Contents
Academic literature on the topic 'Polynôme exact'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polynôme exact.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polynôme exact"
Uljaev, E., Sh Narzullaev, and S. Erkinov. "INCREASING CALIBRATION ACCURACY OF THE HUMIDITY CONTROL MEASURING DEVICE OF BULK MATERIALS." Technical science and innovation 2020, no. 3 (September 30, 2020): 172–79. http://dx.doi.org/10.51346/tstu-01.20.3-77-0087.
Full textKandirmaz, Nalan. "The Arbitrary l-state Solutions of the Hellmann Potential by Feynman Path Integral Approach." Physical Science International Journal, February 28, 2019, 1–6. http://dx.doi.org/10.9734/psij/2019/v21i130094.
Full textDissertations / Theses on the topic "Polynôme exact"
Pernet, Clément. "Algèbre linéaire exacte efficace : le calcul du polynôme caractéristique." Phd thesis, Université Joseph Fourier (Grenoble), 2006. http://tel.archives-ouvertes.fr/tel-00111346.
Full textLe calcul du polynôme caractéristique est l'un des problèmes classiques en algèbre linéaire. Son calcul exact permet par exemple de déterminer la similitude entre deux matrices, par le calcul de la forme normale de Frobenius, ou la cospectralité de deux graphes. Si l'amélioration de sa complexité théorique reste un problème ouvert, tant pour les méthodes denses que boîte noire, nous abordons la question du point de vue de la praticabilité : des algorithmes adaptatifs pour les matrices denses ou boîte noire sont dérivés des meilleurs algorithmes existants pour assurer l'efficacité en pratique. Cela permet de traiter de façon exacte des problèmes de dimensions jusqu'alors inaccessibles.
Mehrabdollahei, Mahya. "La mesure de Mahler d’une famille de polynômes exacts." Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS170.pdf.
Full textIn this thesis we investigate the sequence of Mahler measures of a family of bivariate regular exact polynomials, called Pd := P0≤i+j≤d xiyj , unbounded in both degree and the genus of the algebraic curve. We obtain a closed formula for the Mahler measure of Pd in termsof special values of the Bloch–Wigner dilogarithm. We approximate m(Pd), for 1 ≤ d ≤ 1000,with arbitrary precision using SageMath. Using 3 different methods we prove that the limitof the sequence of the Mahler measure of this family converges to 92π2 ζ(3). Moreover, we compute the asymptotic expansion of the Mahler measure of Pd which implies that the rate of the convergence is O(log dd2 ). We also prove a generalization of the theorem of the Boyd-Lawton which asserts that the multivariate Mahler measures can be approximated using the lower dimensional Mahler measures. Finally, we prove that the Mahler measure of Pd, for arbitrary d can be written as a linear combination of L-functions associated with an odd primitive Dirichlet character. In addition, we compute explicitly the representation of the Mahler measure of Pd in terms of L-functions, for 1 ≤ d ≤ 6
Jeannerod, Claude-Pierre. "Formes normales de perturbations de matrices : étude et calcul exact." Phd thesis, Grenoble INPG, 2000. http://tel.archives-ouvertes.fr/tel-00006747.
Full textPotts, Daniel, and Toni Volkmer. "Fast, exact and stable reconstruction of multivariate algebraic polynomials in Chebyshev form." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-160992.
Full textGaïffas, Stéphane. "Régression non-paramétrique et information spatialement inhomogène." Paris 7, 2005. https://tel.archives-ouvertes.fr/tel-00011261.
Full textGaiffas, Stéphane. "Régression non-paramétrique et information spatialement inhomogène." Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00011261.
Full textdonnées bruitées spatialement inhomogènes (données dont la quantité
varie sur le domaine d'estimation). Le prototype d'étude est le modèle
de régression avec design aléatoire. Notre objectif est de comprendre
les conséquences du caractère inhomogène des données sur le problème
d'estimation dans le cadre d'étude minimax. Nous adoptons deux points
de vue : local et global. Du point de vue local, nous nous intéressons
à l'estimation de la régression en un point avec peu ou beaucoup de
données. En traduisant cette propriété par différentes hypothèses sur
le comportement local de la densité du design, nous obtenons toute une
gamme de nouvelles vitesses minimax ponctuelles, comprenant des
vitesses très lentes et des vitesses très rapides. Puis, nous
construisons une procédure adaptative en la régularité de la
régression, et nous montrons qu'elle converge avec la vitesse minimax
à laquelle s'ajoute un coût minimal pour l'adaptation locale. Du point
de vue global, nous nous intéressons à l'estimation de la régression
en perte uniforme. Nous proposons des estimateurs qui convergent avec
des vitesses dépendantes de l'espace, lesquelles rendent compte du
caractère inhomogène de l'information dans le modèle. Nous montrons
l'optimalité spatiale de ces vitesses, qui consiste en un renforcement
de la borne inférieure minimax classique pour la perte uniforme. Nous
construisons notamment un estimateur asymptotiquement exact sur une
boule de Hölder de régularité quelconque, ainsi qu'une bande de
confiance dont la largeur s'adapte à la quantité locale de données.