Journal articles on the topic 'Polylactic acid polymers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Polylactic acid polymers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sreekumar, Kalyani, B. Bindhu, and K. Veluraja. "Perspectives of polylactic acid from structure to applications." Polymers from Renewable Resources 12, no. 1-2 (2021): 60–74. http://dx.doi.org/10.1177/20412479211008773.
Full textBhandari, Netra Lal, Ganesh Bhandari, Sunita Bista, Basant Pokhrel, Kabita Bist, and Kedar Nath Dhakal. "Degradation of fundamental polymers/plastics used in daily life: a review." BIBECHANA 18, no. 1 (2021): 240–53. http://dx.doi.org/10.3126/bibechana.v18i1.29619.
Full textLunt, James, and Andrew L. Shafer. "Polylactic Acid Polymers from Com. Applications in the Textiles Industry." Journal of Industrial Textiles 29, no. 3 (2000): 191–205. http://dx.doi.org/10.1177/152808370002900304.
Full textSalehiyan, Reza, A. A. Yussuf, Nurul Fatin Hanani, Azman Hassan, and Abozar Akbari. "Polylactic acid/polycaprolactone nanocomposite." Journal of Elastomers & Plastics 47, no. 1 (2013): 69–87. http://dx.doi.org/10.1177/0095244313489906.
Full textKumar Singh, Sanjay, Prashant Anthony, and Abhishek Chowdhury. "High Molecular Weight Poly(lactic acid) Synthesized with Apposite Catalytic Combination and Longer time." Oriental Journal of Chemistry 34, no. 4 (2018): 1984–90. http://dx.doi.org/10.13005/ojc/3404036.
Full textSahu, Govind, M. S. Rajput, and S. P. Mahapatra. "Effect of Calcium Phosphate on Tensile and Rheological Properties of Polylactic Acid (PLA)." Materials Science Forum 969 (August 2019): 404–8. http://dx.doi.org/10.4028/www.scientific.net/msf.969.404.
Full textMalchikhina, Alena I., Evgeny N. Bolbasov, and Sergey I. Tverdokhlebov. "The Influence of Radio Frequency Magnetron Sputtering on Biodegradable Polymers Surface Properties." Advanced Materials Research 1040 (September 2014): 795–99. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.795.
Full textPeng, Qingyuan, Jingzhen Cheng, Shaorong Lu, and Yuqi Li. "Electrospun hyperbranched polylactic acid–modified cellulose nanocrystals/polylactic acid for shape memory membranes with high mechanical properties." Polymers for Advanced Technologies 31, no. 1 (2019): 15–24. http://dx.doi.org/10.1002/pat.4743.
Full textKawashima, Nobuyuki. "A Development of Polylactic Acid as Bio-based Polymers." Journal of Synthetic Organic Chemistry, Japan 61, no. 5 (2003): 496–505. http://dx.doi.org/10.5059/yukigoseikyokaishi.61.496.
Full textFang, Qi, and Milford A. Hanna. "Rheological properties of amorphous and semicrystalline polylactic acid polymers." Industrial Crops and Products 10, no. 1 (1999): 47–53. http://dx.doi.org/10.1016/s0926-6690(99)00009-6.
Full textFukada, Eiichi. "Recent Topics of Ferroelectric Polymers-Polyurea and Polylactic Acid." Kobunshi 43, no. 3 (1994): 214–17. http://dx.doi.org/10.1295/kobunshi.43.214.
Full textLada, Zoi G., Amaia Soto Beobide, Georgios N. Mathioudakis, and George A. Voyiatzis. "Fe(II) Spin Crossover/Polymer Hybrid Materials: Investigation of the SCO Behavior via Temperature-Dependent Raman Spectroscopy, Physicochemical Characterization and Migration Release Study." Molecules 26, no. 1 (2021): 201. http://dx.doi.org/10.3390/molecules26010201.
Full textOrtenzi, Marco Aldo, Stefano Gazzotti, Begonya Marcos, et al. "Synthesis of Polylactic Acid Initiated through Biobased Antioxidants: Towards Intrinsically Active Food Packaging." Polymers 12, no. 5 (2020): 1183. http://dx.doi.org/10.3390/polym12051183.
Full textFrone, A. N., S. Berlioz, J. F. Chailan, D. M. Panaitescu, and D. Donescu. "Cellulose fiber-reinforced polylactic acid." Polymer Composites 32, no. 6 (2011): 976–85. http://dx.doi.org/10.1002/pc.21116.
Full textAl, Gulyaz, Deniz Aydemir, Bulent Kaygin, Nadir Ayrilmis, and Gokhan Gunduz. "Preparation and characterization of biopolymer nanocomposites from cellulose nanofibrils and nanoclays." Journal of Composite Materials 52, no. 5 (2017): 689–700. http://dx.doi.org/10.1177/0021998317713589.
Full textNagarajan, Selvaraj, M. S. Kiran, John Tsibouklis, and Boreddy Siva Rami Reddy. "Multifunctional star-shaped polylactic acid implants for use in angioplasty." J. Mater. Chem. B 2, no. 38 (2014): 6549–59. http://dx.doi.org/10.1039/c4tb00272e.
Full textBarmouz, Mohsen, and Amir Hossein Behravesh. "Foaming and thermal characteristics of bio-based polylactic acid–thermoplastic polyurethane blends." Journal of Cellular Plastics 54, no. 6 (2018): 931–55. http://dx.doi.org/10.1177/0021955x18793841.
Full textScripcaru, Andrei, Norin Forna, Alexandru Bogdan Ciubara, et al. "The Advantages of Bioresorbable INION� Implants in Traumatology Design, polymer composition and preliminary results." Materiale Plastice 56, no. 1 (2019): 47–50. http://dx.doi.org/10.37358/mp.19.1.5120.
Full textTajdari, Ali, Amir Babaei, Alireza Goudarzi, and Razie Partovi. "Preparation and study on the optical, mechanical, and antibacterial properties of polylactic acid/ZnO/TiO2 shared nanocomposites." Journal of Plastic Film & Sheeting 36, no. 3 (2020): 285–311. http://dx.doi.org/10.1177/8756087919900365.
Full textYammine, Paolo, Rima Kassab, and Dima Moussa. "Encapsulation of an antifungal agent within biodegradable polymers: composition effect." JOURNAL OF ADVANCES IN CHEMISTRY 12, no. 3 (2016): 4274–79. http://dx.doi.org/10.24297/jac.v12i3.2168.
Full textHuang, Yi, Yu Wang, and Jiarui Wen. "A Study on modification of polylactic acid and its biomedical application." E3S Web of Conferences 308 (2021): 02008. http://dx.doi.org/10.1051/e3sconf/202130802008.
Full textPunet, Xavier, Riccardo Levato, Isabelle Bataille, Didier Letourneur, Elisabeth Engel, and Miguel A. Mateos-Timoneda. "Polylactic acid organogel as versatile scaffolding technique." Polymer 113 (March 2017): 81–91. http://dx.doi.org/10.1016/j.polymer.2017.02.056.
Full textLUNT, JAMES, and REW L. SHAFER. "Polylactic Acid Polymers from Corn. Applications in the Textiles Industry." Journal of Industrial Textiles 29, no. 3 (2000): 191–205. http://dx.doi.org/10.1106/lvy7-vbvf-v8lr-l5at.
Full textFOLTYNOWICZ, ZENON, and PATRYCJA JAKUBIAK. "Polylactic acid - biodegradable polymer obtained from vegetable resources." Polimery 47, no. 11/12 (2002): 769–74. http://dx.doi.org/10.14314/polimery.2002.769.
Full textThepthawat, Apicha, and Kawee Srikulkit. "Improving the properties of polylactic acid by blending with low molecular weight polylactic acid-g-natural rubber." Polymer Engineering & Science 54, no. 12 (2013): 2770–76. http://dx.doi.org/10.1002/pen.23835.
Full textTaha, Iman M., and Gerhard Ziegmann. "Potential of Sisal Reinforced Biodegradable Polylactic Acid and Polyvinyl Alcohol Composites." Key Engineering Materials 425 (January 2010): 167–78. http://dx.doi.org/10.4028/www.scientific.net/kem.425.167.
Full textAlimuzzaman, Shah, R. Hugh Gong, and Mahmudul Akonda. "Nonwoven polylactic acid and flax biocomposites." Polymer Composites 34, no. 10 (2013): 1611–19. http://dx.doi.org/10.1002/pc.22561.
Full textHorváth, Tibor, Tamás József Szabó, and Kálmán Marossy. "Polylactic Acid as a Potential Alternatives of Traditional Plastic Packagings in Food Industry." International Journal of Engineering and Management Sciences 5, no. 2 (2020): 123–29. http://dx.doi.org/10.21791/ijems.2020.2.16.
Full textEawwiboonthanakit, Netnapa, Mariatti Jaafar, Zuratul Ain Abdul Hamid, Mitsugu Todo, and Banhan Lila. "Tensile Properties of Poly(L-Lactic) Acid(PLLA) Blends." Advanced Materials Research 1024 (August 2014): 179–83. http://dx.doi.org/10.4028/www.scientific.net/amr.1024.179.
Full textArif, Uzma, Sajjad Haider, Adnan Haider, et al. "Biocompatible Polymers and their Potential Biomedical Applications: A Review." Current Pharmaceutical Design 25, no. 34 (2019): 3608–19. http://dx.doi.org/10.2174/1381612825999191011105148.
Full textDecorosi, Francesca, Maria Luna Exana, Francesco Pini, et al. "The Degradative Capabilities of New Amycolatopsis Isolates on Polylactic Acid." Microorganisms 7, no. 12 (2019): 590. http://dx.doi.org/10.3390/microorganisms7120590.
Full textIshihara, Shota, Yuta Hikima, and Masahiro Ohshima. "Preparation of open microcellular polylactic acid foams with a microfibrillar additive using coreback foam injection molding processes." Journal of Cellular Plastics 54, no. 4 (2018): 765–84. http://dx.doi.org/10.1177/0021955x18770441.
Full textKittikorn, Thorsak, Wantani Chaiwong, Emma Stromberg, Rosana M. Torro, Monika Ek, and Sigbritt Karlsson. "Enhancement of interfacial adhesion and engineering properties of polyvinyl alcohol/polylactic acid laminate films filled with modified microfibrillated cellulose." Journal of Plastic Film & Sheeting 36, no. 4 (2020): 368–90. http://dx.doi.org/10.1177/8756087920915745.
Full textCazacu, Georgeta, Raluca Nicoleta Darie-Nita, Oana Chirila, et al. "Environmentally Friendly Polylactic Acid/Modified Lignosulfonate Biocomposites." Journal of Polymers and the Environment 25, no. 3 (2016): 884–902. http://dx.doi.org/10.1007/s10924-016-0868-2.
Full textTeymoorzadeh, Hedieh, and Denis Rodrigue. "Morphological, mechanical, and thermal properties of injection molded polylactic acid foams/composites based on wood flour." Journal of Cellular Plastics 54, no. 2 (2016): 179–97. http://dx.doi.org/10.1177/0021955x16671304.
Full textLiu, X., L. Yu, K. Dean, et al. "Improving Melt Strength of Polylactic Acid." International Polymer Processing 28, no. 1 (2013): 64–71. http://dx.doi.org/10.3139/217.2667.
Full textShamsuri, Ahmad Adlie, Siti Nurul Ain Md. Jamil, and Khalina Abdan. "A Brief Review on the Influence of Ionic Liquids on the Mechanical, Thermal, and Chemical Properties of Biodegradable Polymer Composites." Polymers 13, no. 16 (2021): 2597. http://dx.doi.org/10.3390/polym13162597.
Full textMohd Asri, Syazeven Effatin Azma, Zainoha Zakaria, Azman Hassan, and Mohamad Kassim Mohamad Haafiz. "Mechanical Properties of Polylactic Acid/Treated Fermented Chitin Nanowhiskers Biocomposites." Applied Mechanics and Materials 606 (August 2014): 89–92. http://dx.doi.org/10.4028/www.scientific.net/amm.606.89.
Full textHahn, Judith, Annette Breier, Harald Brünig, and Gert Heinrich. "Long-term hydrolytic degradation study on polymer-based embroidered scaffolds for ligament tissue engineering." Journal of Industrial Textiles 47, no. 6 (2017): 1305–20. http://dx.doi.org/10.1177/1528083716686940.
Full textWang, Yesong, Dekun Kong, Qing Zhang, Wei Li, and Jiang Liu. "Process parameters and mechanical properties of continuous glass fiber reinforced composites-polylactic acid by fused deposition modeling." Journal of Reinforced Plastics and Composites 40, no. 17-18 (2021): 686–98. http://dx.doi.org/10.1177/0731684421998017.
Full textJašo, Vladislav, Gregory Glenn, Artur Klamczynski, and Zoran S. Petrović. "Biodegradability study of polylactic acid/ thermoplastic polyurethane blends." Polymer Testing 47 (October 2015): 1–3. http://dx.doi.org/10.1016/j.polymertesting.2015.07.011.
Full textPérez Davila, Sara, Laura González Rodríguez, Stefano Chiussi, Julia Serra, and Pío González. "How to Sterilize Polylactic Acid Based Medical Devices?" Polymers 13, no. 13 (2021): 2115. http://dx.doi.org/10.3390/polym13132115.
Full textSegliņa, Dalija, Anita Olšteine, Inta Krasnova, and Karina Juhņeviča. "Use of Packaging Materials for Extending the Shelf Life of Diploid Plum Variety ‘Kometa’." Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 67, no. 2 (2013): 174–78. http://dx.doi.org/10.2478/prolas-2013-0027.
Full textLunt, James. "Large-scale production, properties and commercial applications of polylactic acid polymers." Polymer Degradation and Stability 59, no. 1-3 (1998): 145–52. http://dx.doi.org/10.1016/s0141-3910(97)00148-1.
Full textRivière, Pauline, Tiina E. Nypelö, Michael Obersriebnig, et al. "Unmodified multi-wall carbon nanotubes in polylactic acid for electrically conductive injection-moulded composites." Journal of Thermoplastic Composite Materials 30, no. 12 (2016): 1615–38. http://dx.doi.org/10.1177/0892705716649651.
Full textDusselier, Michiel, Pieter Van Wouwe, Annelies Dewaele, Pierre A. Jacobs, and Bert F. Sels. "Shape-selective zeolite catalysis for bioplastics production." Science 349, no. 6243 (2015): 78–80. http://dx.doi.org/10.1126/science.aaa7169.
Full textSalazar Sánchez, Margarita Del Rosario, Jorge Arturo Cañas Montoya, Hector Samuel Villada Castillo, Jose Fernando Solanilla Duque, Raul Rodríguez Herrera, and Felipe Avalos Belmotes. "Biogenerated Polymers: An Enviromental Alternative." DYNA 87, no. 214 (2020): 75–84. http://dx.doi.org/10.15446/dyna.v87n214.82163.
Full textKollar, Jakub, Andrea Morelli, Federica Chiellini, Stanislav Miertus, Dusan Bakos, and Vladimir Frecer. "Epithelial cell adhesion on films mimicking surface of polymeric scaffolds of artificial urethra compared to molecular modeling of integrin binding." Journal of Bioactive and Compatible Polymers 34, no. 3 (2019): 280–90. http://dx.doi.org/10.1177/0883911519843309.
Full textDoustgani, Amir. "Doxorubicin release from optimized electrospun polylactic acid nanofibers." Journal of Industrial Textiles 47, no. 1 (2016): 71–88. http://dx.doi.org/10.1177/1528083716634033.
Full textLeluk, Karol, Stanisław Frąckowiak, Joanna Ludwiczak, Tomasz Rydzkowski, and Vijay Kumar Thakur. "The Impact of Filler Geometry on Polylactic Acid-Based Sustainable Polymer Composites." Molecules 26, no. 1 (2020): 149. http://dx.doi.org/10.3390/molecules26010149.
Full text