporation were used as the electrodes, while in the others ITO and silver paste were used. The first set of devices had the order glass/ITO/PEDOT:PSS/photoactive layer/Al, while the latter had the order lass/ITO/ZnO/photoactive layer/ PEDOT:PSS/Ag paste. The PEDOT:PSS and the photoactive layers were deposited by spin coating of the suspension of PEDOT:PSS in water and the suspension of the ZnO nanostructures in the poly-3-hexylthiophene solution respectively. The photovoltaic cells were finally characterized by current-voltage characteristics measurement under simulated standard illumination conditions. The photovoltaic devices prepared have demonstrated photovoltaic properties, but their efficiencies need further improvement.
Shu, Huihua Chin Bryan Allen. "Applications of poly (3-hexylthiophene) thin film as a hydrazine-sensitive chemiresistor." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/SHU_HUIHUA_8.pdf.
Full textGadient, Jennifer N. "One-Pot In-Situ Synthesis of Poly(3-hexylthiophene)/Metal Oxide Composites." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo151114123960565.
Full textErothu, Harikrishna. "Synthesis and photovoltaic applications of novel copolymers based on poly(3-hexylthiophene)." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14227/document.
Full textThe performance of organic photovoltaic cells mainly depends on the active layer nano-morphology. Rod-coil block copolymers (BCPs) are well known in their ability to self-assemble into well-ordered nanoscopic morphologies. BCPs containing electron-donor and acceptor segments are of particular interest for use in photovoltaic cells because electronic light-excited states exist over distances similar to the typical size of block copolymer domains (~10 nm). Therefore, we designed novel donor-acceptor BCPs to exploit this coincidence in dimensions. This thesis is focused on BCPs based on regioregular poly(3-hexylthiophene) (rr-P3HT) due to its high hole mobility and good processibility from various solvents. Simplified and versatile syntheses of donor-acceptor rod-coil di- and tri- BCPs consisting of the donor block P3HT (rod) and polystyrene or poly(4-vinylpyridine) (coil) blocks to carry the acceptor C60 in different ways were developed. These materials were used as surfactants to stabilize the nano-morphology of reference P3HT: [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) based devices. Photovoltaic characterizations were then tied to copolymer structural data with the help of AFM and a range of complementary characterization techniques
Books on the topic "Poly(3-hexylthiophene)"
Dicker, Gerald. Photogeneration & Dynamics of Charge Carriers in the Conjugated Polymer Poly (3-hexylthiophene). Delft Univ Pr, 2004.
Find full textBook chapters on the topic "Poly(3-hexylthiophene)"
Sista, Prakash, and Christine K. Luscombe. "Progress in the Synthesis of Poly (3-hexylthiophene)." In P3HT Revisited – From Molecular Scale to Solar Cell Devices, 1–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/12_2014_278.
Full textLögdlund, M., R. Lazzaroni, W. R. Salaneck, S. Stafström, J. O. Nilsson, X. Shuang, J. E. Österholm, and J. L. Brédas. "π-Electronic Structure of Poly(3-hexylthiophene) Studied by Photoelectron Spectroscopy." In Springer Series in Solid-State Sciences, 367–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83833-0_68.
Full textAhmad, Zubair, Muhammad Awais, Mansoor Ani Najeeb, R. A. Shakoor, and Farid Touati. "Poly(3-Hexylthiophene) (P3HT), Poly(Gamma-Benzyl-l-Glutamate) (PBLG) and Poly(Methyl Methacrylate) (PMMA) as Energy Harvesting Materials." In Smart Polymer Nanocomposites, 95–118. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50424-7_4.
Full textLiu, Weili, Ruigang Liu, and Yong Huang. "Tailoring the Morphology of the Poly(3-hexylthiophene)/C60Films and Charge Carrier Mobility." In ACS Symposium Series, 123–36. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1034.ch009.
Full textRikukawa, M., and M. F. Rubner. "Preparation of Multicomponent Langmuir—Blodgett Thin Films Composed of Poly(3-hexylthiophene) and 3-Octadecanoylpyrrole." In ACS Symposium Series, 64–75. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0493.ch006.
Full textDyreklev, P., O. Inganäs, J. Paloheimo, and H. Stubb. "Luminescence Quenching in Poly(3-hexylthiophene) by Charge Injection in a Field Effect Transistor." In Electronic Properties of Polymers, 365–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84705-9_67.
Full textBrinkmann, Martin, Lucia Hartmann, Navaphun Kayunkid, and David Djurado. "Understanding the Structure and Crystallization of Regioregular Poly (3-hexylthiophene) from the Perspective of Epitaxy." In P3HT Revisited – From Molecular Scale to Solar Cell Devices, 83–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/12_2014_280.
Full textKaulachs, I., I. Muzikante, L. Gerca, G. Shlihta, M. Plotniece, M. Roze, J. Kalnachs, et al. "PV Effect of Fullerene/Poly(3-Hexylthiophene) Blend Sensitized By Phthalocyanine Having Infrared Absorption Ct Band." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1038–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_201.
Full textRana, Debkumar, Patrice Donfack, and Arnulf Materny. "Effect of External Electric Field on Reorganization Energy in Poly(3-Hexylthiophene): An Investigation Based on Density Functional Theory." In Springer Proceedings in Physics, 369–77. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0202-6_28.
Full textGhijsen, J., R. Lazzaroni, V. Parenté, J. L. Brédas, A. Lachkar, A. Selmani, and R. L. Johnson. "Photoemission Study of Copper Deposition on the Conjugated Polymer Poly-3-hexylthiophene and Comparison with Quantum-chemical Calculations." In Proceedings of the 11th International Conference on Vacuum Ultraviolet Radiation Physics, 355–58. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82245-1.50089-3.
Full textConference papers on the topic "Poly(3-hexylthiophene)"
Samuel, Ifor D. W., Laura Magnani, Garry Rumbles, Ken Murray, Bradley M. Stone, Stephen C. Moratti, and Andrew B. Holmes. "Photoluminescence in poly(3-hexylthiophene)." In Optical Science, Engineering and Instrumentation '97, edited by Z. Valy Vardeny and Lewis J. Rothberg. SPIE, 1997. http://dx.doi.org/10.1117/12.279277.
Full textBhattacharjee, Paromita, Parameswar Krishnan Iyer, and Harshal Bhalchandra Nemade. "Acoustoelectric Current in Poly(3-hexylthiophene)." In 2022 IEEE International Conference on Emerging Electronics (ICEE). IEEE, 2022. http://dx.doi.org/10.1109/icee56203.2022.10118355.
Full textLaib, Jonathan P., Hui Zhan, Jason A. Deibel, Daniel M. Mittleman, Jeff Worne, and Douglas Natelson. "Photoconductive Properties of Regioregular Poly(3-hexylthiophene)." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4453171.
Full textSauvé, Geneviève, Rui Zhang, Shijun Jia, Tomasz Kowalewski, and Richard D. McCullough. "Synthesis, mobility, and conductivity of well-defined regioregular poly(3-hexylthiophene) and diblock copolymers of regioregular poly(3-hexylthiophene)." In SPIE Optics + Photonics, edited by Zhenan Bao and David J. Gundlach. SPIE, 2006. http://dx.doi.org/10.1117/12.681068.
Full textPochas, C. M., Hajime Yamagata, and F. C. Spano. "Two-dimensional polaron coherence in Poly(3-hexylthiophene)." In SPIE NanoScience + Engineering, edited by Natalie Banerji, Sophia C. Hayes, and Carlos Silva. SPIE, 2014. http://dx.doi.org/10.1117/12.2064182.
Full textChan, C. K., L. J. Richter, D. S. Germack, B. R. Conrad, D. A. Fischer, D. M. DeLongchamp, and D. J. Gundlach. "Spray deposited poly-3-hexylthiophene thin film transistors." In 2009 International Semiconductor Device Research Symposium (ISDRS 2009). IEEE, 2009. http://dx.doi.org/10.1109/isdrs.2009.5378131.
Full textAhlskog, M., and H. Stubb. "Stability studies on AuCl/sub 3/-doped poly(3-hexylthiophene)." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835236.
Full textYoshida, Manabu, Sei Uemura, Satoshi Hoshino, Takehito Kodzasa, and Toshihide Kamata. "Subthreshold behavior in nanoparticle-dispersed poly(3-hexylthiophene) FET." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Ananth Dodabalapur. SPIE, 2004. http://dx.doi.org/10.1117/12.559103.
Full textRahaman, Abdulla Bin, Atri Sarkar, and Debamalya Banerjee. "Temperature dependent charge transport in poly(3-hexylthiophene) diodes." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029038.
Full textCavassin, Priscila, Isabelle Holzer, Olivier Bardagot, Julien Réhault, and Natalie Banerji. "Morphology of poly(3-hexylthiophene) dictates electrochemical doping mechanisms." In Organic Electronics and Photonics: Fundamentals and Devices III, edited by Sebastian Reineke, Koen Vandewal, and Wouter Maes. SPIE, 2022. http://dx.doi.org/10.1117/12.2623114.
Full textReports on the topic "Poly(3-hexylthiophene)"
Kline, R. The Dependence of Regioregular Poly(3-Hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/839719.
Full text