Academic literature on the topic 'Polymer Charge Trapping Memory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polymer Charge Trapping Memory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Polymer Charge Trapping Memory"

1

Tao, Qingbo, and 陶庆波. "A study on the dielectrics of charge-trapping flash memory devices." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196488.

Full text
Abstract:
Discrete charge-trapping flash memory is being developed for the next-generation commercial flash-memory applications due to its advantages over the traditional floating-gate counterpart. Currently, Si3N4 is widely used as charge-trapping layer (CTL). However, Si3N4 has low dielectric constant and small conduction-band offset with respect to the SiO2 tunneling layer, imposing limitation on further applications. Therefore, this research emphasized on investigating new dielectrics with appropriate fabrication methods to replace Si3N4 as CTL for achieving improved memory performance. Firstly,
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Xiaodong, and 黄晓东. "A study on high-k dielectrics for discrete charge-trapping flash memory applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B5043438X.

Full text
Abstract:
Discrete charge-trapping flash memories are more promising than their floating-gate counterparts due to their physically discrete-trapping and coupling-free nature. Si3N4 is conventional material as charge-trapping layer (CTL) for charge storage. The shortcomings of Si3N4 are its low dielectric constant and small barrier height at its interface with SiO2 tunneling layer. Therefore, this research aims to investigate new materials as CTL for improving the performance of the memory devices. The charge-trapping characteristics of La2O3 with and without nitrogen incorporation were investigated. C
APA, Harvard, Vancouver, ISO, and other styles
3

Jakobsson, Fredrik Lars Emil. "Charge transport modulation in organic electronic diodes." Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14719.

Full text
Abstract:
Since the discovery of conducting polymers three decades ago the field of organic electronics has evolved rapidly. Organic light emitting diodes have already reached the consumer market, while organic solar cells and transistors are rapidly maturing. One of the great benefits with this class of materials is that they can be processed from solution. This enables several very cheap production methods, such as printing and spin coating, and opens up the possibility to use unconventional substrates, such as flexible plastic foils and paper. Another great benefit is the possibility of tailoring the
APA, Harvard, Vancouver, ISO, and other styles
4

Simon, Daniel. "Multistability, Ionic Doping, and Charge Dynamics in Electrosynthesized Polypyrrole, Polymer-Nanoparticle Blend Nonvolatile Memory, and Fixed p-i-n Junction Polymer Light-Emitting Electrochemical Cells." Doctoral thesis, University of California, Santa Cruz, USA, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94587.

Full text
Abstract:
A variety of factors make semiconducting polymers a fascinating alternative for both device development and new areas of fundamental research. Among these are solution processability, low cost, flexibility, and the strong dependence of conduction on the presence of charge compensating ions. With the lack of a complete fundamental understanding of the materials, and the growing demand for novel solutions to semiconductor device design, research in the field can take many, often multifaceted, routes. Due to ion-mediated conduction and versatility of fabrication, conducting polymers can provide a
APA, Harvard, Vancouver, ISO, and other styles
5

Griffo, Michael S. "Charge dynamics in polymer-nanoparticle blends for nonvolatile memory : Surface enhanced fluorescence of a semiconducting polymer; surface plasmon assisted luminescent solar concentrator waveguides /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2009. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simon, Daniel Theodore. "Multistability, ionic doping, and charge dynamics in electrosynthesized polypyrrole, polymer-nanoparticle blend nonvolatile memory, and fixed P-I-N junction polymer light-emitting electrochemical cells /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2007. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prime, Dominic Charles. "Switching mechanisms, electrical characterisation and fabrication of nanoparticle based non-volatile polymer memory devices." Thesis, De Montfort University, 2010. http://hdl.handle.net/2086/3314.

Full text
Abstract:
Polymer and organic electronic memory devices offer the potential for cheap, simple memories that could compete across the whole spectrum of digital memories, from low cost, low performance applications, up to universal memories capable of replacing all current market leading technologies, such as hard disc drives, random access memories and Flash memories. Polymer memory devices (PMDs) are simple, two terminal metal-insulator-metal (MIM) bistable devices that can exist in two distinct conductivity states, with each state being induced by applying different voltages across the device terminals
APA, Harvard, Vancouver, ISO, and other styles
8

Gebel, Thoralf. "Nanocluster-rich SiO2 layers produced by ion beam synthesis: electrical and optoelectronic properties." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-29449.

Full text
Abstract:
The aim of this work was to find a correlation between the electrical, optical and microstructural properties of thin SiO2 layers containing group IV nanostructures produced by ion beam synthesis. The investigations were focused on two main topics: The electrical properties of Ge- and Si-rich oxide layers were studied in order to check their suitability for non-volatile memory applications. Secondly, photo- and electroluminescence (PL and EL) results of Ge-, Si/C- and Sn-rich SiO2 layers were compared to electrical properties to get a better understanding of the luminescence mechanism.
APA, Harvard, Vancouver, ISO, and other styles
9

Gebel, Thoralf. "Nanocluster-rich SiO2 layers produced by ion beam synthesis: electrical and optoelectronic properties." Forschungszentrum Rossendorf, 2002. https://hzdr.qucosa.de/id/qucosa%3A21773.

Full text
Abstract:
The aim of this work was to find a correlation between the electrical, optical and microstructural properties of thin SiO2 layers containing group IV nanostructures produced by ion beam synthesis. The investigations were focused on two main topics: The electrical properties of Ge- and Si-rich oxide layers were studied in order to check their suitability for non-volatile memory applications. Secondly, photo- and electroluminescence (PL and EL) results of Ge-, Si/C- and Sn-rich SiO2 layers were compared to electrical properties to get a better understanding of the luminescence mechanism.
APA, Harvard, Vancouver, ISO, and other styles
10

Goh, Roland Ghim Siong. "Carbon nanotubes for organic electronics." Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/20849/1/Roland_Goh_Thesis.pdf.

Full text
Abstract:
This thesis investigated the use of carbon nanotubes as active components in solution processible organic semiconductor devices. We investigated the use of functionalized carbon nanotubes in carbon nanotubes network transistors (CNNFET) and in photoactive composites with conjugated polymers. For CNNFETs, the objective was to obtain detailed understanding of the dependence of transistor characteristics on nanotubes bundle sizes, device geometry and processing. Single walled carbon nanotubes were functionalized by grafting octadecylamine chains onto the tubes, which rendered them dispersible in
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!