Journal articles on the topic 'Polymeric composites – Creep'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Polymeric composites – Creep.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hu, H.-W. "Master Curve of Creep in Polymeric Off-Axis Composite Laminates." Journal of Mechanics 22, no. 3 (2006): 229–34. http://dx.doi.org/10.1017/s1727719100000873.
Full textUpadhyay, P. C., and A. Mishra. "Parametric Modeling of Moisture Assisted Creep in Polymeric Composites." Journal of Reinforced Plastics and Composites 13, no. 12 (1994): 1056–70. http://dx.doi.org/10.1177/073168449401301201.
Full textBiswas, Bhabatosh, Biplab Hazra, Nillohit Mukherjee, and Arijit Sinha. "Nanomechanical behaviour of ZrO2 dispersed sisal-based polymeric composites." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235, no. 8 (2021): 1841–49. http://dx.doi.org/10.1177/14644207211016015.
Full textMonfared, Vahid, Mehdi Mondali, and Ali Abedian. "Steady-state creep analysis of polymer matrix composites using complex variable method." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227, no. 10 (2013): 2182–94. http://dx.doi.org/10.1177/0954406212473391.
Full textRafiee, Roham, and Behzad Mazhari. "Modeling creep in polymeric composites: Developing a general integrated procedure." International Journal of Mechanical Sciences 99 (August 2015): 112–20. http://dx.doi.org/10.1016/j.ijmecsci.2015.05.011.
Full textMonfared, Vahid, Hamid Reza Bakhsheshi-Rad, Seeram Ramakrishna, Mahmood Razzaghi, and Filippo Berto. "A Brief Review on Additive Manufacturing of Polymeric Composites and Nanocomposites." Micromachines 12, no. 6 (2021): 704. http://dx.doi.org/10.3390/mi12060704.
Full textLin, Congmei, Jiahui Liu, Guansong He, et al. "Non-linear viscoelastic properties of TATB-based polymer bonded explosives modified by a neutral polymeric bonding agent." RSC Advances 5, no. 45 (2015): 35811–20. http://dx.doi.org/10.1039/c5ra05824d.
Full textPereira, Ayrton Alef Castanheira, José Roberto Moraes d'Almeida, and Thiago Motta Linhares Castro. "Evaluation of Short-term Creep Behavior of PE-HD after Aging in Oil Derivatives." Polymers and Polymer Composites 26, no. 3 (2018): 243–50. http://dx.doi.org/10.1177/096739111802600304.
Full textScott, David W., James S. Lai, and Abdul-Hamid Zureick. "Creep Behavior of Fiber-Reinforced Polymeric Composites: A Review of the Technical Literature." Journal of Reinforced Plastics and Composites 14, no. 6 (1995): 588–617. http://dx.doi.org/10.1177/073168449501400603.
Full textKhalifah, Khalid Mohammed. "The Effect of Creep Rate on Polymeric Composites Reinforced by Nanoclays and their Comparison." International Journal of Nanoscience 20, no. 03 (2021): 2150027. http://dx.doi.org/10.1142/s0219581x21500277.
Full textJafaripour, Mostafa, and Fathollah Taheri-Behrooz. "Creep behavior modeling of polymeric composites using Schapery model based on micro-macromechanical approaches." European Journal of Mechanics - A/Solids 81 (May 2020): 103963. http://dx.doi.org/10.1016/j.euromechsol.2020.103963.
Full textMorais Gautério, Jefferson, Leonardo Cofferri, Antonio Henrique Monteiro da Fonsec da Silva, and Felipe Tempel Stumpf. "Lifetime prediction of high-modulus polyethylene yarns subjected to creep using the Larson–Miller methodology." Polymers and Polymer Composites 27, no. 7 (2019): 400–406. http://dx.doi.org/10.1177/0967391119847534.
Full textAl Jahwari, Farooq, and Hani E. Naguib. "Finite element creep prediction of polymeric voided composites with 3D statistical-based equivalent microstructure reconstruction." Composites Part B: Engineering 99 (August 2016): 416–24. http://dx.doi.org/10.1016/j.compositesb.2016.06.042.
Full textSun, Tongsheng, Cungui Yu, Wenchao Yang, Jianlin Zhong, and Qiang Xu. "Experimental and numerical research on the nonlinear creep response of polymeric composites under humid environments." Composite Structures 251 (November 2020): 112673. http://dx.doi.org/10.1016/j.compstruct.2020.112673.
Full textAshofteh, Roya Sadat, and Hadi Khoramishad. "Creep behavior of polymeric adhesive joints exposed to different environmental conditions." Polymer Composites 41, no. 8 (2020): 3218–26. http://dx.doi.org/10.1002/pc.25613.
Full textMosallam, Ayman S. "Structural Performance of Pultruded Composites under Elevated Temperatures." Advanced Materials Research 79-82 (August 2009): 2223–26. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.2223.
Full textGates, Thomas S., David R. Veazie, and L. C. Brinson. "Creep and Physical Aging in a Polymeric Composite: Comparison of Tension and Compression." Journal of Composite Materials 31, no. 24 (1997): 2478–505. http://dx.doi.org/10.1177/002199839703102404.
Full textYang, Zengqin, Hui Wang, Xiaofei Ma, et al. "Flexural creep tests and long-term mechanical behavior of fiber-reinforced polymeric composite tubes." Composite Structures 193 (June 2018): 154–64. http://dx.doi.org/10.1016/j.compstruct.2018.03.083.
Full textSong, Ruyue, Anastasia H. Muliana, and Anthony Palazotto. "An empirical approach to evaluate creep responses in polymers and polymeric composites and determination of design stresses." Composite Structures 148 (July 2016): 207–23. http://dx.doi.org/10.1016/j.compstruct.2016.03.041.
Full textValentová, Soňa, Michal Šejnoha, and Jan Vorel. "COMPARING MORI-TANAKA METHOD AND FIRST-ORDER HOMOGENIZATION SCHEME IN THE VISCOELASTIC MODELING OF UNIDIRECTIONAL FIBROUS COMPOSITES." Acta Polytechnica CTU Proceedings 26 (March 17, 2020): 133–38. http://dx.doi.org/10.14311/app.2020.26.0133.
Full textAbdel-Tawab, K., and Y. J. Weitsman. "A Strain-Based Formulation for the Coupled Viscoelastic/Damage Behavior." Journal of Applied Mechanics 68, no. 2 (2000): 304–11. http://dx.doi.org/10.1115/1.1348013.
Full textNezbedova, Eva, Frantisek Krcma, Zdenek Majer, and Pavel Hutar. "Effect of particles size on mechanical properties of polypropylene particulate composites." International Journal of Structural Integrity 7, no. 5 (2016): 690–99. http://dx.doi.org/10.1108/ijsi-09-2015-0030.
Full textRen, Zhongkan, Shakir Bin Mujib, and Gurpreet Singh. "High-Temperature Properties and Applications of Si-Based Polymer-Derived Ceramics: A Review." Materials 14, no. 3 (2021): 614. http://dx.doi.org/10.3390/ma14030614.
Full textHu, H. W. "Physical Aging in Long Term Creep of Polymeric Composite Laminates." Journal of Mechanics 23, no. 3 (2007): 245–52. http://dx.doi.org/10.1017/s1727719100001283.
Full textBrechtl, Jamieson, Yuzhan Li, Kai Li, et al. "Structural, Thermal, and Mechanical Characterization of a Thermally Conductive Polymer Composite for Heat Exchanger Applications." Polymers 13, no. 12 (2021): 1970. http://dx.doi.org/10.3390/polym13121970.
Full textSherwani, S. F. K., E. S. Zainudin, S. M. Sapuan, Z. Leman, and K. Abdan. "Mechanical Properties of Sugar Palm (Arenga pinnata Wurmb. Merr)/Glass Fiber-Reinforced Poly(lactic acid) Hybrid Composites for Potential Use in Motorcycle Components." Polymers 13, no. 18 (2021): 3061. http://dx.doi.org/10.3390/polym13183061.
Full textStelikov, N. E., and V. A. Lapitskii. "Creep of a polymeric composite with hollow spherical inclusions." Soviet Applied Mechanics 23, no. 11 (1987): 1087–90. http://dx.doi.org/10.1007/bf00887195.
Full textStochioiu, Constantin, Horia-Miron Gheorghiu, and Flavia-Petruta-georgiana Artimon. "Visco-elastoplastic Characterization of a Flax-fiber Reinforced Biocomposite." Materiale Plastice 58, no. 1 (2021): 78–84. http://dx.doi.org/10.37358/mp.21.1.5447.
Full textKatouzian, Mostafa, and Sorin Vlase. "Creep Response of Carbon-Fiber-Reinforced Composite Using Homogenization Method." Polymers 13, no. 6 (2021): 867. http://dx.doi.org/10.3390/polym13060867.
Full textPramanick, A., and M. Sain. "Nonlinear Viscoelastic Creep Characterization of HDPE-Rice Husk Composites." Polymers and Polymer Composites 13, no. 6 (2005): 581–98. http://dx.doi.org/10.1177/096739110501300604.
Full textDacol, Vitor, Elsa Caetano, and João Correia. "A New Viscoelasticity Dynamic Fitting Method Applied for Polymeric and Polymer-Based Composite Materials." Materials 13, no. 22 (2020): 5213. http://dx.doi.org/10.3390/ma13225213.
Full textZhang, Jingfa, Ahmed Koubaa, Dan Xing, et al. "Fire Retardancy, Water Absorption, and Viscoelasticity of Borated Wood—Polycarbonate Biocomposites." Polymers 13, no. 14 (2021): 2234. http://dx.doi.org/10.3390/polym13142234.
Full textLee, B. L., B. H. Ku, D. S. Liu, and P. K. Hippo. "Fatigue of Cord—Rubber Composites: II. Strain-Based Failure Criteria." Rubber Chemistry and Technology 71, no. 5 (1998): 866–88. http://dx.doi.org/10.5254/1.3538515.
Full textKatouzian, Mostafa, Sorin Vlase, and Maria Luminița Scutaru. "A Mixed Iteration Method to Determine the Linear Material Parameters in the Study of Creep Behavior of the Composites." Polymers 13, no. 17 (2021): 2907. http://dx.doi.org/10.3390/polym13172907.
Full textJain, Naman, Shubhan Ali, Vinay K. Singh, Komal Singh, Nitesh Bisht, and Sakshi Chauhan. "Creep and dynamic mechanical behavior of cross-linked polyvinyl alcohol reinforced with cotton fiber laminate composites." Journal of Polymer Engineering 39, no. 4 (2019): 326–35. http://dx.doi.org/10.1515/polyeng-2018-0286.
Full textTanks, Jonathon, Kimiyoshi Naito, and Hisai Ueda. "Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement." Polymers 13, no. 18 (2021): 3136. http://dx.doi.org/10.3390/polym13183136.
Full textOrlet, M. W., and C. E. Bakis. "Viscoelastic Characterization of High Fiber Content Filament Wound Polyurethane Matrix Composites." Rubber Chemistry and Technology 71, no. 5 (1998): 1042–58. http://dx.doi.org/10.5254/1.3538509.
Full textGupta, V., S. Roy, and L. R. Dharani. "Multi-Scale Modelling of Long-Term Mechanical Behaviour in Polymer Composite Laminates with Woven Fibre Architecture." Polymers and Polymer Composites 9, no. 5 (2001): 297–317. http://dx.doi.org/10.1177/096739110100900501.
Full textZhang, Yixiang, Masahiko Miyauchi, and Steven Nutt. "Effects of thermal cycling on phenylethynyl-terminated PMDA-type asymmetric polyimide composites." High Performance Polymers 31, no. 7 (2018): 861–71. http://dx.doi.org/10.1177/0954008318804046.
Full textAl Rashid, Ans, and Muammer Koҫ. "Creep and Recovery Behavior of Continuous Fiber-Reinforced 3DP Composites." Polymers 13, no. 10 (2021): 1644. http://dx.doi.org/10.3390/polym13101644.
Full textDuan, Xiaochang, Hongwei Yuan, Wei Tang, Jingjing He, and Xuefei Guan. "A Phenomenological Primary–Secondary–Tertiary Creep Model for Polymer-Bonded Composite Materials." Polymers 13, no. 14 (2021): 2353. http://dx.doi.org/10.3390/polym13142353.
Full textLee, B. L., D. S. Liu, M. Chawla, and P. C. Ulrich. "Fatigue of Cord-Rubber Composites." Rubber Chemistry and Technology 67, no. 5 (1994): 761–74. http://dx.doi.org/10.5254/1.3538708.
Full textHarris, J. S., and E. J. Barbero. "Prediction of Creep Properties of Laminated Composites from Matrix Creep Data." Journal of Reinforced Plastics and Composites 17, no. 4 (1998): 361–79. http://dx.doi.org/10.1177/073168449801700404.
Full textVanin, G. A., and Duc Dinh Nguyen. "Creep of orthogonally reinforced spherofibrous composites." Mechanics of Composite Materials 32, no. 6 (1996): 539–43. http://dx.doi.org/10.1007/bf02280636.
Full textAsyraf, M. R. M., M. R. Ishak, S. M. Sapuan, et al. "Evaluation of Design and Simulation of Creep Test Rig for Full-Scale Crossarm Structure." Advances in Civil Engineering 2020 (April 30, 2020): 1–10. http://dx.doi.org/10.1155/2020/6980918.
Full textLiou, W. J., and C. I. Tseng. "Creep behavior of nylon-6 thermoplastic composites." Polymer Composites 18, no. 4 (1997): 492–99. http://dx.doi.org/10.1002/pc.10301.
Full textPuskas, Judit E., Lucas M. Dos Santos, and Elizabeth Orlowski. "POLYISOBUTYLENE-BASED THERMOPLASTIC BIORUBBERS." Rubber Chemistry and Technology 83, no. 3 (2010): 235–46. http://dx.doi.org/10.5254/1.3525683.
Full textBanik, K., J. Karger-Kocsis, and T. Abraham. "Flexural creep of all-polypropylene composites: Model analysis." Polymer Engineering & Science 48, no. 5 (2008): 941–48. http://dx.doi.org/10.1002/pen.21041.
Full textChen, Chao-Hsun, and Yih-Cheng Chen. "The creep behavior of solid-filled rubber composites." Journal of Polymer Research 1, no. 1 (1994): 75–83. http://dx.doi.org/10.1007/bf01378597.
Full textXu, Zhaohua, Heng Li, and Ning Sun. "Rheological investigation of creep recovery for UHMWPE or carbon nanotubes in isotactic polypropylene matrix." e-Polymers 16, no. 2 (2016): 145–50. http://dx.doi.org/10.1515/epoly-2015-0137.
Full text