Academic literature on the topic 'Polycarbonate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polycarbonate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Polycarbonate"

1

ALI, A. A. G., A. YA SAMUILOV, and YA D. SAMUILOV. "CHEMICAL DEPOLYMERIZATION OF POLYCARBONATE IN THE MONOETHANOLAMINE AND ETHYLENEDIAMINE MEDIUM." Herald of Technological University 27, no. 6 (2024): 41–46. http://dx.doi.org/10.55421/1998-7072_2024_27_6_41.

Full text
Abstract:
The production volume of polycarbonates is constantly growing due to their wide range of applications and high consumer properties. Polycarbonates are popular materials in various industries, construction, packaging and other fields, which contributes to an increase in demand and production. Research on the recycling of polycarbonates is important in the modern world, where the problem of environmental pollution is becoming more and more urgent. Polycarbonates are widely used in the manufacture of various products such as plastic tableware, packaging, automotive parts and many others. However, after use, these materials often turn into garbage, which can pollute nature. Research on the recycling of polycarbonates allows us to find ways to reuse these materials, which reduces the amount of waste and reduces the negative impact on the environment. In addition, the recycling of polycarbonates allows you to save natural resources and reduce the cost of producing new materials. This work is aimed at studying the process of polycarbonate depolymerization in the medium of monoethanolamine and diethanolamine. Compared with other polycarbonate depolymerization methods, aminolysis reactions have received relatively little attention in the past. In this paper, the process of chemical depolymerization of polycarbonate based on diphenylolpropane in the medium of monoethanolamine and ethylenediamine is studied. It is shown that in the case of polycarbonate depolymerization in a monoethanolamine medium, the main product is diphenylolpropane. The carbonate fragment is converted into oxazolidine-2-on. This process can be catalyzed by sodium hydroxide and accelerated when exposed to microwave radiation. In the case of polycarbonate depolymerization in an ethylenediamine medium, the main product is also diphenylolpropane. In this case, the carbonate fragment is converted into ethylene urea.
APA, Harvard, Vancouver, ISO, and other styles
2

Kausar, Ayesha. "A review of filled and pristine polycarbonate blends and their applications." Journal of Plastic Film & Sheeting 34, no. 1 (January 27, 2017): 60–97. http://dx.doi.org/10.1177/8756087917691088.

Full text
Abstract:
Polycarbonate is an important thermoplastic polymer. Due to its high performance, polycarbonate has a range of engineering applications in construction, automotive, aircraft, data storage, electrical, and telecommunication hardware. However, polycarbonate’s use is limited in advanced applications due to limitations, such as strong hydrophobicity, relatively limited chemical functionality, high melt viscosity, notch sensitivity of mechanical properties, and relative softness. Blending with other thermoplastic polymers improves its physical characteristics. The present review outlines up-to-date developments concerning the design and application of polycarbonate blends. A particular emphasis has been given to establish polycarbonate blends such as: • polycarbonate/polyethylene • polycarbonate/poly(methyl methacrylate) • polycarbonate/poly(vinylchloride) • polycarbonate/ polystyrene • polycarbonate/polyurethane • polycarbonate/polyester • polycarbonate/poly(ɛ-caprolactone). To improve the polycarbonate blend properties, fillers including organic and inorganic reinforcement materials (carbon nanotube, montmorillonite nanoclay, and metal nanoparticle) have also been employed. Polycarbonate blend applications in biomedical, flame retardant, and membrane materials have also been reviewed. To fully exploit the future potential for polycarbonate-based engineering materials, the structure–property relationship and compatibilization mechanisms need to be further explored.
APA, Harvard, Vancouver, ISO, and other styles
3

Durand, Pierre-Luc, Etienne Grau, and Henri Cramail. "Bio-Based Thermo-Reversible Aliphatic Polycarbonate Network." Molecules 25, no. 1 (December 24, 2019): 74. http://dx.doi.org/10.3390/molecules25010074.

Full text
Abstract:
Aliphatic polycarbonates represent an important class of materials with notable applications in the biomedical field. In this work, low Tg furan-functionalized bio-based aliphatic polycarbonates were cross-linked thanks to the Diels–Alder (DA) reaction with a bis-maleimide as the cross-linking agent. The thermo-reversible DA reaction allowed for the preparation of reversible cross-linked polycarbonate materials with tuneable properties as a function of the pendent furan content that was grafted on the polycarbonate backbone. The possibility to decrosslink the network around 70 °C could be an advantage for biomedical applications, despite the rather poor thermal stability of the furan-functionalized cross-linked polycarbonates.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Yue, Jianyu Liu, Rui Qu, Hongyi Suo, Miao Sun, and Yusheng Qin. "Organic–Inorganic Hybrid Materials: Tailoring Carbon Dioxide-Based Polycarbonate with POSS-SH Crosslinking." Polymers 16, no. 7 (April 4, 2024): 983. http://dx.doi.org/10.3390/polym16070983.

Full text
Abstract:
A novel functional polycarbonate (PAGC), characterized by the presence of double bonds within its side chain, was successfully synthesized through a ternary copolymerization of propylene oxide (PO), allyl glycidyl ether (AGE), and carbon dioxide (CO2). Polyhedral oligomeric silsesquioxanes octamercaptopropyl (POSS-SH) was employed as a crosslinking agent, contributing to the formation of organic–inorganic hybrid materials. This incorporation was facilitated through thiol-ene click reactions, enabling effective interactions between the POSS molecules and the double bonds in the side chains of the polycarbonate. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) confirmed a homogeneous distribution of silicon (Si) and sulfur (S) in the polycarbonate matrix. The thiol-ene click reaction between POSS-SH and the polycarbonate led to a micro-crosslinked structure. This enhancement significantly increased the tensile strength of the polycarbonate to 42 MPa, a notable improvement over traditional poly (propylene carbonate) (PPC). Moreover, the cross-linked structure exhibited enhanced solvent resistance, expanding the potential applications of these polycarbonates in various plastic materials.
APA, Harvard, Vancouver, ISO, and other styles
5

Swinarew, Andrzej S., Beata Swinarew, Tomasz Flak, Hubert Okła, Marta Lenartowicz-Klik, Adrian Barylski, Magdalena Popczyk, Jadwiga Gabor, and Arkadiusz Stanula. "The Evaluation of Simulated Environmental Degradation of Polycarbonate Filled with Inorganic and Organic Reinforcements." Polymers 13, no. 20 (October 16, 2021): 3572. http://dx.doi.org/10.3390/polym13203572.

Full text
Abstract:
This research aimed to examine the mechanical properties of polycarbonate-based composites filled with both organic and inorganic reinforcements before and after simulated environmental degradation. Series of polycarbonate-based samples were prepared in the form of thin tapes. Their rheological properties were examined. Then, the samples were exposed to artificial environmental conditions. Finally, their rheological properties were examined once more, and the results were compared with those obtained for untreated samples. This paper presents basic research on the application of inorganic fillers to polycarbonate in order to determine the influence of the filler on the behavior of the obtained material. The aim of the work was to determine the usefulness and purpose of using this type of filler in polycarbonates for applications in contact with ultraviolet radiation, especially medical applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Xiaozhou, Yang Liu, Xin Li, Xin Liu, Xigao Jian, and Jinyan Wang. "Improving the Thermal Properties of Polycarbonate via the Copolymerization of a Small Amount of Bisphenol Fluorene with Bisphenol A." International Journal of Polymer Science 2022 (February 1, 2022): 1–6. http://dx.doi.org/10.1155/2022/9255159.

Full text
Abstract:
Polycarbonate is an attractive transparent plastic with high mechanical/thermal properties. A family of copolycarbonates of bisphenol-A (BPA), 9, 9-bis (4-hydroxyphenyl) fluorene (BHPF), and diphenyl carbonate (DPC) were prepared by a transesterification polymerization. The weight-average molecular weight of the polycarbonates ranges from 65,000 to 107,000 g/mol; the copolycarbonates showed T g and T d − 5 % from 63-70°C and 100-105°C higher than the control, respectively. Meanwhile, the processing properties of polycarbonate remain unchanged. These properties endow the polymers with potential for use as high-temperature resistance materials.
APA, Harvard, Vancouver, ISO, and other styles
7

Tichy, Antonin, Marketa Simkova, Josef Schweiger, Pavel Bradna, and Jan-Frederik Güth. "Release of Bisphenol A from Milled and 3D-Printed Dental Polycarbonate Materials." Materials 14, no. 19 (October 7, 2021): 5868. http://dx.doi.org/10.3390/ma14195868.

Full text
Abstract:
Polycarbonates are polymers of bisphenol A (BPA), a well-known endocrine disruptor. This study evaluated the release of BPA from polycarbonate crowns that were (1) milled from Temp Premium Flexible (ZPF, Zirkonzahn, Italy) or Tizian Blank Polycarbonate (TBP, Schütz Dental, Germany), or (2) 3D-printed (Makrolon 2805, Covestro, Germany). Commercial prefabricated polycarbonate crowns (3M, USA) and milled poly(methyl methacrylate) (PMMA) crowns (Temp Basic, Zirkonzahn, Italy) were included for comparison. The crowns were stored at 37 °C in artificial saliva (AS) or methanol, which represented the worst-case scenario of BPA release. Extracts were collected after 1 day, 1 week, 1 month and 3 months. BPA concentrations were measured using liquid chromatography-tandem mass spectrometry. The amounts of released BPA were expressed in micrograms per gram of material (μg/g). After 1 day, the highest amounts of BPA were measured from milled polycarbonates, TBP (methanol: 32.2 ± 3.8 μg/g, AS: 7.1 ± 0.9 μg/g) and ZPF (methanol 22.8 ± 7.7 μg/g, AS: 0.3 ± 0.03 μg/g), followed by 3D-printed crowns (methanol: 11.1 ± 2.3 μg/g, AS: 0.1 ± 0.1 μg/g) and prefabricated crowns (methanol: 8.0 ± 1.6 μg/g, AS: 0.07 ± 0.02 μg/g). Between 1 week and 3 months, the average daily release of BPA in methanol and AS decreased below 2 μg/g and 0.6 μg/g, respectively. No BPA was released from PMMA in AS, and the cumulative amount released in methanol was 0.2 ± 0.06 μg/g. In conclusion, polycarbonates could be a relevant source of BPA, but the current tolerable daily intake of BPA (4 μg/kg body weight) should not be exceeded.
APA, Harvard, Vancouver, ISO, and other styles
8

Abdel Baki, Zaher, Hanna Dib, and Tuba Sahin. "Overview: Polycarbonates via Ring-Opening Polymerization, Differences between Six- and Five-Membered Cyclic Carbonates: Inspiration for Green Alternatives." Polymers 14, no. 10 (May 16, 2022): 2031. http://dx.doi.org/10.3390/polym14102031.

Full text
Abstract:
This review aims to cover the topic of polycarbonate synthesis via ring-opening polymerization (ROP) of cyclic carbonates. We report a wide variety of ROP-initiating systems along with their detailed mechanisms. We focus on the challenges of preparing the polymers; the precise control of the properties of the materials, including molecular weight; the compositions of the copolymers and their structural characteristics. There is no one approach that works for all scales in cyclic carbonates ROP. A green process to produce polycarbonates is a luring challenge in terms of CO2 utilization and the targeted domains for application. The main resolution seems to be the use of controlled incorporation of functional/reactive groups into polymer chains that can tailor the physicochemical and biological properties of the polymer matrices, producing what appears to be an unlimited field of applications. Glycerol carbonate (GC) is prepared from renewable glycerol and considered as a CO2 fixation agent resulting in GC compound. This family of five-membered cyclic carbonates has attracted the attention of researchers as potential monomers for the synthesis of polycarbonates (PCs). This cyclic carbonate group presents a strong alternative to Bisphenol A (BPA), which is used mainly as a monomer for the production of polycarbonate and a precursor of epoxy resins. As of December 2016, BPA is listed as a substance of very high concern (SVHC) under the REACH regulation. In 2006, Mouloungui et al. reported the synthesis and oligomerization of GCs. The importance of GCs goes beyond their carbonate ring and their physical properties (high boiling point, high flash point, low volatility, high electrical conductivity) because they also contain a hydroxyl group. The latter offers the possibility of producing oligo and/or polycarbonate compounds that have hydroxyl groups that can potentially lead to different reaction mechanisms and the production of new classes of polycarbonates with a wide range of applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Ho, Hien The, Nam Hoai Nguyen, Marion Rollet, Trang N. T. Phan, and Didier Gigmes. "Phosphonate-Functionalized Polycarbonates Synthesis through Ring-Opening Polymerization and Alternative Approaches." Polymers 15, no. 4 (February 15, 2023): 955. http://dx.doi.org/10.3390/polym15040955.

Full text
Abstract:
Well-defined phosphonate-functionalized polycarbonate with low dispersity (Ð = 1.22) was synthesized using organocatalyzed ring-opening polymerization (ROP) of novel phosphonate-based cyclic monomers. Copolymerization was also performed to access different structures of phosphonate-containing polycarbonates (PC). Furthermore, phosphonate-functionalized PC was successfully synthesized using a combination of ROP and post-modification reaction.
APA, Harvard, Vancouver, ISO, and other styles
10

Camera, Katherine L., Brandon Wenning, Amit Lal, and Christopher K. Ober. "Transient materials from thermally-sensitive polycarbonates and polycarbonate nanocomposites." Polymer 101 (September 2016): 59–66. http://dx.doi.org/10.1016/j.polymer.2016.08.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Polycarbonate"

1

Belaribi, Chakib. "Etude rhéologique et thermique des mélanges binaires et ternaires. : Polycarbonates/Tetraméthyl/Polycarbonates, Polystyrène/Polycarbonates/Tétraméthyl Polycarbonate." Pau, 1985. http://www.theses.fr/1985PAUU1002.

Full text
Abstract:
Propriétés rhéologiques et thermiques de ces mélanges amorphes à l'état fondu à l'aide de différentes techniques rhéologiques et physicochimiques. Dans chacun des cas, on essaye de corréler le comportement rhéologique à l'état fondu a la microstructure des mélanges, déterminée par analyse thermique et microscopie électronique.
APA, Harvard, Vancouver, ISO, and other styles
2

Le, Bail Nicolas. "Conception, synthèse par chimie douce et caractérisation de revêtements sol-gel hybrides multifonctionnels sur polycarbonate." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0040/document.

Full text
Abstract:
Le polycarbonate (PC) est un matériau polymère très répandu, fort apprécié pour sa faible densité, sa transparence, ses bonnes propriétés mécaniques et surtout pour son faible coût. Même s’il présente quelques limites essentiellement liées à sa faible résistance à l’abrasion, à la rayure et à sa dégradation dans le temps (sous UV ou hydrolyse), le PC trouve sa place dans un large spectre d’applications (bâtiment, automobile, médical, optique…). Il reste à ce jour indispensable sur ce marché car aucun autre polymère ne présente d’aussi bonnes propriétés mécaniques à prix égal. C’est dans ce contexte que ces travaux de thèse ont permis de développer une solution permettant de protéger le PC de toute agression extérieure par le dépôt d’un revêtement protecteur. L’étude s’est orientée vers le dépôt d’un film hydride organique / inorganique à base de silice, préparé par voie sol-gel, ce procédé permettant une élaboration à une température compatible avec la température de transition vitreuse du PC (Tg) (148°C). Les solutions retenues pour obtenir un revêtement performant sont basées sur la synthèse de revêtements hybrides à base d’oxydes de silicium et de zirconium. Une attention particulière a été portée sur l’augmentation de l’adhérence du film au substrat d’une part, et l’optimisation du procédé (synthèse et traitement de densification), d’autre part. Les résultats sont présentés d’un point de vue physico-chimique (IR, XRR, RMN) et mécanique (nanoindentation, adhésion et test à la rayure)
The polycarbonate is a widespread polymer material, highly appreciated for its low density, its transparency and its good mechanical properties. This material is used for divert applications (automotive, medical, optical...) and is very competitive in terms of quality and prices. However, it displays some weaknesses, essentially due to its poor abrasion and scratch resistance and its possible degradation under UV or hydrolysis. In this context, the PhD aim is to design and develop a new hybrid organic / inorganic protective coating with silica and zirconia based precursors prepared by the sol gel process, which allow a curing compatible with the polycarbonate's Tg (148°C). Here, it is discussed on the solutions retained to obtain a scratch resistant, hydrophobic and transparent coating. It is showed that, scratch resistant protective coatings can be deposited on pristine PC thanks to a performing hybrid organic / inorganic coating by modulating its bulk properties. Moreover, results demonstrate the key role played by a phenylsilane precursor in enhancing the adherence. Nanoindentation, scratch-test, NMR and FTIR analysis will be discussed
APA, Harvard, Vancouver, ISO, and other styles
3

Dreistadt, Cynthia. "Analyse expérimentale et modélisation micromécanique du comportement du polycarbonate soumis aux chargements complexes." Thesis, Metz, 2007. http://www.theses.fr/2007METZ049S/document.

Full text
Abstract:
Le comportement des polymères amorphes suscite un intérêt certain dans le monde de la recherche car leurs domaines d'application sont très varies. La transparence et une grande rigidité sont de grands atouts qui font du polycarbonate (pc) un des polymères techniques les plus usités. Les lois phénoménologiques ne permettent pas de reproduire correctement le comportement de ce polymère. Cette étude se propose donc d'étudier le comportement du pc a partir d'essais simples et complexes de compression uniaxiale en quasi statique et à température ambiante. Des essais comprenant plusieurs cycles de charge – décharge – maintien a effort constant sont réalisés avec différents niveaux et temps de maintien. Une autre série d’essais est destinée a mettre en évidence l’anisotropie induite du pc. L’ensemble de ces essais est ensuite comparé au modèle de boyce, parks et argon (1988) très référencé dans la littérature afin de tester sa validité. Certaines lacunes de cette approche sont ainsi mises en évidence. Finalement, un nouveau modèle micromécanique est proposé, basé sur la structure du polymère et l'évolution de celle-ci et inspire des modèles de plasticité pour les métaux. La notion de pelote comprenant plusieurs chaînes moléculaires est introduite. La déformation totale est décomposée de façon additionnelle en parties élastique, anélastique et plastique. L’écrouissage est naturellement introduit grâce à la combinaison de la notion de pelote et du modèle de lin (1957). Une première validation de ce modèle est proposée, fournissant des résultats particulièrement encourageants pour les travaux futurs
The behaviour of amorphous polymers is of a great interest in the research world because their application fields are various.transparency and high stiffness are the major advantages which made polycarbonate (pc) one of the most machined technical polymers. Phenomenological laws don’t allow reproducing correctly the behaviour of this polymer. this study proposes to analyze the pc’s behaviour based on simple and complex uniaxial compressive tests, in quasi static conditions and at room temperature. Tests with different loading – unloading – maintaining at constant forces cycles are done with various levels and maintaining times. Another series of tests is dedicated to show the induced anisotropy of pcs. all these experiments are compared to the boyce, parks and argon’s model (1988) very represented in the literature in order to check its validity. some lacks of this approach are enlightened. finally, a new micromechanical model is proposed based on the polymer structure and on its evolution, and inspired from metal plasticity models. the concept of balls which include several molecular chains is introduced. the total strain is additionally decomposed of three parts: elasticity, anelasticity and plasticity. The hardening is naturally introduced thanks to the combination of ball concept and lin’s model (1957). A first validation of this model is proposed, giving encouraging results for further works
APA, Harvard, Vancouver, ISO, and other styles
4

AKELE, NGONGO. "Vieillissement hydrolytique du polycarbonate." Paris, ENSAM, 1995. http://www.theses.fr/1995ENAM0014.

Full text
Abstract:
Le vieillissement hydrolytique du polycarbonate de bisphenol-a (pc) a ete etudie dans l'intervalle 70-100c, par mesure des masses moleculaires, gravimetrie et analyse enthalpique differentielle. Pour les echantillons etudies (epaisseur 2 mm), la cinetique d'hydrolyse n'est pas gouvernee par la diffusion. Cette derniere n'est pas affectee par le vieillissement physique. L'hydrolyse se traduit par une augmentation de l'hydrophilie liee a l'accumulation d'especes tres polaires (phenols et acides). On observe une perte de masse environ quatre fois superieure a ce que l'on attendait dans le cas d'un processus de coupure de chaine statistique accompagne d'une decarboxylation de l'acide. Cette perte de masse est essentiellement due a la formation de bisphenol-a (qui cristallise) et d'oligomeres. Pour expliquer un rendement aussi eleve en monomere, nous avons teste un certain nombre d'hypotheses dont la plus realiste est la suivante: l'hydrolyse est un processus equilibre. La reaction inverse (recombinaison) est favorisee car les extremites de chaines sont peu mobiles dans le polymere a l'etat vitreux. Cependant, lorsque l'hydrolyse se produit au voisinage d'une extremite de chaine, la diffusion du fragment court ainsi forme est favorisee et la vitesse apparente d'hydrolyse s'en trouve augmentee. Ce mecanisme a l'avantage de rendre eventuellement compte de l'effet accelerateur de contraintes de traction sur l'hydrolyse. Cette interpretation est confortee par l'etude comparative des modeles cycliques (effet de la tension) et non cycliques
APA, Harvard, Vancouver, ISO, and other styles
5

Robertson, Jennifer E. "Thermal Degradation Studies of Polycarbonate." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/27704.

Full text
Abstract:
Polymeric materials are increasingly being used in diverse, very demanding applications. Either pre- or post- application environments may require exposures to conditions hostile to the polymer's integrity. Frequently, these demanding conditions result in degradation of the polymer and subsequent decreases in desirable properties. Clearly then, a methodology to predict important properties, such as Tg, molecular weight, and tensile strength, from knowledge of the environmental history of a polymeric-based specimen is beneficial. The current study focuses on bisphenol A polycarbonate and tracks changes in the properties of this material as a function of the degree of degradation, t. For the purposes of the present research, the environmental effects have been limited to those associated with elevated temperature, although the methodology is general. This t parameter is a product of the kinetic rate constant, k, found from isothermal kinetics, and the time of degradation, t. Elucidation of t has been linked to measurement of the molecular weight distribution which in turn can be related to various properties to yield predictive relationships for these properties. Only the thermal history of the polymer and its initial properties are required for the model. This technique is not limited to a specific polymer or even to thermal degradation. As long as the kinetics of the process can be mathematically modeled, this approach should apply to a host of other situations, providing property prediction simply from knowledge of the material history. The research seeks to better understand the thermal degradation of polycarbonate. Kinetics of the process was explored, and the chemical mechanisms were examined. A key part of the project was the determination of the molecular weights and molecular weight distributions at each level of degradation. Furthermore, mechanical stress-strain properties, glass transition temperatures, and melt viscosities were also measured. This information, together with the kinetic expressions, facilitated prediction of these types of material properties for a known thermal history.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

Hokenek, Selma. "Characterization of Conductive Polycarbonate Films." Scholar Commons, 2009. https://scholarcommons.usf.edu/etd/2016.

Full text
Abstract:
Transparency and conductivity are highly desirable qualities in materials for modern gas sensors. Polymer gas sensors have been developed in which the polymer acts as a solid electrolyte. However, these types of sensors are opaque, which limits their potential for integration with dichromatic materials. The development of a sensor integrating conductive polymer films and dichromatic materials requires the implementation of a transparent conductive polymer film. The potential of iodine-doped bisphenol-a polycarbonate films containing bis(ethylenedioxy)-tetrathiafulvalene (BEDO-TTF) dye for sensor applications will be tested through characterization of the films at various stages of their fabrication using Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), transmission Fourier Transform Infrared Spectroscopy (FTIR), Optical Microscopy (OM), and Four Point Probe conductivity measurements (FPP). FTIR results show that there is an interaction between the polycarbonate matrix and the dye-iodine complex. Measured resistivities of the iodine doped films range from 148 Omega-cm to 2.82 kOmega-cm depending on the concentration of the iodine and exposure time. The imaging techniques used show a significant difference in the structure and the surface of the iodine doped-PC-BEDO-TTF films with respect to the bare polycarbonate films or the films mixed with the organic dye. It is also clear that the surface roughness of the prepared conductive films increases with iodine loading. These films have the potential to be used in sensor or photovoltaic applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Dubromez, Vincent. "Amélioration des performances du polycarbonate et des mélanges polycarbonate/polystyrène par des copolymères à blocs ABC." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10139.

Full text
Abstract:
Le polycarbonate (PC) est un polymère thermoplastique particulièrement intéressant pour de nombreuses applications industrielles et biomédicales, de par ses propriétés d’usage exceptionnelles (transparence, résistance mécanique et thermique). Néanmoins, il présente deux défauts majeurs : sa viscosité élevée et sa sensibilité à l’entaille. L’objectif de cette étude est de remédier à ces inconvénients, tout en préservant sa transparence. Pour ce faire, trois voies ont été envisagées : (i) amélioration de la fluidité par ajout de polystyrène (PS), (ii) renforcement par des copolymères à blocs de type poly(styrène-b-butadiène-b-méthacrylate de méthyle) (SBM) et (iii) utilisation simultanée de PS et de SBM. L’incorporation du PS permet de fluidifier le PC, tout en conservant sa transparence. Toutefois, les propriétés mécaniques des mélanges PC/PS sont inférieures à celles du PC seul. L’étude des mélanges binaires PC/SBM montre que la nature et la fraction de copolymère SBM incorporé, ainsi que la viscosité de la matrice, jouent un rôle déterminant sur les propriétés finales. L’étude des mélanges ternaires PC/PS/SBM démontre qu’il est possible d’obtenir une amélioration des propriétés au choc, toute en préservant la transparence du PC, à condition de générer une morphologie homogène et bien dispersée. Ceci implique une combinaison optimale entre la fluidité de la matrice PC, la nature et la fraction de copolymères à blocs et du PS dans le mélange, et un choix judicieux des paramètres technologiques de mise en œuvre
Polycarbonate (PC) is a widely used thermoplastic polymer for numerous industrial and biomedical applications, due to its exceptional use properties (transparency, mechanical and thermal behavior). Nevertheless, the PC exhibits two major defects: high viscosity and poor notch impact properties. The goal of the present study was to propose a solution for these two issues, while preserving the PC transparency. Three ways were investigated: (i) the decrease of viscosity via adding polystyrene (PS), (ii) the improvement of notch impact behavior by adding poly(styrene-b-butadiene-bmethylmethacrylate) block copolymers (SBM) and (iii) simultaneous use of PS and SBM. Adding PS to a PC matrix does decrease its viscosity, while preserving the transparency. However, the mechanical properties of PC/PS blends are inferior to those of the neat PC. The experimental study on binary PC/SBM blends point out the great influence of the nature and proportion of the copolymer in the blend, as well as of the matrix viscosity, on the final properties of the blends. The investigation of the ternary PC/PS/SBM blends demonstrate that it is possible to obtain an improvement of the notch impact properties, while preserving the PC transparency – by generating a homogeneous and well dispersed blend morphology. This requires an optimal combination between the matrix fluidity, the nature and the proportion of block copolymers and PS, and also an appropriate choice of the processing conditions
APA, Harvard, Vancouver, ISO, and other styles
8

Guérin, William. "Préparation catalytique de nouveaux matériaux polyesters et polycarbonate." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S069.

Full text
Abstract:
Les polyesters et polycarbonates aliphatiques biocompatibles et biodégradables sont typiquement utilisés pour la fabrication de matériaux médicaux tels que les fils de sutures ou les capsules de libération contrôlée de principe actif. Ces polymères synthétiques sont aussi développés comme substituts aux plastiques issus du pétrole. La méthode de choix pour obtenir des polycarbonates ou polyesters de longueur et de structure contrôlée est la polymérisation par ouverture de cycle (ROP) de monomères cycliques à cinq ou six chaînons. Actuellement, la majorité de ces polymères présentent des propriétés physiques intéressantes mais souvent limitées à certaines applications spécifiques. Des efforts sont donc consacrés à la synthèse de nouveaux monomères et polymères ou copolymères avec des microstructures contrôlées afin de moduler à convenance les propriétés thermiques et mécaniques du matériau final. Tandis que le poly(triméthylène carbonate), PTMC, est un élastomère, le poly(L-lactide), PLLA, est un polyester fragile. L’association de ces monomères au sein d’un copolymère a permis d’améliorer et de moduler les propriétés thermo-mécaniques du PLLA. Selon la nature de la copolymérisation (séquentielle ou simultanée) et du système catalytique utilisé, des copolymères de microstructures différentes ont été obtenus. Cette approche a permis de synthétiser de nouveaux polycarbonates ou poly(carbonate-co-ester) bien définis, notamment à partir de carbonates cycliques à cinq chaînons, comme le carbonate d’éthylène ou le carbonate de cyclohexène, réputés non polymérisable. Il devient alors envisageable de préparer de nouveaux polymères jusqu’alors supposés non synthétisable et ainsi d’accéder à de nouveaux matériaux biodégradable susceptibles de pouvoir remplacer les polymères de commodités problématiques comme le polycarbonate de bisphénol A
Biocompatible and biodegradable aliphatic polyesters and polycarbonates are typically used for the manufacture of medical devices such as sutures or capsules for controlled release of active molecules. These synthetic polymers are also developed as substitutes for petroleum-based plastics. The method of choice for the synthesis of polycarbonates or polyesters with controlled length and structure is the ring-opening polymerization (ROP) of five or six membered ring cyclic monomers. Currently, the majority of these polymers exhibit interesting physical properties but often limited to specific applications. Efforts are therefore devoted to the synthesis of new monomers and polymers or copolymers with controlled microstructure to modulate at convenience the thermal and mechanical properties of the final material. Whereas poly(trimethylene carbonate), PTMC, is an elastomer, poly(L-lactide), PLLA, is a fragile polyester. The combination of these monomers in a copolymer has improved and modulate the thermo-mechanical properties of PLLA. Depending on the nature of the copolymerization (sequential or simultaneous) and the catalytic system used, copolymers of different microstructures were obtained. This approach has allowed to synthesize new well defined polycarbonates or poly(carbonate-co-ester), especially from five-membered cyclic carbonates such as ethylene carbonate or cyclohexene carbonate, known for being not polymerizable. It then becomes possible to prepare new polymers supposed to be not synthesizable and access to new biodegradable materials that can replace problematic commodity polymers such as bisphenol A polycarbonate
APA, Harvard, Vancouver, ISO, and other styles
9

Clay, Stephen Brett. "Characterization of Crazing Properties of Polycarbonate." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/28648.

Full text
Abstract:
The purpose of this study was to characterize the craze growth behavior of polycarbonate (PC) as a function of stress level, model the residual mechanical properties of PC at various craze levels and strain rates, and determine if the total surface area of crazing is the sole factor in residual properties or if the crazing stress plays a role. To obtain these goals, a new in-situ reflective imaging technique was developed to quantify the craze severity in transparent polymers. To accomplish the goal of craze growth rate characterization, polycarbonate samples were placed under a creep load in a constant temperature, constant humidity environment. Using the new technique, the relative craze density was measured as a function of time under load at stresses of 40, 45, and 50 MPa. The craze growth rates were found to increase exponentially with stress level, and the times to 1% relative craze density were found to decrease exponentially with stress level. One exception to this behavior was found at a crazing stress of 50 MPa at which over half of the samples tested experienced delayed necking, indicating competitive mechanisms of crazing and shear yielding. The draw stress was found to be a lower bound below which delayed necking will not occur in a reasonable time frame. The yield stress, elastic modulus, failure stress, and ductility were correlated to crazing stress, relative craze density, and strain rate using a Design of Experiments (DOE) approach. The yield stress was found to correlate only to the strain rate, appearing to be unaffected by the presence of crazes. No correlation was found between the elastic modulus and the experimental factors. The failure stress was found to decrease with an increase in relative craze density from 0 to 1%, increase with an increase in crazing stress from 40 to 45 MPa, and correlate to the interaction between the crazing stress and the strain rate. The ductility of polycarbonate was found to decrease significantly with an increase in relative craze density, a decrease in crazing stress, and an increase in strain rate. The craze microstructure was correlated to the magnitude of stress during craze formation. The area of a typical craze formed at 40 MPa was measured to be more than 2.5 times larger than the area of a typical craze formed at 45 MPa. The fewer, but larger, crazes formed at the lower stress level were found to decrease the failure strength and ductility of polycarbonate more severely than the large number of smaller crazes formed at the higher stress level.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Berlich, Robert. "Alterung und Rissbildung unter Medieneinfluss bei Polycarbonat = Aging and crack initiation under the influence of liquid medium at polycarbonat /." Aachen : Mainz, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014188220&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Polycarbonate"

1

1930-, LeGrand Donald G., and Bendler John T, eds. Handbook of polycarbonate science and technology. New York: Marcel Dekker, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Park, Amy H. Biaxial orientation of polycarbonate by compression deformation. Ottawa: National Library of Canada, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zia, Shahzad. Polymer blends of polycarbonate and poly(ether imide). Birmingham: University of Birmingham, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fukuoka, Shinsuke. Non-phosgene polycarbonate from CO₂-industrialization of green chemical process. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tervoort, Theodorus Anthonius. Constitutive modelling of polymer glasses: Finite, nonlinear viscoelastic behaviour of polycarbonate. Eindhoven: Eindhoven University of Technology, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fitzer, Erich. Reinforcing of thermoplastic polycarbonate and polysulfone with carbon fibers: Production and characteristics of ud-compound objects. Washington, DC: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Machmud, Nizar. Multilayer structures of immiscible polycarbonate/ABS blends and their performances under impact: Report abroad collaboration and international publication research grant. Banda Aceh]: University of Syiah Kuala, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brunelle, Daniel J., and Michael R. Korn, eds. Advances in Polycarbonates. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

J, Brunelle Daniel, Korn Michael R. 1961-, American Chemical Society. Division of Polymer Chemistry, and American Chemical Society Meeting, eds. Advances in polycarbonates. Washington, DC: American Chemical Society, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Center, Goddard Space Flight, ed. Thermomechanical properties of polymeric materials and related stresses. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Polycarbonate"

1

Gooch, Jan W. "Polycarbonate." In Encyclopedic Dictionary of Polymers, 554. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Utracki, L. A. "Polycarbonate blends." In Commercial Polymer Blends, 384–98. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5789-0_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Anirudha. "Polycarbonate Synthesis." In Encyclopedia of Polymeric Nanomaterials, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36199-9_419-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Singh, Anirudha. "Polycarbonate Synthesis." In Encyclopedia of Polymeric Nanomaterials, 1793–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gooch, Jan W. "Polycarbonate Resin." In Encyclopedic Dictionary of Polymers, 554–55. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gooch, Jan W. "Silicone-Polycarbonate Copolymer." In Encyclopedic Dictionary of Polymers, 665. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gooch, Jan W. "Polycarbonate Polyester Alloys." In Encyclopedic Dictionary of Polymers, 554. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grossman, Elizabeth. "The Polycarbonate Problem." In Chasing Molecules, 55–82. Washington, DC: Island Press/Center for Resource Economics, 2009. http://dx.doi.org/10.5822/978-1-61091-157-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Loutfy, Raouf O., J. C. Withers, M. Abdelkader, and M. Sennett. "Carbon Nanotube—Polycarbonate Composites." In Perspectives of Fullerene Nanotechnology, 317–25. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-9598-3_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Falkoff, Maury Q., and James A. Donovan. "Ethanol Craze Growth in Polycarbonate." In Time-Dependent Fracture, 111–20. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5085-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Polycarbonate"

1

Lu, Zi, Michael Seifert, and Cheng-Ho Tho. "Bird Impact Simulation of Polycarbonate Windshield Subject to Brittle Failures." In Vertical Flight Society 71st Annual Forum & Technology Display, 1–7. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10146.

Full text
Abstract:
Due to its low density, optical transparency, and ability to withstand large plastic deformations without failure, polycarbonate is being increasingly used as a structural material for light weight, impact resistant helicopter windshields. However, polycarbonate can exhibit brittle failure with degraded impact resistance when exposed to some types of high triaxial loads or high strain-rate loading conditions. This paper presents the state-of-the art simulation techniques developed at Bell Helicopter Textron Inc. (BHTI) to support the design of bird impact resistant windshields. Linear Elastic Fracture Mechanics (LEFM) methods were used to investigate mechanisms that can trigger the polycarbonate to exhibit brittle failure. Finite element simulations were conducted to explore the threshold conditions under which brittle failure can occur, and to correlate the material constitutive model against test data under a wide range of loading conditions and strain rates. The failure model of the polycarbonate material model was validated to reflect the specific loading conditions. The validated analytical tool provides the capability to design for equivalent or greater levels of impact protection using thinner and lighter polycarbonate and has been successfully used to guide the development of bird impact resistant windshields.
APA, Harvard, Vancouver, ISO, and other styles
2

Ahuja, Suresh. "Effect of Additive on Hardness and Brittleness in Polycarbonate Films." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42728.

Full text
Abstract:
Hardness and modulus of a polymer composite is known to depend on its structure, molecular weight, number of segments between entanglements and additives (filler). Nano-indentation is used increasingly as a powerful tool to determine hardness and visco-elastic modulus of polymer surfaces linear, cross-linked or composites. Hysitron Nanoindenter was used in our investigation of contact deformation of surfaces of filled polycarbonates supported on aluminum substrate. Bar coatings of polymer films were made from solution and dried all at 110C for half an hour. The results show that filled polycarbonate gives higher hardness than unfilled polycarbonate, which can give significantly different temperature dependence depending on molecular weight of the polycarbonate and structure of the filler. Depending on the type of filler and its concentration, the polycarbonate composite exhibits brittle-ductile transition at different strains. This behavior is analyzed in terms of chain mobility and free volume in the composite.
APA, Harvard, Vancouver, ISO, and other styles
3

Barlow, Chris C., Vipin Kumar, John E. Weller, Rajendra K. Bordia, and Brian Flinn. "Experiments on the Impact Strength of Microcellular Polycarbonate." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0923.

Full text
Abstract:
Abstract The effects of density and cell size on the impact behavior of microcellular polycarbonate (PC) were investigated. A flexed-beam Izod impact test was conducted and the impact strength was observed to improve over the virgin polycarbonate’s impact strength for foam relative densities of 60% and above. In terms of cell size, the impact strength increased with increasing cell size. The impact strength of these foams appears to be a strong function of both density and cell size.
APA, Harvard, Vancouver, ISO, and other styles
4

Lapinski, Michael R., and Jeffrey Hutchison. "Silicone-Hardcoated Polycarbonate Exterior Appliques." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kirwan, Kerry, and Gordon Smith. "Glass Reinforcing Transparent Polycarbonate Glazing." In International Body Engineering Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hornbostel, B. "Investigations on Polycarbonate-Nanotube Composites." In ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Faulkner, Douglas L. "Environmental Stress Cracking of Polycarbonate and a Polycarbonate/Acrylic Blend by Windshield Washer Fluids." In Passenger Car Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/851628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Han, and Yuze Sun. "Optofluidic droplet lasers on polycarbonate chip." In Laser Science. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ls.2017.lth4f.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grewell, David, and Avraham Benatar. "Laser microwelding of polystyrene and polycarbonate." In ICALEO® 2003: 22nd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2003. http://dx.doi.org/10.2351/1.5060171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nadzir, N. M., M. K. A. Rahim, N. A. Samsuri, F. Zubir, O. Ayop, and H. A. Majid. "UHF RFID Tag Using Polycarbonate Material." In 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2018. http://dx.doi.org/10.1109/apcap.2018.8538158.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Polycarbonate"

1

Hutnik, M., Ali S. Argon, and U. W. Suter. Conformational Characteristics of the Polycarbonate 4,4'- Isopropylidenediphenol. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada237334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bilyk, Stephan R. Dynamic Experiments and Constitutive Model Performance for Polycarbonate. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada608135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hsieh, Alex J., and Alex W. Gutierrez. Miscibility Studies of Coextruded Polycarbonate/Polymethyl Methacrylate Composites. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada353476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Beckman, E. J. Utilization of CO{sub 2} in production of polycarbonate. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/206465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jewett, Kenneth L., William R. Blair, Frederick E. Brinckman, and Francis W. Wang. Stability of aqueous inorganic lead solutions in polycarbonate containers. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BENZA, DONALD. FUSED FILAMENT FABRICATION OF POLYCARBONATE IN A REACTIVE ATMOSPHERE. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1880613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kin, Yulian B. Fatigue Failure Analysis of Polycarbonate Transparencies in Different Environmental Conditions. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada305093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hutnik, Michelle, Ali S. Argon, Frank T. Gentile, Peter J. Ludovice, and Ulrich W. Suter. Simulation of the Structure of Dense, Amorphous Bisphenol-A polycarbonate. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada237222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hutnik, M., F. T. Gentile, P. J. Ludovice, U. W. Suter, and A. S. Argon. An Atomistic Model of the Amorphous Glassy Polycarbonate of 4,4'- Isopropyledediphenol. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada237291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gunnarsson, C. A., Bryan Love, Paul Moy, and Tusit Weerasooriya. Tensile Deformation and Adiabatic Heating in Post-Yield Response of Polycarbonate. Fort Belvoir, VA: Defense Technical Information Center, October 2015. http://dx.doi.org/10.21236/ada625459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography