Academic literature on the topic 'Poly(glutamate de benzyle)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poly(glutamate de benzyle).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Poly(glutamate de benzyle)"
Cui, Ning, Junmin Qian, Jinlei Wang, Chuanlei Ji, Weijun Xu, and Hongjie Wang. "Preparation and characterization of foamy poly(γ-benzyl-l-glutamate-co-l-phenylalanine)/bioglass composite scaffolds for bone tissue engineering." RSC Advances 6, no. 77 (2016): 73699–708. http://dx.doi.org/10.1039/c6ra04356a.
Full textWang, Xi Ting, Jing Wang, Hai Long Sun, Xiang Yu Du, and Li Fang Ma. "Preparation and properties of poly(benzyl glutamate)-poloxamer-poly(benzyl glutamate) and poly(glutamic acid)-poloxamer-poly(glutamic acid) triblock polymers." Journal of Applied Polymer Science 129, no. 3 (November 27, 2012): 1187–92. http://dx.doi.org/10.1002/app.38601.
Full textCho, Chong Su, Takashi Takayama, Megumi Kunou, and Toshihiro Akaike. "Platelet adhesion onto the Langmuir-Blodgett film of poly(?-benzylL-glutamate)-poly(ethylene oxide)-poly(?-benzylL-glutamate) block copolymer." Journal of Biomedical Materials Research 24, no. 10 (October 1990): 1369–75. http://dx.doi.org/10.1002/jbm.820241008.
Full textPytela, Jindřich, František Rypáček, Marie Metalová, and Jaroslav Drobník. "Synthesis of poly[N5-(2-hydroxyethyl)-L-glutamines] with modified side chain." Collection of Czechoslovak Chemical Communications 54, no. 6 (1989): 1640–47. http://dx.doi.org/10.1135/cccc19891640.
Full textOh, In Joon, Jhin Yee Oh, Chong Su Cho, and Kang Choon Lee. "Biodegradability of poly(γ-benzyl L-glutamate)/poly(ethylene oxide) /poly(γ-benzyl L-glutamate) block copolymer in mice." Archives of Pharmacal Research 18, no. 1 (February 1995): 8–11. http://dx.doi.org/10.1007/bf02976499.
Full textTang, Dongmei, Jiaping Lin, Shaoliang Lin, Suning Zhang, Tao Chen, and Xiaohui Tian. "Self-Assembly of Poly(γ-benzylL-glutamate)-graft-Poly(ethylene glycol) and Its Mixtures with Poly(γ-benzylL-glutamate) Homopolymer." Macromolecular Rapid Communications 25, no. 13 (July 2004): 1241–46. http://dx.doi.org/10.1002/marc.200400100.
Full textZhang, Zhi Ming, Shi Qian Wei, Ting Ting Li, and Li Hua Han. "Synthesis of Poly L-Glutamate Initiated by Triethanolamine." Advanced Materials Research 450-451 (January 2012): 26–29. http://dx.doi.org/10.4028/www.scientific.net/amr.450-451.26.
Full textCho, Chong-Su, Akira Kobayashi, Mitsuaki Goto, and Toshihiro Akaike. "Orientation of poly(γ-benzyl l-glutamate)/poly(ethylene oxide)/ poly(γ-benzyl l-glutamate) triblock copolymer Langmuir-Blodgett films." Thin Solid Films 264, no. 1 (August 1995): 82–88. http://dx.doi.org/10.1016/0040-6090(95)06506-7.
Full textKojima, Takakazu, Takuzo Kurotu, Taihei Kawaguchi, and Yoshikiyo Urata. "Thermal decomposition of poly(γ-benzyl-L-glutamate) and γ-benzyl-L-glutamate/γ-methyl-L-glutamate copolymers." Journal of Polymer Science Part A: Polymer Chemistry 26, no. 5 (May 1988): 1479–84. http://dx.doi.org/10.1002/pola.1988.080260520.
Full textGu, Lin, Yuanzhang Jiang, and Jinlian Hu. "Synthesis and Properties of Shape Memory Poly(γ-Benzyl-l-Glutamate)-b-Poly(Propylene Glycol)-b-Poly(γ-Benzyl-l-Glutamate)." Applied Sciences 7, no. 12 (December 4, 2017): 1258. http://dx.doi.org/10.3390/app7121258.
Full textDissertations / Theses on the topic "Poly(glutamate de benzyle)"
Jacobs, Jaco. "Poly(N-vinylpyrrolidone) - Poly(γ-benzyl-L-glutamate) conjugates." Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20369.
Full textENGLISH ABSTRACT: The combination of natural and synthetic polymers allow for the synthesis of advanced hybrid copolymers. These hybrid copolymers have applications in biomedical areas, one such area being in drug delivery systems (DDS). In this study, a modular approach was used to prepare amphiphilic block copolymers with the ability to self-assemble into three dimensional structures. Reversible addition-fragmentation chain transfer (RAFT) was the synthetic tool used to mediate the polymerization of N-vinylpyrrolidone. RAFT is a versatile method to prepare polymers with control over molecular weight and dispersity. A xanthate chain transfer agent (CTA) was used to obtain the hydrophilic poly(N-vinylpyrrolidone) (PVP) block. An aldehyde functionality could be introduced due to the lability of the xanthate moiety, the procedure of which was effectively optimized to produce quantitative conversion. A dixanthate CTA was synthesized to produce a PVP chain which after the modification reaction, resulted in a α,ω-telechelic polymer. A polypeptide was synthesized via the ring-opening polymerization of Ncarboxyanhydrides (ROP NCA). The living and controllable ROP of NCAs is a method which results in polypeptides, but without a well-defined amino acid order. Poly(γ- benzyl-L-glutamate) (PBLG) was synthesized with a narrow dispersity (Đ = 1.10 – 1.15) using conditions that promote the retention of a terminal primary amine. A protected cysteine functionality was introduced via the terminal amine PBLG chain-end, using peptide synthesis techniques. This resulted in the conjugation of the aldehyde functional PVP and the cysteine terminal PBLG using a covalent, non-reducible thiazolidine linkage. The deprotection of the cysteine, more specifically the deprotection of the thiol was a non-trivial procedure. The thiol protecting acetamidomethyl (Acm) group could not be cleaved using traditional methods, but instead a modified procedure was developed to effectively remove the Acm group while inhibiting hydrolysis of the benzyl esters. It was determined that the conjugation reaction could effectively proceed in N,Ndimethylformamide (DMF) at a slightly elevated temperature and so continued to prepare the amphiphilic hybrid block copolymers, PVP-b-PBLG. A structurally different PBLG chain, namely PBLG-b-Cys was conjugated to the ω-aldehyde PVP and the conjugation efficiency was compared to our PBLG-Cys block. In the case of PBLG-b- Cys the in situ deprotection and conjugation as well as a two-step deprotection and conjugation reaction with PVP resulted in very low conjugation efficiency. The cysteine end-functional PBLG resulted in near quantitative conjugation with PVP. The critical micelle concentration (CMC) for PVP90-b-PBLG54 was determined to be 6 μg/mL, using fluorescence spectroscopy. Particle sizes were determined with TEM and DLS and found to range from 25 nm to 120 nm depending on the polymer block lengths as well as hydrophobic/hydrophilic block length ratios. Furthermore, when the micelles were subjected to an increased acidic environment, the labile benzyl ester bonds were hydrolyzed. This was observed with TEM where the particle sizes increased 10-fold to form vesicular structures. Hydrolysis was further confirmed with ATR-FTIR and 1H-NMR spectroscopy. Cytotoxicity tests confirmed that the copolymer micelles had good cell compatibility at high concentrations such as 0.9 mg/mL. Investigation into drug loading using a pyrene probe confirmed the viability of using PVP-b-PBLG as a responsive DDS.
AFRIKAANSE OPSOMMING: Die kombinasie van natuurlike en sintetiese polimere maak dit moontlik vir die sintese van gevorderde hibried kopolimere. Hierdie kopolimere het aanwending in biomediese gebiede, een so 'n gebied is in medisinale vervoer sisteme (MVS). 'n Modulêre benadering is in hierdie studie gebruik om amfifiliese blok kopolimere te berei. Omkeerbare addisie-fragmentasie kettingoordrag (OAFO) is gebruik as die sintetiese tegniek vir die polimerisasie van N-vinielpirolidoon (NVP). OAFO is 'n veelsydige metode om polimere te berei met beheer oor molekulêre gewig en dispersiteit (Đ). 'n Xantaat kettingoordrag agent (KOA) is gebruik om die hidrofiliese poli(N-vinielpirolidoon) (PVP) blok te sintetiseer. ‘n Aldehied endgroep was deur die terminale xantaat funksionaliteit berei, ‘n proses wat geoptimiseer is tot kwantitatiewe omsetting. 'n Di-xantaat KOA is gesintetiseer om, na modifikasie, 'n α, ω-telecheliese polimeer te produseer. Die polipeptied was gesintetiseer deur middel van ’n ringopening polimerisasie van Nkarboksianhidriede (ROP NKA). Die lewende en beheerbare ROP van NKAe is 'n metode wat lei tot polipeptiede sonder ’n gedefinieerde aminosuur volgorde. Poli(γ- benzyl-L-glutamaat) met 'n lae dispersiteit (Đ = 1.10 – 1.15), is gesintetiseer deur gebruik te maak van kondisies wat die behoud van 'n terminale primêre amien bevorder. 'n Beskermde sistien-funksionaliteit is ingebou via die terminale amien met behulp van peptiedsintese tegnieke. Die tiol beskerming van die asetamidometiel (Asm) groep kon nie gekleef word deur gebruik te maak van tradisionele metodes nie, maar ‘n nuwe proses is ontwikkel om die Asm groep te kleef sowel as om die hidrolise van die bensiel esters te inhibeer. Die koppelings reaksie het effektief verloop in DMF by 'n effens verhoogde temperatuur en sodoende is die amfifiliese hibried blok-kopolimere, PVP-b-PBLG berei. Twee verskillende PBLG kettings is gekoppel aan die ω-aldehied PVP en die koppeling doeltreffendheid is vergelyk. Daar is bevind dat net die sistien end-funksionele PBLG tot kwantitatiewe konjugasie kon lei. Die kritiese misel konsentrasie is bepaal vir PVP90-b-PBLG54 as 6 μg/mL met behulp van fluoressensie spektroskopie. Die deeltjie-groottes is bepaal met TEM en DLS en wissel van 25 nm tot 120 nm, afhangende van die polimeer bloklengtes sowel as hidrofobiese / hidrofiliese blok lengte verhoudings. Die miselle is blootgestel aan 'n verhoogde suur omgewing, wat tot die hidrolise van die bensiel ester groepe gelei het. TEM het getoon dat die deeltjie-groottes met 10-voud vergroot het tot vesikulêre strukture. Hidrolise is verder bevestig met ATR-FTIR en 1H-KMR spektroskopie. Sitotoksiese toetse het bevestig dat die miselle geen of min toksisiteit toon teenoor eukariotiese selle nie, selfs teen 'n hoë konsentrasies soos 0.9 mg/ml. Die medisinale behoud vermoë is met behulp van pireen bevestig en dus ook die potensiaal van PVP-b-PBLG as ‘n moontlike MVS.
Martinez, Barbosa Maria Elisa. "Synthèse de dérivés du poly(L-glutamate de γ-benzyle) : préparation et caractérisation de nanoparticules mutlifonctionnelles." Paris 11, 2006. http://www.theses.fr/2006PA114835.
Full textTo impart mutliple functionalities together into the same polymeric particulate carrier represents a real challenge for many applications in drug delivery. In the present work, four poly(γ-benzyl L-glutamate)-derivatives having a specific functionality: poly (γ-benzyl L-glutamate)-cyclodextrin, poly(γ-benzyl L-glutamte)-benzylamine, poly(γ-benzyl L-glutamate)-poly(ethylene glycol) and poly(γ-benzyl L-glutamate)-biotin, were synthesized by anionic ring opening polymerisation of γ-BLF-NCA. The self-assembling capacities of these polymers were used to prepare novel composite degradable nanoparticles based on mixtures of these derivatives were successfully prepared by the nanoprecipitation method. These nanoparticles were characterized by DLS, TEM, ITC, potential and complement activation. This strategy was successful in preparing nanoparticles combining simultaneously different functionalities, which moreover, can be easily modulated
Taylor, castillo An Young. "Nanoparticules à base de poly(L-glutamate de γ-benzyle) pour l’interception et la destruction des cellules tumorales circulantes dans la circulation sanguine." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS245.
Full textDespite the considerable progress, cancer remains one of the leading causes of morbidity and mortality worldwide. Currently, 90% of cancer deaths are caused by the spread of cancer cells to distant organs. Once implanted and disseminated, metastases are much more difficult to destroy by means of chemotherapy.Following a process of intravasation, some tumor cells escape from the primary tumor and migrate through the circulatory systems before being extravasated, then distributed and finally disseminated in various organs. Thus, in the circulatory environment, these circulating tumor cells (CTCs) are particularly accessible to therapeutic agents. In this context, we have imagined the use of nanoparticles with controlled architecture, in order to selectively intercept these cells in the blood environment.For this purpose, we have synthesized by ring opening of the corresponding lactone, amphiphilic di- and tri-block copolymers of poly (benzyl glutamate). Their self-assembly made it possible to obtain amphiphilic nanoparticles smaller than 100 nm in size and with a negative ζ potential, whose controllable geometry ranges from spherical (aspect ratio 1.3) to ellipsoidal (oblates) (aspect ratio 2, 6) and having PEG chains on the surface under controlled surface conformations and densities.Due to their ability to circulate in the blood compartment, these nanoparticles have an optimal probability of interaction with CTCs.The modification impact of their architecture has been established by studying the interaction capacities of the different nanoparticles prepared. On the one hand with the plasma proteins and on the other hand, with the different cell types encountered in the blood compartment.The most striking results show that the elongation of the nanoparticles (oblates) and the anisotropy of their surface, characterized by their hydrophilic / lipophilic balance, strongly govern their interactions. Interestingly, it appears that the elongation of particles whose surface is uniformly hydrophilic decreases the intensity of their capture by the different types of cell models studied (HUVEC model endothelial cells), RAW 276.7 cells (macrophage model) and cells PC3 (prostate cancer) and B16 (melanoma). Although, when these nanoparticles exhibit surface anisotropy, their capture by these different cell types is increased with the elongation of the particles (elongation factor of 2.1).In a final experimental part, these nanoparticles were modified by grafting the MART1 protein on their surface. These immuno-nanoparticles showed a certain recognition capacity of B16 cells (melanoma model). However, their efficacy after intravenous injection should be specified in vivo
Segura, Sanchez Freimar. "Nanoparticules multifonctionnelles de poly (L-glutamate de γ-benzyle) conçues pour être aisément décorées par des ligands de reconnaissance par la mise en oeuvre du système biotine-avidine." Paris 11, 2009. http://www.theses.fr/2009PA114827.
Full textA mini family of copolymers with a common poly (γ-benzyl L-glutamate) hydrophobic block but each one carrying several useful functionalities to the vectorization has been synthesized. The ability of these copolymers to self-assemble and form nanoparticles and to self-associate and confer together different features to nanoparticles has been established by physico-chemical techniques. Moreover, in order to introduce target ligands on the surface of particles, it has been used the biotin-avidin system and the efficiency of biotinylation was demonstrated. Very interestingly, it became possible to finely control the amount of biotin present on the surface of particles, and therefore the number of molecules of ligand introduced ; because has been shown that a discrete number (even a single biotin molecule) of these entities is sufficient for the particle can be recognized specifically
Miguel, Martínez de Aragón Laura de. "Nanoparticules multifonctionnelles de PBLG destinées au ciblage et à la délivrance d’anticancéreux aux tissus osseux." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA114829/document.
Full textMultifunctional bone targeted polymeric nanoparticles prepared by self-assembly of several poly(gamma-benzyl-L-glutamate) (PBLG) derivates have been developed. Their bone binding properties were provided by two different osteotropic moieties, alendronate or/and poly(glutamic acid) exposed on the nanoparticle surface. Their affinity for bone tissues has been evaluated in vitro, ex vivo and in vivo, including their detailed distribution in bone tissues structures. Further, in view of bone cancer therapeutics, nanoparticles were provided with anticancer properties thanks to the complexation of cisplatin, which leaded to very well controlled release properties. Finally, cytotoxicity were studied. Therefore, this strategy constitute a promising approach for the improvement of bone cancer therapeutics
Niehoff, Ansgar [Verfasser], and H. [Akademischer Betreuer] Menzel. "Funktionalisiertes Poly(gamma-benzyl-L-glutamat) als vielseitige Plattform für Stäbchen-Knäuel-Blockcopolymere und thermoreversible Gele / Ansgar Niehoff ; Betreuer: H. Menzel." Braunschweig : Technische Universität Braunschweig, 2012. http://d-nb.info/1175824054/34.
Full textStern, Maria [Verfasser], and Henning [Akademischer Betreuer] Menzel. "Synthese und Charakterisierung von speziellen makromolekularen Architekturen basierend auf Poly(gamma-benzyl-L-glutamat) als stäbchenförmiges Modellpolymer / Maria Stern ; Betreuer: Henning Menzel." Braunschweig : Technische Universität Braunschweig, 2013. http://d-nb.info/1175822353/34.
Full textThorpe, Sandra Denise. "Preparation and characterization of sodium poly(aL-glutamate)/poly(pyrrole)/poly(ethylene oxide) polymeric blends for a responsive peptide drug delivery system." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2004. http://digitalcommons.auctr.edu/dissertations/1703.
Full textCrespo, Janaina da Silva. "Estudo da estrutura e dinâmica de copolímeros em bloco poli(estireno)-b-poli(y-benzil-L-glutamato) por espalhamento de luz e de nêutrons." Florianópolis, SC, 2003. http://repositorio.ufsc.br/xmlui/handle/123456789/86204.
Full textMade available in DSpace on 2012-10-21T04:41:04Z (GMT). No. of bitstreams: 0
Neste trabalho, foi realizada a síntese e a caracterização de copolímeros dibloco do tipo flexível-rígido formados pelo poli(estireno)-b-poli(g-benzil-L-glutamato) (PS-b-PBLG). A parte flexível foi constituída pelo PS, e a parte rígida pelo peptídio PBLG. Esse peptídeo apresenta uma estrutura secundária de a-hélice, que garante a rigidez desse bloco. O bloco de PS foi sintetizado via polimerização aniônica, enquanto que o bloco de PBLG foi sintetizado via polimerização por abertura de anel. Os homopolímeros e copolímeros foram caracterizados através das técnicas clássicas de ressonância magnética nuclear de próton e carbono (RMN 1H e 13C), cromatografia de permeação em gel (GPC) e análise térmica (calorimetria de varredura diferencial (DSC) e termogravimetria (TG)). A caracterização em solução foi realizada utilizando-se as técnicas de espalhamento de luz e de nêutrons. Nas análises de espalhamento de luz estático (SLS), foram determinados parâmetros como a massa molar ponderal média, o segundo coeficiente virial e a concentração crítica para os homopolímeros puros e para o copolímero PS100-b-PBLG330. Para esse copolímero as análises de espalhamento de luz dinâmico (DLS), indicaram a presença de dois coeficientes de difusão: um modo rápido atribuído à cadeia flexível (PS) e um modo lento devido à cadeia rígida do bloco de PBLG. O estudo da transição rígido ® flexível para o bloco de PBLG desse copolímero foi realizada por DLS. Essa transição foi confirmada através de cálculos utilizando-se a relação de Broersma. As análises de SANS foram realizadas para os copolímeros PS44d8-b-PBLG23, PS44d8-b-PBLG54 e PS44d8-b-PBLG72. As curvas de SANS apresentaram o pico de difusão característico para copolímeros dibloco (assinatura do copolímero). O copolímero dibloco PS44d8-b-PBLG72 apresentou uma transição do estado desordenado para o ordenado com o aumento da concentração e/ou diminuição da temperatura do sistema. Os outros copolímeros analisados não apresentaram diferenças nas curvas com a alteração da temperatura ou concentração do sistema. A transição rígido ® flexível para o bloco de PBLG foi estudada por SANS utilizando-se o copolímero PS44d8-b-PBLG54. Essa transição foi acompanhada por um deslocamento da posição do pico de difusão. Esse resultado foi concordante com o modelo teórico proposto. Essa transição foi confirmada através de análises de dicroísmo circular.
Denker, Elsa. "Développement et évolution des cellules neurosensorielles chez les cnidaires : apports de l’étude de la nématogenèse de la méduse de Clytia hemisphaerica." Paris 6, 2008. http://www.theses.fr/2008PA066034.
Full textBook chapters on the topic "Poly(glutamate de benzyle)"
Steiner, G., and C. Zimmerer. "Poly-γ-benzyl-L-glutamate (PBLG)." In Polymer Solids and Polymer Melts – Definitions and Physical Properties I, 681–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32072-9_71.
Full textRusso, Paul S., Paul Magestro, and Wilmer G. Miller. "Gelation of Poly(γ-benzyl-α,L-glutamate)." In Reversible Polymeric Gels and Related Systems, 152–80. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0350.ch011.
Full textWohlfarth, Ch. "Partial specific volume of poly(γ-benzyl-l-glutamate)." In Polymer Solutions, 376. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_177.
Full textWohlfarth, Ch. "Second virial coefficient of poly(γ-benzyl-l-glutamate)." In Polymer Solutions, 611. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_370.
Full textWohlfarth, Ch. "Enthalpy of dilution of poly((-benzyl-l-glutamate) in trichloromethane." In Polymer Solutions, 1282. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_766.
Full textWohlfarth, Ch. "Second virial coefficient of poly(γ-benzyl-l-glutamate-b-methyl methacrylate-b-γ-benzyl-l-glutamate)." In Polymer Solutions, 618. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_374.
Full textWohlfarth, Ch. "Enthalpy of dilution of poly((-benzyl-l-glutamate) in dichloroacetic acid." In Polymer Solutions, 1280. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_764.
Full textAhmad, Zubair, Muhammad Awais, Mansoor Ani Najeeb, R. A. Shakoor, and Farid Touati. "Poly(3-Hexylthiophene) (P3HT), Poly(Gamma-Benzyl-l-Glutamate) (PBLG) and Poly(Methyl Methacrylate) (PMMA) as Energy Harvesting Materials." In Smart Polymer Nanocomposites, 95–118. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50424-7_4.
Full textWohlfarth, Ch. "Enthalpy of dilution of poly((-benzyl-l-glutamate) in N,N-dimethylformamide." In Polymer Solutions, 1281. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_765.
Full textWohlfarth, Ch. "Vapor-liquid equilibrium data of poly(γ-benzyl-l-glutamate) in trichloromethane." In Polymer Solutions, 201–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88057-8_41.
Full textConference papers on the topic "Poly(glutamate de benzyle)"
Deibel, Jason A., John F. Whitaker, and David C. Martin. "Pockels Effect in Solution-Evaporation-Electrically-Poled Poly(γ-benzyl-L-glutamate)." In Organic Thin Films. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/otf.2001.omd3.
Full textHwang, J. S., and J. W. Wu. "Electric field dependence of the depolarization ratio in the hyperRayleigh scattering measurement of a poly-γ-benzyl-L-glutamate solution." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/nlo.2000.tub15.
Full textBraeken, D., C. Zhou, R. Huys, C. Bartic, K. De Keersmaecker, K. Winters, G. Callewaert, and G. Borghs. "L-glutamate detection using a poly-L-lysine coated ENFET." In Microtechnologies for the New Millennium 2005, edited by Ricardo A. Carmona and Gustavo Linan-Cembrano. SPIE, 2005. http://dx.doi.org/10.1117/12.608316.
Full text