Dissertations / Theses on the topic 'Polymer Derived Ceramics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Polymer Derived Ceramics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hill, Arnold Hill. "PRODUCTION OF BULK CERAMIC SHAPES FROM POLYMER DERIVED CERAMICS." Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4248.
Full textM.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
xu, weixing. "POLYMER-DERIVED CERAMICS: ELECTRONIC PROPERTIES AND APPLICATION." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4202.
Full textPh.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
Chen, Yaohan. "Structure and Properties of Polymer-Derived SiBCN Ceramics." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5164.
Full textID: 031001462; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Title from PDF title page (viewed July 8, 2013).; Thesis (Ph.D.)--University of Central Florida, 2012.; Includes bibliographical references (p. 150-170).
Ph.D.
Doctorate
Materials Science Engineering
Engineering and Computer Science
Materials Science and Engineering
wei, yun. "SYNTHESIS AND CHARACTERIZATION OF POLYMER-DERIVED POROUS SICN CERAMICS." Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3566.
Full textM.S.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
Santhosh, Balanand. "Thermal properties of polymer derived Si-O-C-N ceramics." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/267913.
Full textSanthosh, Balanand. "Thermal properties of polymer derived Si-O-C-N ceramics." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/267913.
Full textCox, Sarah. "Processing and Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics." Master's thesis, University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6259.
Full textM.S.M.S.E.
Masters
Materials Science Engineering
Engineering and Computer Science
Materials Science and Engineering
Burghard, Zaklina. "Behaviour of glasses and polymer derived amorphous ceramics under contact stress." [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11406707.
Full textJIANG, TAO. "ELECTRONIC PROPERTIES AND MICROSTRUCTURES OF AMORPHOUS SICN CERAMICS DERIVED FROM POLYMER PRECURSORS." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2988.
Full textPh.D.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Materials Science & Engr PhD
Scarlete, Mihai. "Spectroscopic methods for the characterization of thin films of polymer-derived ceramics." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39994.
Full textDetailed insight into the chemical transformations occurring during pyrolysis under inert (N$ sb2$, Ar) or reactive (NH$ sb3$) atmospheres was achieved by analysis of the layers coated on silicon single-crystal wafers. The oxidation of PMS and its transformation during pyrolysis into SiC were monitored by IR reflectance and transmission spectroscopy. The degree of the oxidation of PMS is not only a critical factor in determining the electronic properties of the final resulting materials, but is also a key factor in determining the pyrolysis mechanism. An important observation was the low-temperature ($ sim$200$ sp circ$C) Kumada rearrangement of the PMS to poly(cabosilane) (PCS). This reaction was evident at 200$ sp circ$C on silicon substrates, when the oxygen concentration in PMS was below 40 parts per million (ppm). Ultrathin layers of amorphous SiC (a-SiC) with thicknesses of $ sim$100 nm were obtained by deposition of the volatile species resulting from the thermal cracking of the precursor. The cracked-polymer vapor deposition (CP-VD) method allowed the synthesis of smooth (mirror-like) ceramic layers. The layers obtained by both CP-VD and spin-coating procedures exhibited resistivities in the range of $10 sp3-10 sp6 Omega$ cm and good adhesion properties onto the silicon substrates.
n-type SiC layers doped with nitrogen having a resistivity range suitable for Si/SiC heterojunctions in solar cells were also synthesized on silicon single-crystal wafers. A homogeneous doping procedure was developed that consists of reacting the Wurtz PMS prepolymer with NH$ sb3$ to form a "doping polymer". Partial pressure of NH$ sb3$ can enhance the rate of deposition of ceramics on cold substrates. In this case, CP-VD appears to combine some advantages of the two currently used procedures for growing thin films--i.e., a high deposition rate characteristic of pyrolysis of spin-coated films of precursors and good texture of the layers, characteristic of the chemical vapor deposition process (CVD).
The inclusion of higher concentrations of nitrogen into the ceramic material was studied during the synthesis of $ rm Si sb3N sb4$ by pyrolysis of PMS under pure NH$ sb3$. The analysis of the intermediate products resulting from the reaction of the precursor with NH$ sb3$ revealed that carbon loss occurred at temperatures below 600$ sp circ$C, and involves poly(carbosilazane) species. The stoichiometric 4:3 atomic ratio of N to Si is achieved below 500$ sp circ$C. A reaction path way is proposed in which only heterodehydrocoupling between Si-H and N-H groups occurs. This pathway is sufficient to explain the incorporation of excess nitrogen (compared to $ rm Si sb3N sb4$) usually observed in the intermediate pyrolysis products. Carbon loss is not directly related to nitrogen incorporation, thus the two processes are, at least partially, independent.
The effect of the thermal decomposition of NH$ sb3$, as an independent variable, on the carbon/nitrogen exchange process was studied. Deviations from thermodynamic equilibrium were related to dynamic conditions characterizing the flow regime.
Wang, Yiguang. "POLYMER-DERIVED SI-AL-C-N CERAMICS:OXIDATION, HOT-CORROSION, AND STRUCTURAL EVOLUTION." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4214.
Full textPh.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
Kulkarni, Apoorv Sandeep. "Ceramic Si-C-N-O cellular structures by integrating Fused Filament Fabrication 3-D printing with Polymer Derived Ceramics." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/349905.
Full textPrasad, Ravi Mohan. "Polymer-Derived Microporous Ceramics for Membranes and Sensors for High Temperature Hydrogen Purification and Sensing." Phd thesis, tuprints, 2012. http://tuprints.ulb.tu-darmstadt.de/3181/1/PhD_Dissertation_Ravi_Mohan_Prasad_%28TU_Darmstadt%29.pdf.
Full textTermoss, Hussein. "Préparation de revêtements de nitrure de bore (BN) par voie polymère précéramique : étude des paramètres d’élaboration : caractérisations physico-chimiques." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10145/document.
Full textThe aim of this work was to prepare boron nitride coatings onto different substrates using the Polymers Derived Ceramics (PDCs) approach. In that way, BN coatings were obtained onto graphite, pure silica and metal especially titanium. The first part of this thesis was to study parameters (of the solution used and of the dip-coating process), to obtain the best coatings in terms of morphology, cristallinity and chemical composition. The second part was dedicated to BN coatings obtained onto metal substrates using an alternative thermal treatment allowing the polymer-to-ceramic conversion without any damage for the metal. Actually, annealing by infrared irradiation allows heating only the coating, energy being reflected by the metal
Abass, Monsuru A. "Boron nitride nanotube-modified silicon oxycarbide ceramic composite: synthesis, characterization and applications in electrochemical energy storage." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35423.
Full textDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
Polymer-derived ceramics (PDCs) such as silicon oxycarbide (SiOC) have shown promise as an electrode material for rechargeable Li-ion batteries (LIBs) owing to the synergy between its disordered carbon phase and hybrid bonds of silicon with oxygen and carbon. In addition to their unique structure, PDCs are known for their high surface area (~822.7 m² g⁻¹), which makes them potential candidates for supercapacitor applications. However, low electrical conductivity, voltage hysteresis, and first cycle lithium irreversibility have hindered their introduction into commercial devices. One approach to improving charge storage capacity is by interfacing the preceramic polymer with boron or aluminium prior pyrolysis. Recent research has shown that chemical interfacing with elemental boron, bulk boron powders and even exfoliated sheets of boron nitride leads to enhancements in thermal and electronic properties of the ceramic. This thesis reports the synthesis of a new type of PDC composite comprising of SiOC embedded with boron nitride nanotubes (BNNTs). This was achieved through the introduction of BNNT in SiOC pre-ceramic polymer at varying wt.% loading (0.25, 0.5 and 2.0 wt.%) followed by thermolysis at high temperature. Electron microscopy and a range of spectroscopy techniques were employed to confirm the polymer-to-ceramic transformation and presence of disordered carbon phase. Transmission electron microscopy confirmed the tubular morphology of BNNT in the composite. To test the material for electrochemical applications, the powders were then made into free-standing paper-like electrodes with reduced graphene oxide (rGO) acting as support material. The synthesized free-standing electrodes were characterized and tested as electrochemical energy storage materials for LIBs and symmetric supercapacitor applications. Among the SiOC-BNNT composite paper tested as anode materials for LIBs, the 0.25 wt.% BNNT composite paper demonstrated the highest first cycle lithiation capacity corresponding to 812 mAh g⁻¹ (at a current density of 100 mA g⁻¹) with a stable charge capacity of 238 mAh g⁻¹ when asymmetrically cycled after 25 cycles. On the contrary, the 0.5 wt.% BNNT composite paper demonstrated the highest specific capacitance corresponding to 78.93 F g⁻¹ at a current density of 1 A g⁻¹ and a cyclic retention of 86% after 185 cycles. This study shows that the free carbon content of SiOC-BNNT ceramic composite can be rationally modified by varying the wt.% of BNNT. As such, the paper composite can be used as an electrode material for electrochemical energy storage.
Shao, Gang. "Development of Polymer Derived SiAlCN Ceramic and Its Applications for High-Temperature Sensors." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5868.
Full textPh.D.
Doctorate
Materials Science Engineering
Engineering and Computer Science
Materials Science and Engineering
Nonnenmacher, Katharina [Verfasser], Hans-Joachim [Akademischer Betreuer] Kleebe, and Ralf [Akademischer Betreuer] Riedel. "Microstructure Characterization of Hafnium-Modified Polymer-Derived SiOC and SiCN Ceramics / Katharina Nonnenmacher ; Hans-Joachim Kleebe, Ralf Riedel." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2016. http://d-nb.info/1122286260/34.
Full textStackpoole, Margaret Mary. "Reactive processing and mechanical properties of polymer derived silicon nitride matrix composites and their use in coating and joining ceramics and ceramic matrix composites /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10564.
Full textFranchin, Giorgia. "Additive Manufacturing of Ceramics. Printing Beyond the Binder." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3426205.
Full textQuesto progetto di ricerca riguarda la produzione di ceramici tramite tecniche di manifattura additiva (AM), con particolare focus su tecnologie estrusive. Il principale vantaggio dell’AM è la possibilità di produrre strutture cellulari ad elevata complessità e porosità controllata, consentendo di produrre reticoli stretch-dominated leggeri ma efficienti. L’ispirazione è offerta dalla natura: le strutture ossee sono un ottimo esempio, in quanto si compongono di un involucro esterno, denso e sottile, e di un cuore a struttura cellulare altamente porosa. I sistemi di AM disponibili in commercio per la produzione di componenti ceramici sono molto pochi, e la maggior parte di essi utilizza polveri ceramiche. È molto difficile evitare porosità residua e cricche, e di conseguenza si ottengono oggetti dalla resistenza limitata e privi delle peculiarità di alcuni materiali, come ad esempio la trasparenza del vetro. Le tecnologie di AM che utilizzano polimeri sono ad uno stadio di sviluppo molto più avanzato. L’obiettivo è di sfruttare tale vantaggio e di fornire alternative agli approcci polvere-legante. Sono stati esplorati tre diversi materiali: polimeri preceramici, geopolimeri, e vetro. Un unico polimero preceramico, un polisilsesquiossano commerciale, è stato utilizzato come legante reattivo, non sacrificale per lo sviluppo di inchiostri per stereolitografia (SL) e direct ink writing (DIW). La prima tecnologia ha consentito di produrre micro-componenti in SiOC densi e privi di cricche, con una dimensione dei pilastri fino a ~200 μm e ottima qualità superficiale. Non ci sono state limitazioni di forma, anche se strutture porose o oggetti densi di piccole dimensioni sono da preferire per evitare porosità residua e cricche. Il secondo approccio ha portato alla fabbricazione di scaffold bioceramici per ingegneria tissutale con filamenti di diametro 350 µm e parti non supportate. Il polimero preceramico ha il doppio ruolo di fonte di silice e di modificatore reologico. Sono stati prodotti anche compositi a matrice ceramica (CMCs); il polimero preceramico sviluppa la matrice (SiOC) tramite pirolisi in atmosfera inerte, mentre il rinforzo è dato da fibre di carbonio macinate. Componenti in geopolimero a porosità controllata sono stati progettati e prodotti prima tramite replica negativa di template sacrificali in PLA, e poi via DIW. Il secondo approccio ha portato alla produzione di reticoli ceramici con filamenti di ~800 μm e parti non supportate con deflessione molto limitata. È stato sviluppato infine un innovativo processo estrusivo a partire da vetro fuso. Un unico sistema è in grado di lavorare il vetro dallo stato fuso fino alla ricottura di componenti complessi progettati digitalmente. Sono stati realizzati oggetti comprendenti sporgenze di diversa entità e piccoli raggi di curvatura. All’interno dello spazio di progettazione è stato possibile stampare con elevata precisione e accuratezza; le parti stampate mostrano una forte adesione tra gli strati e un’elevata trasparenza attraverso di essi.
Yang, Ni. "Fundamental Understanding and Functionality of Silicon Oxycarbide." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101789.
Full textDoctor of Philosophy
With the development of science and technology, some novel ceramics have begun to attract attention and become alternatives, such as polymer-derived ceramics (PDCs), due to more advantages over traditional ceramics. Silicon oxycarbide (SiOC) is the main part of the PDC family and possessing good combined thermophysical and mechanical properties. Highly porous SiOC ceramic has broad applications in the fields of catalyst, filters, and thermal insulation. A novel preparation to synthesize SiOC with a specific surface area above 2000 m2/g was investigated. Adding transition metals into the SiOC system can enlarge its application potentials to some extent. The bright spot of nickel-containing SiOC (Ni/SiOC) composites is in the magnetic area. Ni/SiOC composites show soft ferromagnetism and can be used as magnetic sensors, transformers, and so on. In this dissertation, the effect of water vapor on the phase evolution of Ni/SiOC was illustrated. The fabrication of high-temperature-resistant Ti/SiOC composite with large than 1000 S/m conductivity was studied. To further uncover the influence of transition metals on SiOC ceramics, the effects of transition metals on the phase and microstructure evolution of polysiloxane-derived SiOC ceramics were deeply demonstrated. A novel method was even developed to predict the phase content in SiOC ceramic with different transition metals. By working with Lawrence Berkeley National Laboratory, the nanoscale structures of SiOC ceramic was studied using state-of-the-art 4D-STEM. The findings of this dissertation shed light on more potential applications for SiOC ceramics in the future.
Gao, Yan [Verfasser], Ralf [Akademischer Betreuer] Riedel, and Wolfgang [Akademischer Betreuer] Ensinger. "Nanodomain Structure and Energetics of Carbon Rich SiCN and SiBCN Polymer-Derived Ceramics / Yan Gao. Betreuer: Ralf Riedel ; Wolfgang Ensinger." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2014. http://d-nb.info/1108094201/34.
Full textTermoss, Hussein. "Préparation de revêtements de nitrure de bore (BN) par voie polymère précéramique : étude des paramètres d'élaboration : caractérisations physico-chimiques." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00699530.
Full textCross, Tsali Jacob. "Mechanical properties of polymer-derived ceramics constituted from silicon-carbon-oxygen-nitrogen and their tribological behavior in dry and humid environments." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3207728.
Full textPahwa, Saksham. "Titanium dioxide/ silicon oxycarbide hybrid polymer derived ceramic as high energy & power lithium ion battery anode material." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/20593.
Full textMechanical and Nuclear Engineering
Kevin B. Lease
Gurpreet Singh
Energy has always been one of the most important factors in any type of human or industrial endeavor. Clean energy and alternative energy sources are slowly but steadily replacing fossil fuels, the over-dependence on which have led to many environmental and economic troubles over the past century. The main challenge that needs to be addressed in switching to clean energy is storing it for use in the electrical grid and transportation systems. Lithium ion batteries are currently one of the most promising energy storage devices and tremendous amount of research is being done in high capacity anode and cathode materials, and better electrolytes and battery packs as well, leading to overall high efficiency and capacity energy storage systems. Polymer derived ceramics (PDCs) are a special class of ceramics, usually used in high temperature applications, but some silicon based PDCs have demonstrated good electrochemical properties in lithium ion batteries. The goal of this research is to explore a special hybrid ceramic of titanium dioxide (TiO₂) and silicon oxy carbide (SiOC) ceramic derived from 1,3,5,7 -- tetravinyl -- 1,3,5,7 -- tetramethylcyclotetrasiloxane (TTCS) polymer for use in lithium ion batteries and investigate the source of its properties which might make the ceramic particularly useful in some highly specialized energy storage applications.
Bhandavat, Romil. "Molecular precursor derived SiBCN/CNT and SiOC/CNT composite nanowires for energy based applications." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/15347.
Full textDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 μm, 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm2 with optical absorbance exceeding 97 %. This represents one order of magnitude improvement over bare CNTs (1.4 kW/cm2) coatings and two orders of magnitude over the conventional carbon paint (0.1 kW/cm2) currently in use. The second application involved use of SiBCN/CNT and SiOC/CNT composite coatings as energy storage (anode) material in a Li-ion rechargeable battery. Anode coatings (~1mg/cm2) prepared using SiBCN/CNT synthesized at 1100 °C exhibited high reversible (useable) capacity of 412 mAh/g even after 30 cycles. Further improvement in reversible capacity was obtained for SiOC/CNT coatings with 686 mAh/g at 40 cycles and approximately 99.6 % cyclic efficiency. Further, post cycling imaging of dissembled cells indicated good mechanical stability of these anodes and formation of a stable passivating layer necessary for long term cycling of the cell. This improved performance was collectively attributed to the amorphous ceramic shell that offered Li storage sites and the CNT core that provided the required mechanical strength against volume changes associated with repeated Li-cycling. This novel approach for synthesis of PDC nanocomposites and its application based testing offers a starting point to carry out further research with a variety of PDC chemistries at both fundamental and applied levels.
Burghard, Zaklina [Verfasser]. "Behaviour of glasses and polymer-derived amorphous ceramics under contact stress / Institut für Nichtmetallische Anorganische Materialien der Universität Stuttgart ... Vorgelegt von Zaklina Burghard." Stuttgart : Max-Planck-Inst. für Metallforschung, 2004. http://d-nb.info/97251760X/34.
Full textWang, Xifan [Verfasser], Aleksander [Akademischer Betreuer] Gurlo, Aleksander [Gutachter] Gurlo, and Paolo [Gutachter] Colombo. "Photoinduced thiol-ene click chemistry assisted additive manufacturing and freeze casting of polymer-derived ceramics / Xifan Wang ; Gutachter: Aleksander Gurlo, Paolo Colombo ; Betreuer: Aleksander Gurlo." Berlin : Universitätsverlag der TU Berlin, 2019. http://d-nb.info/1196200122/34.
Full textVry, Sébastien. "Elaboration de céramiques hautes performances par voie polymère précéramique - Mise en forme par fabrication additive de type Digital Light Processing." Thesis, Université Grenoble Alpes, 2021. http://www.theses.fr/2021GRALI024.
Full textAdditive manufacturing technologies currently offer the opportunity to achieve complex geometries for a relatively wide material range, from polymers to metals, as well as for certain ceramics. The commercial offer of structural materials is still limited by technological obstacles generally associated with the compatibility between the forming process and the targetted material. In this thesis, a new way of study, still little explored in the literature, concerns the additive manufacturing by Digital Light Processing (DLP) of silicon carbide (SiC) ceramic, from preceramic polymers. In fact, the use of a SiC powder into a photosensitive formulation has limits in terms of charge rate, linked to the optical compatibility between this powder and the UV wavelength used during the layer-by-layer shaping. The use of polymers converting into ceramic, with suitable heat treatments, brings the possibility of improving the compatibility of the constituents at the working wavelength and allows the production of a ceramic of the SiC type. Two commercial preceramic polymers (a polysiloxane and a polycarbosilane) were selected and cross-linked at 200 ° C, followed by a pyrolysis treatment between 1000 and 1700 ° C, under argon. The microstructural changes, chemical compositions, as well as mechanical properties were studied. It appears that these polymer materials can be converted into polycrystalline SiC ceramic, with a residual carbon-rich secondary phase. Photopolymerizable formulations under UV exposure, containing a high load of preceramic polymer (from 25 to 75 wt.%), have been developed and studied in order to be able to shape a green object by DLP, which will then be converted into ceramic by heat treatment. Before additively manufacture parts, the reactivity of these formulations was characterized by varying the proportions of the constituents, including the initiator system and the incorporation of a UV photoabsorbent. The characterization of these formulations was mainly carried out by measuring the thickness of a monolayer polymerized under UV exposure, as well as by characterizing the photopolymerization kinetics by real time infrared spectroscopy. Finally, green parts were produced by DLP and were converted into ceramics and their mechanical properties and geometric integrity were characterized
Asok, Deepu. "Study of Si(Al)CN functionalized carbon nanotube composite as a high temperature thermal absorber coating material." Kansas State University, 2013. http://hdl.handle.net/2097/16876.
Full textDepartment of Mechanical & Nuclear Engineering
Gurpreet Singh
Carbon nanotubes (CNT) and polymer-derived ceramics (PDC) have gained considerable research attention due to their unique structure and physical properties. Carbon nanotubes are known for their exceptional mechanical (Young’s modulus= 1 TPa) and thermal properties (thermal conductivity = 4000 W/m.K). However, CNTs tend to lose their unique -sp2 carbon structure and cylindrical geometry at temperatures close 400°C in air. PDC, which are obtained by the controlled degradation of certain organosilicon polymers however exhibit high temperature stability (upto approx. 1400 °C). To this end, a hybrid composite material consisting of PDC functionalized CNT is of interest as it can combine the unique physical properties of the two materials for applications requiring operation under harsh conditions. Here, we report synthesis and chemical characterization of an Al-modified polysilazane polymer, which was later utilized to functionalize the outer surfaces of four commercially available CNTs. This polymer-CNT composite upon heating in nitrogen environment resulted in Si(Al)CN-CNT ceramic composite. The composite was characterized using a variety of spectroscopic methods such Raman, FTIR and electron microscopy. The thermal stability of the ceramic composite was studied by use of Thermogravimetric analysis (TGA) that showed an improvement in the thermal stability compared to bare nanotubes. Further, we also demonstrate that a stable dispersion of the composite in organic solvents such as toluene can be spray coated on a variety of substrates such as copper disks and foils. Such coatings have application in high energy laser power meters. This research opens new avenues for future applications of this novel material as coatings on surfaces that require both good thermal properties and protection against degradation in high temperature environments. We also suggest the future use of this material as an electrode material in high electrochemical capacity rechargeable batteries.
Prasad, Ravi Mohan [Verfasser], Ralf [Akademischer Betreuer] Riedel, Christina [Akademischer Betreuer] Roth, Wolfgang [Akademischer Betreuer] Ensinger, and Jörg [Akademischer Betreuer] Schneider. "Polymer-Derived Microporous Ceramics for Membranes and Sensors for High Temperature Hydrogen Purification and Sensing / Ravi Mohan Prasad. Betreuer: Ralf Riedel ; Christina Roth ; Wolfgang Ensinger ; Jörg Schneider." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2012. http://d-nb.info/110625709X/34.
Full textZhong, Wenli. "Préparation de matériaux à base de nitrure de bore pour des applications 'énergie'." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20186.
Full textEnergy developments have brought hexagonal boron nitride-based materials increasing interest for future materials and technologies. The objective of this thesis concerns the preparation of BN shapes for energy applications including fiber-reinforced BN composites, BN-based nanocomposites and BN foams. Fiber-reinforced BN composite and BN nanocomposites display potential as tiles for protection limiters for the Ion Cyclotron Range Frequency antennas in fusion nuclear reactors. Porous BN materials have interests as host material for hydrogen storage and as catalyst supports. The Polymer-Derived Ceramics route which offers new preparation opportunities in chemistry and ceramic sciences is applied to manufacture shaped BN-based materials.Firstly, in the context of C/BN composite, polyborazylene vacuum-assisted infiltration and pyrolysis process was successfully introduced. We focused on the design, elaboration and properties of the C/BN composite through the study of the (1) synthesis and polymerization of borazine, (2) the polyborazylene-to-boron nitride conversion, (3) the morphological texture and mechanical properties of derived C/BN composites. We firstly demonstrated that it is possible to obtain dense-derived C/BN composites (density: 1.773 g cm-3, open porosity: 5.09%) by tuning the viscosity of polyborazylene in the infiltration process. SEM observation presented a very strong bonding between fibers and matrix. TGA under air analysis confirmed the improved oxidation resistance property of C/BN composite compared with C fiber.Secondly, we investigated the design, processing, and properties of transition metal-containing boron nitride nanocomposites from polymetalloborazine. With proper choice of boron nitride precursor, and by controlling the B/M ratio (M = Ti, Zr, Hf), a set of representative polymetalloborazines has been prepared as precursors of nanocomposites. In the reaction of BN source with metal precursor leading to polymetalloborazines, two main mechanisms are mainly concerned: N-H and B-H units of BN percursor react with N-alkyl groups presented in metal precursors. After its pyrolysis under ammonia up to 1000 oC then nitrogen from 1000 to 1500oC, the derived nanocomposites reveal the presence of metal nitride nanocrystales with an average diameter of 6.5 nm homogeneously embedded in a poorly crystallized boron nitride matrix. A preliminary study is presented on the preparation of monolith-type nanocomposites from selected polytitanoborazines. Finally, we applied two PDCs route-based strategies to prepare hierarchically porous and micro cellular BN foams. In the first strategy, monolith-type BN foams with a hierarchical porosity were synthesized from polyborazylene using an integrative chemistry combined-based sequence set-up that consists of the impregnation of silica and carbonaceous templates followed by pyrolysis process and elimination of the template. These novel porous BN architectures display hierarchical and high porosity (76 %) with an open-cell interconnected macroporosity and a surface area up to 300 m2g-1. In the second strategy, a sacrificial processing route has been proposed to fabricate micro cellular BN foams with a porosity of 79 % from a mixture of polyborazylene and poly(methylmethacrylate) (PMMA) microbeads by warm-pressing followed by pyrolysis consisting of the burn-out of PMMA while polyborazylene is converted into BN. These novel BN foams display potential as catalyst supports and host material for hydrogen storage
Nardin, Thibaud. "Elaboration de carbure de silicium poreux et mésoporeux par voie moléculaire." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS120/document.
Full textDue to its excellent thermal resistance, mechanical and chemical stability both at room and elevated temperature, silicon carbide (SiC) is an attractive material for nuclear fuel cladding or catalyst substrates. Pore size control and high porosity are the key factors for such applications. Two approaches are studied during this PhD thesis:(1) The Soft Templating Approach. The porosity and the structure of the final materials are defined by the supramolecular self-assembly of a structure directing agent (SDA) into a molecular SiC precursor. Low molecular-mass organic gelators and a commercial tri-block copolymer are considered as SDA for the synthesis of mesoporous SiC materials.(2) The Hard Templating Approach. SiC materials are synthesized by preceramic polymer nanocasting into mesoporous silica. This process preserves the nanoscale structure of the solid template and leads to mesostructured SiC materials with a high specific surface area.The hard templating approach allows a good replication of the solid template but the difficulty of this method lies in the elimination step of this template. Meanwhile, soft templating approach does not have this drawback and may lead to porous ceramics with more varied structures depending on the SDA used. The complexity of this approach is the template replication step
Ben, Miled Marwan. "Synthèse in situ de nanoparticules métalliques dans une matrice céramique dérivées de polymères précéramiques pour l'électrolyse de l'eau en milieu alcalin." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0083.
Full textGlobal warming caused by human activity and the use of fossil fuels, urges the need to find new sources of carbon free energy. Dihydrogen (H2) more known as “hydrogen” is rapidly emerging as a technically viable and benign energy vector according to its ability to produce a higher density of combustion than fossil fuels and to produce only water as a waste product when used in a fuel cell. Moreover, its use generates no noise pollution, unlike the combustion engines currently in use. Nevertheless, it requires a very high degree of purity in order to avoid pollution of the catalytic materials contained in the cells. Nowadays, nearly 95% of the hydrogen produced is obtained by catalytic reforming of methane, and therefore requires purification processes that are often complex and costly. One way of avoiding these purification steps would be to produce hydrogen directly by electrolysis of water more known as water splitting. This process consists of separating a molecule of water under the action of an electric current (produced in a renewable way) to produce hydrogen and dioxygen (O2) at the electrodes of an electrolyser. Unfortunately, this reaction has kinetic limitations due to a very complex Oxygen Evolution Reaction (OER) mechanism, including several electrons and several reaction intermediates. The emergence of new anion exchange membrane technologies has paved the way for the use of electrolysis in alkaline media, thus allowing the use of non-noble transition metals as catalysts, which are less expensive than the metals traditionally used (Ir and Ru). Within this context, this PhD thesis has explored the synthesis of catalytic materials to reduce the energy and kinetic barriers of OER. In order to propose materials that are performant, stable over time and resistant to the aggressive environments imposed by the electrolysis of water in an alkaline medium, the polymer-derived ceramics (PDC) route has been selected as a synthesis method of choice. The interest of this method is to implement organosilicon polymers (here a polysilazane) serving as a molecular platform for the growth of non-noble metals via the use of metal complexes such as chlorides and acetylacetonates of nickel (Ni), iron (Fe) or cobalt (Co). This polymer modified by these metals serves as a precursor for the in situ formation of metal nanoparticles in a porous matrix based on the elements silicon (Si), carbon (C), oxygen (O) and nitrogen (N) allowing their accessibility and stability after heat treatment at 500 ° C under argon. This manuscript illustrated through five chapters describes works dedicated to the synthesis and characterization of Ni (chapter 3), Ni-Fe (chapter 4) and medium and high entropy alloys (chapter 5) nanoparticles which complete a state of the art (chapter 1) and a description of the materials and methods implemented during this thesis (chapter 2). The materials which have been prepared were studied at each stage of their synthesis through the implementation of complementary characterization tools before assessing their electrochemical performances; in particular by measuring the anodic overpotential during OER, in order to determine the best metal combinations. Post mortem tests were carried out to evaluate the potential of the prepared materials. Considering the simplicity of the synthesis route, and the low cost of reactants used, this work leads to a new family of materials and to several promising perspectives, not only for the development of efficient and stable catalysts for the OER but more generally for numerous applications in electrochemistry. These opportunities are now being addressed
Balestrat, Maxime. "Elaboration et caractérisation d'objets massifs nanocomposites base carbure de silicium comme absorbeurs solaires." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0102.
Full textA common industrial challenge to improve the efficiency of the solar-to-electricity conversion for concentrating solar power (CSP) is to operate at high temperatures (around 1000°C). Research and development efforts on over recent years have therefore focused on the materials that compose the solar absorber which plays the key role in the overall CSP system performance. Silicon carbide (SiC) exhibits a chemical inertness, a high temperature oxidation resistance and a robustness compatible with the operating conditions of further CSP systems. In this work, Polymer derived nanocomposites ceramics TiCxN(1-x)/Si(B)C et TiCxN(1-x)/SiC(N) (with 0<1) have been developed to be use as solar absorber. A complete characterization from the polymer to the final material is done using techniques as Solid-state NMR, FTIR, TGA, XRD, Raman SEM and TEM. The bulk shaping process was also investigated. Hot pressing at the polymeric state and Flash Sintering on amorphous PDCs powders has been done
Torrey, Jessica D. "Polymer derived ceramic composites as environmental barrier coatings on steel /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/10562.
Full textMartins, Nilda. "Development of plasma assisted pyrolysis of polymer derived ceramic coatings on sintered steel." reponame:Repositório Institucional da UFSC, 2017. https://repositorio.ufsc.br/xmlui/handle/123456789/179647.
Full textMade available in DSpace on 2017-09-19T04:10:10Z (GMT). No. of bitstreams: 1 347970.pdf: 5112577 bytes, checksum: 26ca02d8d2f3634b3516965d62c2b87f (MD5) Previous issue date: 2017
Abstract: The use of precursors loaded with fillers to process ceramic coatings rises the possibility to tailor the microstructure and coating properties for a wide range application, like thermal barrier coatings, environmental barrier coating or for wear applications. Thus, the present research aims to develop and to employ the novel process of plasma assisted pyrolysis (PAP) for developing ceramic composites coating on sintered steel substrate. The coatings are based on polymer derived ceramic, being the precursor a polyorganosilazane. During the development of the PDC based coating different fillers were used. The active fillers TiSi2 and TiB2 were used in order to compensate the shrinkage of the precursor and to generate in situ formation of phases as nitrides and carbides. Initially it was necessary to investigate the influence of PAP both on the pyrolysis behavior of the pure precursor and on the polymer precursor loaded with filler particles, in comparison to conventional pyrolysis. For such investigations, cylindrical bulk specimens were used (diameter of 13 mm and thickness between of 2-4 mm). It was demonstrated that the ceramic yield as well as the elemental composition of the polyorganosilazane are not adversely influenced by PAP process. The bulk samples based on precursor and TiSi2 under conventional pyrolysis, under N2 atmosphere, showed no significant conversion of the fillers into nitrides. In contrast, the use of PAP led not only to an enhances filler conversion but also to a densification of the composite. The resulting microstructure is dominated by Ti(C,N) as well as a mixture of a- and ß- Si3N4 phases embedded in an amorphous SiCN matrix. In the same way the coatings, on sintered substrates, based on polyorganosilazane and TiB2, processed under conventional pyrolysis showed almost no filler conversion up to temperature of 1150 °C. The final coating was based mainly on TiB2 and the formed SiCN network. While in the specimens after PAP process mainly Ti (C, N) and C0.858 (BN)0.571 were formed, and no residual TiB2 was detect. The diffusion phenomenon between coating and sintered substrate was also drastically affected under plasma conditions. Considerable amount of iron could be detected in the coating, after the plasma assisted pyrolysis. Such difference between conventional and plasma assisted pyrolysis process is attributed to the high reactivity of the plasma environment, in which reactive species, as atomic nitrogen, are available to react with the sample. It could be demonstrated that plasma assisted pyrolysis is a very suitable way to process polymer derived ceramic composite materials with a tailored microstructure.
O uso de precursores carregados com fillers possibilita projetar a microestrutura e as propriedades de revestimentos cerâmicos para diferentes aplicações, como revestimentos de barreira térmica, revestimento de barreira ambiental ou para aplicações tribológicas. O objetivo deste trabalho foi desenvolver e empregar o novo processo de pirólise assistida por plasma (PAP) para o desenvolvimento de revestimentos compósitos cerâmicos sobre substratos de aço sinterizado. Os revestimentos são baseados em cerâmica derivada de polímero, sendo o precursor um poliorganossilazano. Durante o desenvolvimento do revestimento utilizaram-se diferentes fillers. As cargas ativas, como TiSi2 e TiB2, foram utilizadas para compensar a retração do precursor e para gerar a formação in situ de fases como nitretos e carbonetos. Inicialmente foi necessário investigar a influência da PAP sobre o comportamento do precursor puro e no comportamento do precursor carregado com partículas de fillers, em comparação com a pirólise convencional. Para tais investigações, foram utilizados amostras cilíndricas (diâmetro de 13 mm e espessura entre 2 e 4 mm). Foi demonstrado que o rendimento cerâmico, assim como a composição elementar do poliorganossilazano, não são influenciados negativamente pelo processo PAP. As amostras baseada no precursor e TiSi2 sob pirólise convencional, atmosfera de N2, não mostrou nenhuma conversão significativa dos fillers em nitretos. No entanto, a utilização da PAP promoveu tanto ao aumento na conversão do filler, assim como uma maior densificação do compósito. A microestrutura resultante é dominada por Ti (C, N), e uma mistura de fases a- e ß-Si3N4 incorporadas numa matriz amorfa de SiCN. Do mesmo modo, os revestimentos sobre os substratos sinterizados, compostos por poliorganossilazano e TiB2, processados em pirólises convencionais, mostraram quase nenhuma conversão do filler até na temperatura de 1150 ° C. O revestimento final baseou-se principalmente em TiB2 e na fase SiCN. Enquanto, as amostras após o processo de PAP formaram principalmente fases como Ti (C, N) e C0.858 (BN) 0.571, e não foi detectado TiB2 residual. O fenômeno de difusão entre o revestimento e o substrato sinterizado também foi drasticamente afetado no ambiente de plasma. Uma quantidade considerada de ferro pode ser detectada no revestimento, após a pirólise assistida por plasma. Essas diferenças entre o processo de pirólise convencional e assistido por plasma é atribuída à alta reatividade do ambiente de plasma, no qual as espécies reativas, como o nitrogênio atômico, estão disponíveis para reagir com a amostra. Pode ser demonstrado que a pirólise assistida por plasma é uma maneira muito adequada para processar materiais compósitos cerâmicos derivados de polímeros com uma microestrutura projetada.
Glaser, Raymond Hans. "Structure-property behavior of sol-gel derived hybrid materials." Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/54327.
Full textPh. D.
David, Lamuel Abraham. "Van der Waals sheets for rechargeable metal-ion batteries." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/32796.
Full textDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
The inevitable depletion of fossil fuels and related environmental issues has led to exploration of alternative energy sources and storage technologies. Among various energy storage technologies, rechargeable metal-ion batteries (MIB) are at the forefront. One dominant factor affecting the performance of MIB is the choice of electrode material. This thesis reports synthesis of paper like electrodes composed for three representative layered materials (van der Waals sheets) namely reduced graphene oxide (rGO), molybdenum disulfide (MoS₂) and hexagonal boron nitride (BN) and their use as a flexible negative electrode for Li and Na-ion batteries. Additionally, layered or sandwiched structures of vdW sheets with precursor-derived ceramics (PDCs) were explored as high C-rate electrode materials. Electrochemical performance of rGO paper electrodes depended upon its reduction temperature, with maximum Li charge capacity of 325 mAh.g⁻¹ observed for specimen annealed at 900°C. However, a sharp decline in Na charge capacity was noted for rGO annealed above 500 °C. More importantly, annealing of GO in NH₃ at 500 °C showed negligible cyclability for Na-ions while there was improvement in electrode's Li-ion cycling performance. This is due to increased level of ordering in graphene sheets and decreased interlayer spacing with increasing annealing temperatures in Ar or reduction at moderate temperatures in NH₃. Further enhancement in rGO electrodes was achieved by interfacing exfoliated MoS₂ with rGO in 8:2 wt. ratios. Such papers showed good Na cycling ability with charge capacity of approx. 225.mAh.g⁻¹ and coulombic efficiency reaching 99%. Composite paper electrode of rGO and silicon oxycarbide SiOC (a type of PDC) was tested as high power-high energy anode material. Owing to this unique structure, the SiOC/rGO composite electrode exhibited stable Li-ion charge capacity of 543.mAh.g⁻¹ at 2400 mA.g⁻¹ with nearly 100% average cycling efficiency. Further, mechanical characterization of composite papers revealed difference in fracture mechanism between rGO and 60SiOC composite freestanding paper. This work demonstrates the first high power density silicon based PDC/rGO composite with high cyclic stability. Composite paper electrodes of exfoliated MoS₂ sheets and silicon carbonitride (another type of PDC material) were prepared by chemical interfacing of MoS₂ with polysilazane followed by pyrolysis . Microscopic and spectroscopic techniques confirmed ceramization of polymer to ceramic phase on surfaces on MoS₂. The electrode showed classical three-phase behavior characteristics of a conversion reaction. Excellent C-rate performance and Li capacity of 530 mAh.g⁻¹ which is approximately 3 times higher than bulk MoS₂ was observed. Composite papers of BN sheets with SiCN (SiCN/BN) showed improved electrical conductivity, high-temperature oxidation resistance (at 1000 °C), and high electrochemical activity (~517 mAh g⁻¹ at 100 mA g⁻¹) toward Li-ions generally not observed in SiCN or B-doped SiCN. Chemical characterization of the composite suggests increased free-carbon content in the SiCN phase, which may have exceeded the percolation limit, leading to the improved conductivity and Li-reversible capacity. The novel approach to synthesis of van der Waals sheets and its PDC composites along with battery cyclic performance testing offers a starting point to further explore the cyclic performance of other van der Waals sheets functionalized with various other PDC chemistries.
Nagaiah, Narasimha. "NOVEL CONCEPTUAL DESIGN AND ANLYSIS OF POLYMER DERIVED CERAMIC MEMS SENSORS FOR GAS TURBINE ENVIRONMENT." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4086.
Full textM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Yang, Hongjiang. "Synthesis, Processing and Characterization of Polymer Derived Ceramic Nanocomposite Coating Reinforced with Carbon Nanotube Preforms." Master's thesis, University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6387.
Full textM.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Mechanical Systems Track
Gasch, Matthew J. "Processing and mechanical properties of silicon nitride/silicon carbide ceramic nanocomposites derived from polymer precursors /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Full textHicks, David Cyprian. "Aligned Continuous Cylindrical Pores Derived from Electrospun Polymer Fibers in Titanium Diboride." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/99423.
Full textMS
Sarkar, Sourangsu. "The fabrication of polymer-derived SiCN/SiBCN ceramic nanostructures and investigation of their structure-property relationship." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4666.
Full textID: 029050506; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2010.; Includes bibliographical references.
Ph.D.
Doctorate
Department of Chemistry
Sciences
Hao, Wenjun. "Atomic layer deposition of boron nitride." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1311/document.
Full textThis thesis achieves 3 years of PhD studies on “Atomic layer deposition (ALD) of boron nitride (BN)”. The aim of this PhD work is to adapt the polymer derived ceramics (PDCs) route to the ALD technique for h-BN thin film growth and elaboration of functional nanostructures. A novel two-step ammonia-free ALD process, which includes ALD deposition of polyborazine at low temperature (80 °C) from 2,4,6-trichloroborazine and hexamethyldisilazane followed by post heat treatment under controlled atmosphere, has been established. Conformal and homogeneous BN thin films have been deposited onto various substrates. The self-limitation of the reactions on flat substrates and the conformality of the films on structured substrates have been verified. Functional BN nanostructures have thus been fabricated using substrates or templates with different dimensionalities. In particular, their applications as protective coatings as well as filter and absorber to purify polluted water from organic/oil hav e been investigated. Finally, a second low temperature (85-150 °C) ALD process using tri(isopropylamine)borane and methylamine as precursors has preliminary been studied in order to confirm the adaptability of PDCs route to ALD technique. BN thin films have been grown onto flat substrate and it has been proven that tri(isopropylamino)borane vapor can infiltrate into electrospun polyacrylonitrile fibers.This work was carried out at University of Lyon and financially supported by the National Research Agency (project n° ANR-16-CE08-0021-01)
Viard, Antoine. "Structure, élaboration, propriétés et modification de surface de fibres creuses non-oxydes à partir de polymères pré-céramiques pour des applications membranaires." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT243.
Full textNew ceramic materials have progressively emerged during the last century and continuously drew attention for diverse applications. This comes from the numerous and various properties they can exhibit. A great advantage of this type of materials is their mechanical, thermal and chemical stabilities, that makes ceramics of great interest for applications in harsh environments. This trend is especially perceptible in the field of membranes. In fact, despite their moderate cost, polymer membranes, which are mostly used, are very sensitive to the environment in which they are used and require to be replaced regularly. This justifies the search for alternatives and for more resistant materials like ceramics. Various shaping are possible to build a membrane, but among these, shapings in form of tubes have aroused particular enthusiasm because of their advantages in terms of surface/volume ratio and of lower mass transport resistance. Most of used and commercialized ceramics are based on oxide chemical compositions. This constitutes a drawback concerning the aging of the membranes and their stability at very high temperatures. Another type of ceramics, non oxide silicon based ceramics, exhibits very interesting properties which could eventually palliate these problems. In general, such materials are produced through the PDC route (Polymer Derived Ceramic route), especially because of the impossibility to proceed by more conventional methods for many of them. The principle of this bottom-up method is to synthesize preceramic polymers which can be converted into ceramics through an appropriate heat treatment. This enables a very good control of the chemical structure of the final ceramics and so a great versatility. Among these materials, the quaternary system Si-B-C-N has aroused big interest because of its extraordinary thermostructural properties coupled to chemical inertness. Thus, the present work has been focused on the preparation and application of this ceramic. Another advantage of the PDC route can be found in the possible shaping arising from the polymeric nature of the precursors. This method has been widely used for the production of thin ceramic fibers by using the melt-spinning process. The main objective of this thesis is the design of SiBCN ceramic hollow fibers and capillaries based on this shaping method. The aim is the preparation of very stable membrane supports at relatively low costs compared to conventional processes used to shape ceramic materials, often involving a sintering treatment at a very high temperature. These supports could be used in gas separation and water treatment applications. More precisely, chapter 1 presents a state of the art and allows to give the context and the motivations of this work. Chapter 2 discusses on the synthesis techniques and on the used methods. Chapter 3 is dedicated to the production of SiBCN ceramic hollow fibers by studying in details the precursors chemical structure used for this purpose before investigating its ceramic conversion and the evolution of the microstructure of the resulting ceramic. Chapter 4 is dealing with the production of SiBCN ceramic capillaries. The precursor used is characterized as well as the resulting ceramic. The last chapter gives some perspectives by proposing different methods of surface modifications of the hollow fibers and the capillaries presented in chapters 3 and 4
Zhang, Huixing Verfasser], Kurosch [Akademischer Betreuer] Rezwan, Kurosch [Gutachter] Rezwan, and Michael [Gutachter] [Scheffler. "Macroporous Polymer-Derived Ceramic Monoliths for Cryogenic Applications Manufactured by Water-Based Freeze Casting / Huixing Zhang ; Gutachter: Kurosch Rezwan, Michael Scheffler ; Betreuer: Kurosch Rezwan." Bremen : Staats- und Universitätsbibliothek Bremen, 2018. http://d-nb.info/1162620633/34.
Full textFaulmann, Christophe. "Conducteurs derives de metaux de transition : complexes moleculaires, polymeres, oxydes de cuivre." Toulouse 3, 1988. http://www.theses.fr/1988TOU30160.
Full textZunjarrao, Suraj C. "Polymer derived ceramics processing-structure-property relationships /." 2008. http://digital.library.okstate.edu/etd/umi-okstate-2726.pdf.
Full textSudhakar, Bhukya. "Fabrication of polymer derived silica bonded alumina ceramics." Thesis, 2014. http://ethesis.nitrkl.ac.in/6449/1/110CR0581-13.pdf.
Full textRath, Durga Prasad. "Phase Evolution in Doped Polymer Derived Silicon Oxycarbide Ceramics." Thesis, 2015. http://ethesis.nitrkl.ac.in/6834/1/PHASE_Rath_2015.pdf.
Full text