Academic literature on the topic 'Polyhedral approximation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polyhedral approximation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polyhedral approximation"
Mokhnacheva, A. A., K. V. Gerasimova, and D. N. Ibragimov. "Methods of Numerical Simulation of 0-Controllable Sets of a Linear Discrete Dynamical System with Limited Control Based on Polyhedral Approximation Algorithms." Моделирование и анализ данных 13, no. 4 (December 28, 2023): 84–110. http://dx.doi.org/10.17759/mda.2023130405.
Full textHorst, R., Ng V. Thoai, and H. Tuy. "Outer approximation by polyhedral convex sets." OR Spektrum 9, no. 3 (September 1987): 153–59. http://dx.doi.org/10.1007/bf01721096.
Full textFonf, Vladimir P., Joram Lindenstrauss, and Libor Veselý. "Best approximation in polyhedral Banach spaces." Journal of Approximation Theory 163, no. 11 (November 2011): 1748–71. http://dx.doi.org/10.1016/j.jat.2011.06.011.
Full textMitchell, Joseph S. B., and Subhash Suri. "Separation and approximation of polyhedral objects." Computational Geometry 5, no. 2 (September 1995): 95–114. http://dx.doi.org/10.1016/0925-7721(95)00006-u.
Full textPugach, P. A., and V. A. Shlyk. "Piecewise Linear Approximation and Polyhedral Surfaces." Journal of Mathematical Sciences 200, no. 5 (July 1, 2014): 617–23. http://dx.doi.org/10.1007/s10958-014-1951-7.
Full textSchneider, Rolf. "Polyhedral approximation of smooth convex bodies." Journal of Mathematical Analysis and Applications 128, no. 2 (December 1987): 470–74. http://dx.doi.org/10.1016/0022-247x(87)90197-1.
Full textO’Dell, Brian D., and Eduardo A. Misawa. "Semi-Ellipsoidal Controlled Invariant Sets for Constrained Linear Systems." Journal of Dynamic Systems, Measurement, and Control 124, no. 1 (April 17, 2000): 98–103. http://dx.doi.org/10.1115/1.1434269.
Full textNeyrinck, Mark C. "An Origami Approximation to the Cosmic Web." Proceedings of the International Astronomical Union 11, S308 (June 2014): 97–102. http://dx.doi.org/10.1017/s1743921316009686.
Full textDi Pietro, Daniele A., Jérôme Droniou, and Francesca Rapetti. "Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra." Mathematical Models and Methods in Applied Sciences 30, no. 09 (August 2020): 1809–55. http://dx.doi.org/10.1142/s0218202520500372.
Full textDeville, Robert, Vladimir Fonf, and Petr Hájek. "Analytic and polyhedral approximation of convex bodies in separable polyhedral Banach spaces." Israel Journal of Mathematics 105, no. 1 (December 1998): 139–54. http://dx.doi.org/10.1007/bf02780326.
Full textDissertations / Theses on the topic "Polyhedral approximation"
Upadrasta, Ramakrishna. "Sub-Polyhedral Compilation using (Unit-)Two-Variables-Per-Inequality Polyhedra." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00818764.
Full textCantin, Pierre. "Approximation of scalar and vector transport problems on polyhedral meshes." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1028/document.
Full textThis thesis analyzes, at the continuous and at the discrete level on polyhedral meshes, the scalar and the vector transport problems in three-dimensional domains. These problems are composed of a diffusive term, an advective term, and a reactive term. In the context of Friedrichs systems, the continuous problems are analyzed in Lebesgue graph spaces. The classical positivity assumption on the Friedrichs tensor is generalized so as to consider the case of practical interest where this tensor takes null or slightly negative values. A new scheme converging at the order 3/2 is devised for the scalar advection-reaction problem using scalar degrees of freedom attached to mesh vertices. Two new schemes considering as well scalar degrees of freedom attached to mesh vertices are devised for the scalar transport problem and are robust with respect to the dominant regime. The first scheme converges at the order 1/2 when advection effects are dominant and at the order 1 when diffusion effects are dominant. The second scheme improves the accuracy by converging at the order 3/2 when advection effects are dominant. Finally, a new scheme converging at the order 1/2 is devised for the vector advection-reaction problem considering only one scalar degree of freedom per mesh edge. The accuracy and the efficiency of all these schemes are assessed on various test cases using three-dimensional polyhedral meshes
McDonald, Terry Lynn. "Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions." Texas A&M University, 2003. http://hdl.handle.net/1969.1/3915.
Full textSchulz, Henrik. "Polyhedral Surface Approximation of Non-Convex Voxel Sets and Improvements to the Convex Hull Computing Method." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-27865.
Full textSchulz, Henrik. "Polyhedral Surface Approximation of Non-Convex Voxel Sets and Improvements to the Convex Hull Computing Method." Forschungszentrum Dresden-Rossendorf, 2009. https://hzdr.qucosa.de/id/qucosa%3A21613.
Full textWang, Jiaxi. "PARAMETRIZATION AND SHAPE RECONSTRUCTION TECHNIQUES FOR DOO-SABIN SUBDIVISION SURFACES." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_theses/509.
Full textParadinas, Salsón Teresa. "Simplification, approximation and deformation of large models." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/51293.
Full textL’elevat nivell de realisme i d’interacció requerit en múltiples aplicacions gràfiques fa que siguin necessàries tècniques pel processament de models geomètrics complexes. En primer lloc, presentem un mètode de simplificació que proporciona una aproximació precisa de baixa resolució d'un model texturat que garanteix fidelitat geomètrica i una correcta preservació de l’aparença. A continuació, introduïm el Compact Model, una nova estructura de dades que permet aproximar malles triangulars denses preservant els trets més distintius del model, permetent reconstruccions adaptatives i suportant models texturats. Seguidament, hem dissenyat *Cages, un esquema de deformació basat en un sistema de caixes multi-nivell que conserva la suavitat de la malla entre caixes veïnes i és extremadament versàtil, permetent l'ús de conjunts heterogenis de coordenades i diferents nivells de deformació. Finalment, proposem un mètode híbrid que permet aplicar qualsevol tècnica de deformació sobre models complexes obtenint resultats d’alta qualitat amb una memòria reduïda i un alt rendiment.
Schulz, Henrik. "Polyedrisierung dreidimensionaler digitaler Objekte mit Mitteln der konvexen Hülle." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1225887695624-97002.
Full textWang, Guanglei. "Relaxations in mixed-integer quadratically constrained programming and robust programming." Thesis, Evry, Institut national des télécommunications, 2016. http://www.theses.fr/2016TELE0026/document.
Full textMany real life problems are characterized by making decisions with current information to achieve certain objectives. Mathematical programming has been developed as a successful tool to model and solve a wide range of such problems. However, many seemingly easy problems remain challenging. And some easy problems such as linear programs can be difficult in the face of uncertainty. Motivated by a telecommunication problem where assignment decisions have to be made such that the cloud virtual machines are assigned to servers in a minimum-cost way, we employ several mathematical programming tools to solve the problem efficiently and develop new tools for general theoretical problems. In brief, our work can be summarized as follows. We provide an exact formulation and several reformulations on the cloud virtual machine assignment problem. Then several valid inequalities are used to strengthen the exact formulation, thereby accelerating the solution procedure significantly. In addition, an effective Lagrangian decomposition is proposed. We show that, the bounds providedby the proposed Lagrangian decomposition is strong, both theoretically and numerically. Finally, a symmetry-induced model is proposed which may reduce a large number of bilinear terms in some special cases. Motivated by the virtual machine assignment problem, we also investigate a couple of general methods on the approximation of convex and concave envelopes for bilinear optimization over a hypercube. We establish several theoretical connections between different techniques and prove the equivalence of two seeming different relaxed formulations. An interesting research direction is also discussed. To address issues of uncertainty, a novel paradigm on general linear problems with uncertain parameters are proposed. This paradigm, termed as multipolar robust optimization, generalizes notions of static robustness, affinely adjustable robustness, fully adjustable robustness and fills the gaps in-between. As consequences of this new paradigms, several known results are implied. Further, we prove that the multipolar approach can generate a sequence of upper bounds and a sequence of lower bounds at the same time and both sequences converge to the robust value of fully adjustable robust counterpart under some mild assumptions
Schulz, Henrik. "Polyedrisierung dreidimensionaler digitaler Objekte mit Mitteln der konvexen Hülle." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23659.
Full textBooks on the topic "Polyhedral approximation"
Finite Frame Theory: A Complete Introduction to Overcompleteness. American Mathematical Society, 2016.
Find full textBook chapters on the topic "Polyhedral approximation"
Ayala, D., P. Brunet, R. Joan-Arinyo, and I. Navazo. "Multiresolution Approximation of Polyhedral Solids." In CAD Systems Development, 327–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60718-9_23.
Full textGoodman, T. N. T. "Shape Preserving Approximation by Polyhedral Splines." In Multivariate Approximation Theory III, 198–205. Basel: Birkhäuser Basel, 1985. http://dx.doi.org/10.1007/978-3-0348-9321-3_19.
Full textSimanchev, R. Yu, I. V. Urazova, and Yu A. Kochetov. "Polyhedral Attack on the Graph Approximation Problem." In Mathematical Optimization Theory and Operations Research, 255–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33394-2_20.
Full textGuo, Xijuan, Lei Xie, and Yongliang Gao. "Optimal Accurate Minkowski Sum Approximation of Polyhedral Models." In Lecture Notes in Computer Science, 179–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87442-3_23.
Full textMaréchal, Alexandre, Alexis Fouilhé, Tim King, David Monniaux, and Michael Périn. "Polyhedral Approximation of Multivariate Polynomials Using Handelman’s Theorem." In Lecture Notes in Computer Science, 166–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-49122-5_8.
Full textBärmann, Andreas. "Polyhedral Approximation of Second-Order Cone Robust Counterparts." In Solving Network Design Problems via Decomposition, Aggregation and Approximation, 163–77. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13913-1_12.
Full textMahmudov, Elimhan N. "Approximation and Optimization of Polyhedral Discrete and Differential Inclusions." In Communications in Computer and Information Science, 364–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31724-8_38.
Full textdel Campo, Miguel Vázquez-Martin, Hermilo Sánchez-Cruz, César Omar Jiménez-Ibarra, and Mario Alberto Rodríguez-Díaz. "Polyhedral Approximation for 3D Objects by Dominant Point Detection." In Advances in Computer Vision and Computational Biology, 189–204. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71051-4_14.
Full textCangiani, Andrea, Zhaonan Dong, Emmanuil H. Georgoulis, and Paul Houston. "Inverse Estimates and Polynomial Approximation on Polytopic Meshes." In hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes, 23–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67673-9_3.
Full textLotov, Alexander V., Vladimir A. Bushenkov, and Georgy K. Kamenev. "Theory of Iterative Methods for Polyhedral Approximation of Convex Bodies." In Interactive Decision Maps, 237–61. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-8851-5_8.
Full textConference papers on the topic "Polyhedral approximation"
Francis, Schmitt, and Gholizadeh Behrouz. "Adaptative Polyhedral Approximation Of Digitized Surfaces." In 1985 International Technical Symposium/Europe, edited by Olivier D. Faugeras and Robert B. Kelley. SPIE, 1986. http://dx.doi.org/10.1117/12.952249.
Full textKalvin, Alan D., and Russell H. Taylor. "Superfaces: polyhedral approximation with bounded error." In Medical Imaging 1994, edited by Yongmin Kim. SPIE, 1994. http://dx.doi.org/10.1117/12.173991.
Full textKim, Young J., Gokul Varadhan, Ming C. Lin, and Dinesh Manocha. "Fast swept volume approximation of complex polyhedral models." In the eighth ACM symposium. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/781606.781613.
Full textNicu, Theodor-Gabriel, Florin Stoican, and Ionela Prodan. "Smooth approximation of polyhedral potential field in NMPC for obstacle avoidance." In 2023 European Control Conference (ECC). IEEE, 2023. http://dx.doi.org/10.23919/ecc57647.2023.10178410.
Full textLundell, Andreas, and Jan Kronqvist. "Integration of polyhedral outer approximation algorithms with MIP solvers through callbacks and lazy constraints." In PROCEEDINGS LEGO – 14TH INTERNATIONAL GLOBAL OPTIMIZATION WORKSHOP. Author(s), 2019. http://dx.doi.org/10.1063/1.5089979.
Full textRashid, Mark M., Mili Selimotic, and Tarig Dinar. "General Polyhedral Finite Elements for Rapid Nonlinear Analysis." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49248.
Full textShovkun, Igor, and Hamdi A. Tchelepi. "A Cut-Cell Polyhedral Finite Element Model for Coupled Fluid Flow and Mechanics in Fractured Reservoirs." In SPE Reservoir Simulation Conference. SPE, 2021. http://dx.doi.org/10.2118/203958-ms.
Full textHöhner, Dominik, Siegmar Wirtz, and Viktor Scherer. "Experimental and Numerical Investigation on the Discharge of Wood Pellets From a Hopper With the Discrete Element Method." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87406.
Full textKustova, Natalia V., Alexander V. Konoshonkin, Anatoli G. Borovoi, and Kirill S. Salnikov. "Verification of the physical optics approximation for the calculation of the light scattering matrixes on polyhedral Platonic bodies." In XXIX International Symposium "Atmospheric and Ocean Optics, Atmospheric Physics", edited by Oleg A. Romanovskii. SPIE, 2023. http://dx.doi.org/10.1117/12.2690718.
Full textDong, Rencheng, Faruk O. Alpak, and Mary F. Wheeler. "Accurate Multi-Phase Flow Simulation in Faulted Reservoirs Using Mimetic Finite Difference Methods on Polyhedral Cells." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206298-ms.
Full text