Journal articles on the topic 'Polymer Electrolytes - Ion Dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Polymer Electrolytes - Ion Dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mabuchi, Takuya, Koki Nakajima, and Takashi Tokumasu. "Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries." Micromachines 12, no. 9 (2021): 1012. http://dx.doi.org/10.3390/mi12091012.
Full textKim, Dokyung, So Jung Seo, Ji-Hun Seo, and Young Joo Lee. "Exploring the Relationship between Ion Diffusion and Molecular Structure of Gel Polymer Electrolytes Using NMR Spectroscopy." ECS Meeting Abstracts MA2024-02, no. 7 (2024): 964. https://doi.org/10.1149/ma2024-027964mtgabs.
Full textZhang, Chao. "(Invited) Understanding Ion-Ion Correlations: From Liquid Electrolytes to Polymer Electrolytes." ECS Meeting Abstracts MA2023-01, no. 45 (2023): 2455. http://dx.doi.org/10.1149/ma2023-01452455mtgabs.
Full textChen, Xi. "(Invited) Ion Transport and Interface Resistance in Polymer-Based Composite Electrolytes and Composite Cathode." ECS Meeting Abstracts MA2023-01, no. 6 (2023): 983. http://dx.doi.org/10.1149/ma2023-016983mtgabs.
Full textChae, Somin, and Sangheon Lee. "Theoretical Study on the Dynamics of Lithium-Ion Transport in PPS-Based Polymer Electrolytes." ECS Meeting Abstracts MA2024-01, no. 2 (2024): 465. http://dx.doi.org/10.1149/ma2024-012465mtgabs.
Full textKagawa, Yuta, Masaya Miyagawa, and Hiromitsu Takaba. "Important Structural Features to Enhance Na-Ionic Conductivity in Single-Ion-Conducting Polymer Electrolytes." ECS Meeting Abstracts MA2024-02, no. 3 (2024): 349. https://doi.org/10.1149/ma2024-023349mtgabs.
Full textKumar, Asheesh, Raghunandan Sharma, M. Suresh, Malay K. Das, and Kamal K. Kar. "Structural and ion transport properties of lithium triflate/poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes." Journal of Elastomers & Plastics 49, no. 6 (2016): 513–26. http://dx.doi.org/10.1177/0095244316676512.
Full textChoi, U. Hyeok, Ji Hyang Je, Seon Min Park, Puji Lestari Handayani, Dawoon Lee, and Jaekyun Kim. "(Invited) Tailoring Molecular Interaction in Solid-State Polymer Electrolytes for High-Performance Supercapacitors." ECS Meeting Abstracts MA2024-02, no. 6 (2024): 753. https://doi.org/10.1149/ma2024-026753mtgabs.
Full textLee, Young Joo, Dokyung KIM, Yoonju Shin, et al. "Conduction Mechanism Study of Argyrodite-Type and Polymer-Ceramic Composite Electrolyte By Solid-State and PFG NMR Spectroscopy." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 416. https://doi.org/10.1149/ma2024-024416mtgabs.
Full textYusof, S. Z., H. J. Woo, and A. K. Arof. "Ion dynamics in methylcellulose–LiBOB solid polymer electrolytes." Ionics 22, no. 11 (2016): 2113–21. http://dx.doi.org/10.1007/s11581-016-1733-y.
Full textPeters, Brandon L., Zhou Yu, Paul C. Redfern, Larry A. Curtiss, and Lei Cheng. "Effects of Salt Aggregation in Perfluoroether Electrolytes." Journal of The Electrochemical Society 169, no. 2 (2022): 020506. http://dx.doi.org/10.1149/1945-7111/ac4c7a.
Full textGaraga, Mounesha N., Sahana Bhattacharyya, and Steve G. Greenbaum. "Achieving Enhanced Mobility of Ions in Ionic Liquid-Based Gel Polymer Electrolytes By Incorporating Inorganic Nanofibers for Li-Ion Battery." ECS Meeting Abstracts MA2022-02, no. 2 (2022): 160. http://dx.doi.org/10.1149/ma2022-022160mtgabs.
Full textDennis, John Ojur, Abdullahi Abbas Adam, M. K. M. Ali, et al. "Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller." Membranes 12, no. 7 (2022): 706. http://dx.doi.org/10.3390/membranes12070706.
Full textPark, Habin, Anthony Engler, Nian Liu, and Paul Kohl. "Dynamic Anion Delocalization of Single-Ion Conducting Polymer Electrolyte for High-Performance of Solid-State Lithium Metal Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 227. http://dx.doi.org/10.1149/ma2022-023227mtgabs.
Full textGeorge, Sweta Mariam, Debalina Deb, Haijin Zhu, S. Sampath, and Aninda J. Bhattacharyya. "Spectroscopic investigations of solvent assisted Li-ion transport decoupled from polymer in a gel polymer electrolyte." Applied Physics Letters 121, no. 22 (2022): 223903. http://dx.doi.org/10.1063/5.0112647.
Full textCaradant, Lea, Nina Verdier, Gabrielle Foran, et al. "The Influence of Polar Functional Groups in Hot-Melt Extruded Polymer Blend Electrolytes for Solid-State Lithium Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (2022): 210. http://dx.doi.org/10.1149/ma2022-012210mtgabs.
Full textAL-Hamdani, Nasser, Paula V. Saravia, Javier Luque Di Salvo, Sergio A. Paz, and Giorgio De Luca. "Unravelling Lithium Interactions in Non-Flammable Gel Polymer Electrolytes: A Density Functional Theory and Molecular Dynamics Study." Batteries 11, no. 1 (2025): 27. https://doi.org/10.3390/batteries11010027.
Full textButnicu, Dan, Daniela Ionescu, and Maria Kovaci. "Structure Optimization of Some Single-Ion Conducting Polymer Electrolytes with Increased Conductivity Used in “Beyond Lithium-Ion” Batteries." Polymers 16, no. 3 (2024): 368. http://dx.doi.org/10.3390/polym16030368.
Full textNti, Frederick, George W. Greene, Haijin Zhu, Patrick C. Howlett, Maria Forsyth, and Xiaoen Wang. "Anion effects on the properties of OIPC/PVDF composites." Materials Advances 2, no. 5 (2021): 1683–94. http://dx.doi.org/10.1039/d0ma00992j.
Full textCaradant, Lea, Nina Verdier, Gabrielle Foran, et al. "The Influence of Polar Functional Groups in Melt-Blended Polymers Used As New Solid Electrolytes for Lithium Batteries." ECS Meeting Abstracts MA2022-02, no. 7 (2022): 2423. http://dx.doi.org/10.1149/ma2022-0272423mtgabs.
Full textWeber, Ryan L., and Mahesh K. Mahanthappa. "Thiol–ene synthesis and characterization of lithium bis(malonato)borate single-ion conducting gel polymer electrolytes." Soft Matter 13, no. 41 (2017): 7633–43. http://dx.doi.org/10.1039/c7sm01738c.
Full textAsha, Aysha Siddika, Benjoe Rey B. Visayas, Maricris L. Mayes, and Caiwei Shen. "Understanding the Effect of Trace Solvent Content on Properties of Polymer Electrolytes through Molecular Dynamics Simulations." ECS Meeting Abstracts MA2023-01, no. 4 (2023): 862. http://dx.doi.org/10.1149/ma2023-014862mtgabs.
Full textRushing, Jeramie C., Anit Gurung, and Daniel G. Kuroda. "Relation between microscopic structure and macroscopic properties in polyacrylonitrile-based lithium-ion polymer gel electrolytes." Journal of Chemical Physics 158, no. 14 (2023): 144705. http://dx.doi.org/10.1063/5.0135631.
Full textEriksson, Therese, Harish Gudla, Yumehiro Manabe, et al. "Carbonyl-Containing Solid Polymer Electrolyte Host Materials: Conduction and Coordination in Polyketone, Polyester, and Polycarbonate Systems." Macromolecules 55, no. 24 (2022): 10940–49. https://doi.org/10.1021/acs.macromol.2c01683.
Full textBhandary, Rajesh, and Monika Schönhoff. "Polymer effect on lithium ion dynamics in gel polymer electrolytes: Cationic versus acrylate polymer." Electrochimica Acta 174 (August 2015): 753–61. http://dx.doi.org/10.1016/j.electacta.2015.05.145.
Full textKim, Young C., Brian L. Chaloux, Debra R. Rolison, Michelle D. Johannes, and Megan B. Sassin. "Molecular dynamics study of hydroxide ion diffusion in polymer electrolytes." Electrochemistry Communications 140 (July 2022): 107334. http://dx.doi.org/10.1016/j.elecom.2022.107334.
Full textRamya, C. S., and S. Selvasekarapandian. "Spectroscopic studies on ion dynamics of PVP–NH4SCN polymer electrolytes." Ionics 20, no. 12 (2014): 1681–86. http://dx.doi.org/10.1007/s11581-014-1130-3.
Full textFord, Hunter O., Ramsay Nuwayhid, Brian Chaloux, et al. "Accelerating Development of Submicron-Thick Initiated Chemical Vapor Deposition (iCVD)-Derived Polymer Electrolytes for All Solid-State Batteries Via Pre-Screening Bulk Surrogates." ECS Meeting Abstracts MA2024-02, no. 48 (2024): 3483. https://doi.org/10.1149/ma2024-02483483mtgabs.
Full textChen, X. Chelsea, Robert L. Sacci, Naresh C. Osti, et al. "Correction: Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering." Molecular Systems Design & Engineering 4, no. 4 (2019): 983. http://dx.doi.org/10.1039/c9me90023c.
Full textChavan, Kanchan, Pallab Barai, Hong-Keun Kim, and Venkat Srinivasan. "Decoding the Ceramics Influence in the Composite Electrolytes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 494. http://dx.doi.org/10.1149/ma2022-024494mtgabs.
Full textLi, Guan Min. "Mathematical Model of Transmission Mechanism from Multiphase Composite System." Advanced Materials Research 850-851 (December 2013): 300–303. http://dx.doi.org/10.4028/www.scientific.net/amr.850-851.300.
Full textBrinkkötter, M., M. Gouverneur, P. J. Sebastião, F. Vaca Chávez, and M. Schönhoff. "Spin relaxation studies of Li+ ion dynamics in polymer gel electrolytes." Physical Chemistry Chemical Physics 19, no. 10 (2017): 7390–98. http://dx.doi.org/10.1039/c6cp08756f.
Full textGao, Yuqing, Yankui Mo, Shengguang Qi, Mianrui Li, Tongmei Ma, and Li Du. "Enhancing Ion Transport in Polymer Electrolytes by Regulating Solvation Structure via Hydrogen Bond Networks." Molecules 30, no. 11 (2025): 2474. https://doi.org/10.3390/molecules30112474.
Full textOh, Kyeong-Seok, Ji Eun Lee, Yong-Hyeok Lee, et al. "Elucidating Ion Transport Phenomena in Sulfide/Polymer Composite Electrolytes for Practical Solid-State Batteries." ECS Meeting Abstracts MA2024-02, no. 8 (2024): 1095. https://doi.org/10.1149/ma2024-0281095mtgabs.
Full textZhan, Yu-Ting, Santhanamoorthi Nachimuthu, and Jyh-Chiang Jiang. "Ab Initio Molecular Dynamics Study on Self-Healing Solid Polymer Electrolyte for Lithium Metal Batteries." ECS Meeting Abstracts MA2023-02, no. 65 (2023): 3110. http://dx.doi.org/10.1149/ma2023-02653110mtgabs.
Full textLee, Youngju, and Peng Bai. "Overlimiting Currents and Sand’s Time Behaviors in Solid Polymer Electrolytes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 485. http://dx.doi.org/10.1149/ma2022-024485mtgabs.
Full textWang, Hui, Naresh C. Osti, Jürgen Allgaier, et al. "Dynamics of polymer electrolyte with LiTFSI via Quasi-Elastic Neutron Scattering." EPJ Web of Conferences 286 (2023): 04005. http://dx.doi.org/10.1051/epjconf/202328604005.
Full textAziz, B. Marif, Brza, Hamsan, and Kadir. "Employing of Trukhan Model to Estimate Ion Transport Parameters in PVA Based Solid Polymer Electrolyte." Polymers 11, no. 10 (2019): 1694. http://dx.doi.org/10.3390/polym11101694.
Full textGerhardt, Michael Robert, Alejandro O. Barnett, Thulile Khoza, et al. "An Open-Source Continuum Model for Anion-Exchange Membrane Water Electrolysis." ECS Meeting Abstracts MA2023-01, no. 36 (2023): 2002. http://dx.doi.org/10.1149/ma2023-01362002mtgabs.
Full textXue, Xiaoyuan, Long Wan, Wenwen Li, Xueling Tan, Xiaoyu Du, and Yongfen Tong. "A Self-Healing Gel Polymer Electrolyte, Based on a Macromolecule Cross-Linked Chitosan for Flexible Supercapacitors." Gels 9, no. 1 (2022): 8. http://dx.doi.org/10.3390/gels9010008.
Full textLiu, Jie, Lifang Zhang, Yufeng Cao, et al. "Water-tolerant solid polymer electrolyte with high ion-conductivity for simplified battery manufacturing in air surroundings." Applied Physics Letters 121, no. 15 (2022): 153905. http://dx.doi.org/10.1063/5.0106897.
Full textMarinow, Anja, Zviadi Katcharava, and Wolfgang H. Binder. "Self‐Healing Polymer Electrolytes for Next‐Generation Lithium Batteries." Polymers 15, no. 5 (2023): 1145. https://doi.org/10.3390/polym15051145.
Full textSundari, C. D. D., P. Fitriani, I. M. Arcana, and F. Iskandar. "Correlation between lithium-ion diffusion and coordination environment in solid polymer electrolytes: a molecular dynamics study." Journal of Physics: Conference Series 2734, no. 1 (2024): 012051. http://dx.doi.org/10.1088/1742-6596/2734/1/012051.
Full textMöller, Julia. "Solid-State NMR Revealing the Impact of Polymer Additives on Li-Ion Motions in Plastic-Crystalline Succinonitrile Electrolytes." ECS Meeting Abstracts MA2023-02, no. 56 (2023): 2726. http://dx.doi.org/10.1149/ma2023-02562726mtgabs.
Full textAhmad, Shahzada, та S. A. Agnihotry. "Effect of nano γ-Al2O3 addition on ion dynamics in polymer electrolytes". Current Applied Physics 9, № 1 (2009): 108–14. http://dx.doi.org/10.1016/j.cap.2007.12.003.
Full textSelter, Philipp, Stefanie Grote, and Gunther Brunklaus. "Synthesis and7Li Ion Dynamics in Polyarylene-Ethersulfone-Phenylene-Oxide-Based Polymer Electrolytes." Macromolecular Chemistry and Physics 217, no. 23 (2016): 2584–94. http://dx.doi.org/10.1002/macp.201600211.
Full textTiwari, Tuhina, Neelam Srivastava, and P. C. Srivastava. "Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System." International Journal of Electrochemistry 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/670914.
Full textSrivastava, Neelam, and Manindra Kumar. "Ion dynamics behavior in solid polymer electrolyte." Solid State Ionics 262 (September 2014): 806–10. http://dx.doi.org/10.1016/j.ssi.2013.10.026.
Full textSadiq, Niyaz M., Shujahadeen B. Aziz, and Mohd F. Z. Kadir. "Development of Flexible Plasticized Ion Conducting Polymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan (CS) with High Ion Transport Parameters Close to Gel Based Electrolytes." Gels 8, no. 3 (2022): 153. http://dx.doi.org/10.3390/gels8030153.
Full textTamire, Worku, and Tsiye Hailemariam. "Advancements in Solid-State Batteries Overcoming Challenges in Energy Density and Safety - Review." American Journal of Applied Chemistry 13, no. 2 (2025): 39–46. https://doi.org/10.11648/j.ajac.20251302.12.
Full text