Academic literature on the topic 'Poly(vinyl butyral)/silica Nanocomposite Films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poly(vinyl butyral)/silica Nanocomposite Films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Poly(vinyl butyral)/silica Nanocomposite Films"

1

Vislohuzova, T. V., N. A. Galatenko, R. A. Rozhnova, V. M. Bogatyrov, and M. V. Galaburda. "Composite materials based on polyurethane with fragments of poly(vinyl butyral-vinyl acetate-vinyl alcohol) copolymer in their structure filled with silver- and copper-containing silica." Himia, Fizika ta Tehnologia Poverhni 13, no. 3 (September 30, 2022): 274–88. http://dx.doi.org/10.15407/hftp13.03.274.

Full text
Abstract:
A series of polymeric composites based on polyurethanes with copolymer fragments of poly(vinyl butyral-vinyl acetate-vinyl alcohol) and 1,6-hexamethylenediamine filled with modified precipitated silica were synthesized. The content of silver in the nanocomposites was 0.1–0.2 and of copper – 0.14 and 0.2 mmol per 1 g of SiO2 (02AgCu; AgCu and 01Ag samples). The content of silver-containing silica filler in the polymer composites was 0.1, 0.5 and 1.0 wt. %. By means of the IR spectroscopy, it has been found that a physical immobilization of modified silica in the polymeric matrix takes place due to the presence of intermolecular hydrogen bonds. The influence of fillers on the structure and properties of polymer materials, in particular, on thermophysical properties and physico-mechanical parameters (tensile strength and relative elongation at rupture), were investigated. The results of physico-mechanical tests indicate that the strength characteristics of polyurethane depend on the content and concentration of fillers. It has been found that the polymeric sample filled with 02AgCu nanocomposite (0.2 mmol of Ag and Cu per 1 g of SiO2) has the highest strength of the rupture. It has been shown that the introduction of modified silica leads to a reduction of relative elongation at rupture of polymeric nanocomposite. The highest values showed the sample filled with AgCu (0.1 and 0.12 mmol Ag and Cu, respectively, per 1 g of SiO2). The introduction of silver-containing silica nanocomposites into a polyurethane, containing polyvinylbutiral copolymer fragments, leads to an increase in tensile strength and reduction of relative elongation at rupture. Polymeric composite with 0.5 wt. % of filler had the highest values of physico-mechanical parameters. It has been shown that the thermosphysical characteristics depend on the concentration and composition of the fillers and have a nonlinear character. The synthesized nanocomposites can be effectively used as biomedical materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, Xiaobo, Yong Yu, Jiyun Feng, and Ka Ming Ng. "Fabrication of transparent and photoluminescent poly(vinyl butyral)/carbon dots nanocomposite thin film." Materials Research Express 2, no. 2 (February 11, 2015): 026403. http://dx.doi.org/10.1088/2053-1591/2/2/026403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saravanan, S., Satyajit Gupta, Praveen C. Ramamurthy, and Giridhar Madras. "Effect of silane functionalized alumina on poly(vinyl butyral) nanocomposite films: Thermal, mechanical, and moisture barrier studies." Polymer Composites 35, no. 7 (December 2, 2013): 1426–35. http://dx.doi.org/10.1002/pc.22795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arshak, K. I., L. M. Cavanagh, and C. Cunniffe. "Excess noise in a drop-coated poly(vinyl butyral)\carbon black nanocomposite gas sensitive resistor." Thin Solid Films 495, no. 1-2 (January 2006): 97–103. http://dx.doi.org/10.1016/j.tsf.2005.08.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ahmed Ben Hassan, Somaya, Dušica B. Stojanović, Aleksandar Kojović, Ivona Janković-C̆astvan, Djordje Janaćković, Petar S. Uskoković, and Radoslav Aleksić. "Preparation and characterization of poly(vinyl butyral) electrospun nanocomposite fibers reinforced with ultrasonically functionalized sepiolite." Ceramics International 40, no. 1 (January 2014): 1139–46. http://dx.doi.org/10.1016/j.ceramint.2013.06.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Md Zulkiflie, Farah Aqilah, Norazilawati Muhamad Sarih, Nur Awanis Hashim, Mohd Nashrul Mohd Zubir, Shekh Abdullah, and Aida Sabrina Mohd Amin. "Moisture Adsorption–Desorption Behaviour in Nanocomposite Copolymer Films." Polymers 15, no. 14 (July 10, 2023): 2998. http://dx.doi.org/10.3390/polym15142998.

Full text
Abstract:
Dehumidifying air via refrigerant cooling method consumes a tremendous amount of energy. Independent humidity control systems using desiccants have been introduced to improve energy efficiency. This research aimed to find an alternative to the commonly used solid desiccant, silica gel, which has weak physical adsorption properties. It also aimed to overcome the limitation of liquid desiccants that may affect indoor air quality and cause corrosion. This study reports on the synthesis of poly(vinyl alcohol-co-acrylic acid), P(VA-AA), through solution polymerisation by hydrolysing poly(vinyl acetate-co-acrylic acid), P(VAc-AA). This viable copolymer was then incorporated with graphene oxide (GO) at different concentrations (0 wt.%, 0.5 wt.%, 2 wt.% and 5 wt.%) to enhance the adsorption–desorption process. The samples were tested for their ability to adsorb moisture at different levels of relative humidity (RH) and their capability to maintain optimum sorption capacity over 10 repeated cycles. The nanocomposite film with 2% GO, P(VA-AA)/GO2, exhibited the highest moisture sorption capacity of 0.2449 g/g for 60–90% RH at 298.15 K, compared to its pristine copolymer, which could only adsorb 0.0150 g/g moisture. The nanocomposite desiccant demonstrated stable cycling stability and superior desorption in the temperature range of 318.15–338.15 K, with up to 88% moisture desorption.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jun. "Preparation and Properties of Nanocomposites Based on Poly(Vinyl acetate) and Montmorillonite Organized with Acrylic Acid." Advanced Materials Research 335-336 (September 2011): 3–11. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.3.

Full text
Abstract:
The nanocomposites of poly(vinyl acetate)/montmorillonite (PVAc/MMT) were prepared using vinyl acetate and organically modified alkaline calcium base montmorillonite (MMT) by in situ emulsion copolymerization. The organic modification was acrylic acid including terminal reactive vinylic group. The samples were characterized using fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD). Thermal properties of the PVAc/MMT films were studied by thermogravimetric (TG) and differential scanning calorimetric (DSC). The FT-IR results indicated that the vinyl group on the surface of the vinyl MMT nanoparticles had been successfully copolymerized with vinyl acetate. The XRD results demonstrated that the MMT was exfoliated during polymerization. The exfoliated PVAc/MMT nanocomposites showed a lower glass transition temperature (Tg) and a worse thermal stability compared with the pure PVAc. However, bonding power of the nanocomposite latex of PVAc/MMT was improved due to the strong interaction between silica nanoparticles and polymer matrix via covalent bonds.
APA, Harvard, Vancouver, ISO, and other styles
8

Peng, Zheng, Ling Xue Kong, and Si-Dong Li. "Thermal properties and morphology of a poly(vinyl alcohol)/silica nanocomposite prepared with a self-assembled monolayer technique." Journal of Applied Polymer Science 96, no. 4 (2005): 1436–42. http://dx.doi.org/10.1002/app.21583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mallakpour, Shadpour, and Zahra Khani. "An eco-friendly method for the preparation of poly(N-vinyl-2-pyrrolidone)–poly(vinyl alcohol) blend nanocomposite films containing vitamin B1-modified silica nanoparticles to enhance thermal and wettability properties." Polymer Bulletin 77, no. 3 (May 21, 2019): 1489–502. http://dx.doi.org/10.1007/s00289-019-02814-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abbasian, Mojtaba, Bakhshali Massoumi, Rahim Mohammad-Rezaei, and Mehdi Jaymand. "A novel epoxy-based resin nanocomposite: Co-curing of epoxidized novolac and epoxidized poly(vinyl chloride) using amine-functionalized silica nanoparticles." Materials Research Express 6, no. 8 (June 19, 2019): 085346. http://dx.doi.org/10.1088/2053-1591/ab28c8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Poly(vinyl butyral)/silica Nanocomposite Films"

1

Saravanan, S. "Moisture Barrier Polymer Nanocomposites for Organic Device Encapsulation." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/3809.

Full text
Abstract:
The advancement in smart technologies for organic conducting polymers as flexible substrates in LEDs, PVs and solid state lighting necessitates the development of ultra-high barrier films to protect the devices from moisture and oxygen. The current encapsulation methodology of using layers of plastics and inorganic oxides has several deficiencies. Alternatively, the use of single layer of polymer nanocomposites is a promising substitute for these inorganic based encapsulation layers. The use of polymer materials have the advantage of flexibility, active electrodes printability and easy to make the devices for large area applications. The nano-fillers with high aspect ratio as nanocomposites ingredient in polymers reinforces its mechanical strength and also acts as a scavenging material for moisture and increases the residence time and/or for the penetrating moisture in the film. Chapter 1 gives the basic overview in the field of barrier technology films and coatings from polymers and inorganic oxide as either mono/multi layer hermetic encapsulation methods. The understanding of both chemistry and physics behind the moisture permeation and its interaction with the film material was discussed. The inclusion of functional nano-fillers as moisture trapping agents in the film provide better device protection achieved. The methods and instruments to measure such ultra-low permeation within the films are discussed. Finally, the advantage of polymer based nanocomposites for low-permeable films with existing materials are briefly discussed in this chapter. In this thesis, we employed both thermoplastic and thermoset polymer nanocomposites as encapsulation layer for device sealing. The use of ion-containing polymers (ionomers) as a sealant layer was also studied. Chapter 2 presents the detailed experimental procedures with materials and methods used in this thesis along with the synthesis methodologies to make films from the polymer. In chapter 3, we used cyclic olefin copolymer COC (copolymer of ethylene and norbornene) as an encapsulation layer with silica and layered silicate nano-fillers. The compatibility between hydrophilic silica and hydrophobic COC was achieved by maleic anhydride grafted PE with anchoring on COC as a compatibilizer and then silica filler was added to make the nanocomposite films. FTIR spectroscopy confirms the bond formation of silica with COC/MA-g-PE. The mechanical (tensile and DMA) and thermal studies (DSC) suggested that there is an improvement observed when adding silica/silicate layers in the polymer matrix with increased tensile strength, storage modulus and Tg. The calcium degradation test show enhanced performance towards moisture impermeation in the film. Chapter 4 deals with the synthesis of PVB based nanocomposite film with silica/layered silicate as nanofillers in the base matrix with varying degree of acetalization in the film. The FTIR and NMR spectroscopy show the evidence for acetal link formation in the in-situ synthesized PVB with silica/silicate nanofillers with three different acetyl contents. The tensile and DMA studies show the observed improvement in mechanical strength (increased tensile strength, storage modulus) were due to the intercalation of clay galleries during PVB formation and the interaction of silica particles interactive bond formation with –OH groups of PVA in PVB. The higher clay/silica particles show agglomerated nature and reduction in film strength. Thermal studies (DSC) show that there is an improvement observed in Tg when adding silica/silicate layers in the polymer matrix with moderate to low acetal content. The calcium degradation test show enhanced performance towards moisture impermeation in the film. Chapter 5 describes the inclusion of ionic groups (ionomers) in PVB and its effects on moisture permeation and mechanical properties. PVB ionomer was synthesized using formyl benzene 2-sulfonic acid sodium salt and 2-carboxy benzaldehyde (both sulfonic and carboxylic acid sources) as co-aldehyde with butyraldehyde and PVA. These acid groups were neutralized with potassium, magnesium and zinc ions. The level of acid content in the films was maintained between 6 to 28 mol percent. The sulfonic acid films with zinc and magnesium ions of 14 mol% exhibit good mechanical strength and low moisture permeation. Chapter 6 deals with the epoxy terminated silicone polymer nanocomposites as moisture barrier coatings for device encapsulation. Both silica and clay silicate layers were used to reinforce the silicone matrix. The silica nanoparticles were grafted with amino-silane groups, this would help in better mixing of silica particles in the silicone matrix due to the amine groups interaction in curing with epoxy groups. The calcium degradation test was used to determine the WVTR of the nanocomposites and device encapsulation was employed to estimate the degradation after exposure to ambient environment. Chapter 7 presents the concluding remarks of the results presented. The benefits as well as limitations of the polymer nanocomposite film and the future developmental work to be carried out are discussed in this chapter.
APA, Harvard, Vancouver, ISO, and other styles
2

Saravanan, S. "Moisture Barrier Polymer Nanocomposites for Organic Device Encapsulation." Thesis, 2016. http://etd.iisc.ernet.in/2005/3809.

Full text
Abstract:
The advancement in smart technologies for organic conducting polymers as flexible substrates in LEDs, PVs and solid state lighting necessitates the development of ultra-high barrier films to protect the devices from moisture and oxygen. The current encapsulation methodology of using layers of plastics and inorganic oxides has several deficiencies. Alternatively, the use of single layer of polymer nanocomposites is a promising substitute for these inorganic based encapsulation layers. The use of polymer materials have the advantage of flexibility, active electrodes printability and easy to make the devices for large area applications. The nano-fillers with high aspect ratio as nanocomposites ingredient in polymers reinforces its mechanical strength and also acts as a scavenging material for moisture and increases the residence time and/or for the penetrating moisture in the film. Chapter 1 gives the basic overview in the field of barrier technology films and coatings from polymers and inorganic oxide as either mono/multi layer hermetic encapsulation methods. The understanding of both chemistry and physics behind the moisture permeation and its interaction with the film material was discussed. The inclusion of functional nano-fillers as moisture trapping agents in the film provide better device protection achieved. The methods and instruments to measure such ultra-low permeation within the films are discussed. Finally, the advantage of polymer based nanocomposites for low-permeable films with existing materials are briefly discussed in this chapter. In this thesis, we employed both thermoplastic and thermoset polymer nanocomposites as encapsulation layer for device sealing. The use of ion-containing polymers (ionomers) as a sealant layer was also studied. Chapter 2 presents the detailed experimental procedures with materials and methods used in this thesis along with the synthesis methodologies to make films from the polymer. In chapter 3, we used cyclic olefin copolymer COC (copolymer of ethylene and norbornene) as an encapsulation layer with silica and layered silicate nano-fillers. The compatibility between hydrophilic silica and hydrophobic COC was achieved by maleic anhydride grafted PE with anchoring on COC as a compatibilizer and then silica filler was added to make the nanocomposite films. FTIR spectroscopy confirms the bond formation of silica with COC/MA-g-PE. The mechanical (tensile and DMA) and thermal studies (DSC) suggested that there is an improvement observed when adding silica/silicate layers in the polymer matrix with increased tensile strength, storage modulus and Tg. The calcium degradation test show enhanced performance towards moisture impermeation in the film. Chapter 4 deals with the synthesis of PVB based nanocomposite film with silica/layered silicate as nanofillers in the base matrix with varying degree of acetalization in the film. The FTIR and NMR spectroscopy show the evidence for acetal link formation in the in-situ synthesized PVB with silica/silicate nanofillers with three different acetyl contents. The tensile and DMA studies show the observed improvement in mechanical strength (increased tensile strength, storage modulus) were due to the intercalation of clay galleries during PVB formation and the interaction of silica particles interactive bond formation with –OH groups of PVA in PVB. The higher clay/silica particles show agglomerated nature and reduction in film strength. Thermal studies (DSC) show that there is an improvement observed in Tg when adding silica/silicate layers in the polymer matrix with moderate to low acetal content. The calcium degradation test show enhanced performance towards moisture impermeation in the film. Chapter 5 describes the inclusion of ionic groups (ionomers) in PVB and its effects on moisture permeation and mechanical properties. PVB ionomer was synthesized using formyl benzene 2-sulfonic acid sodium salt and 2-carboxy benzaldehyde (both sulfonic and carboxylic acid sources) as co-aldehyde with butyraldehyde and PVA. These acid groups were neutralized with potassium, magnesium and zinc ions. The level of acid content in the films was maintained between 6 to 28 mol percent. The sulfonic acid films with zinc and magnesium ions of 14 mol% exhibit good mechanical strength and low moisture permeation. Chapter 6 deals with the epoxy terminated silicone polymer nanocomposites as moisture barrier coatings for device encapsulation. Both silica and clay silicate layers were used to reinforce the silicone matrix. The silica nanoparticles were grafted with amino-silane groups, this would help in better mixing of silica particles in the silicone matrix due to the amine groups interaction in curing with epoxy groups. The calcium degradation test was used to determine the WVTR of the nanocomposites and device encapsulation was employed to estimate the degradation after exposure to ambient environment. Chapter 7 presents the concluding remarks of the results presented. The benefits as well as limitations of the polymer nanocomposite film and the future developmental work to be carried out are discussed in this chapter.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography