Academic literature on the topic 'Polynomial functions : equivalence relations : symmetries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polynomial functions : equivalence relations : symmetries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Polynomial functions : equivalence relations : symmetries"

1

BALACHANDRAN, A. P., G. MARMO, A. SIMONI, and G. SPARANO. "QUANTUM BUNDLES AND THEIR SYMMETRIES." International Journal of Modern Physics A 07, no. 08 (1992): 1641–67. http://dx.doi.org/10.1142/s0217751x92000715.

Full text
Abstract:
Wave functions in the domain of observables such as the Hamiltonian are not always smooth functions on the classical configuration space Q. Rather, they are often best regarded as functions on a G bundle EG over Q or as sections of an associated bundle. If H is a classical group which acts on Q, its quantum version HG, which acts on EG, is not always H, but an extension of H by G. A powerful and physically transparent construction of EG and HG, where G= U(1) and H1(Q, Z)=0, has been developed using the path space [Formula: see text]. ([Formula: see text] consists of paths on Q from a fixed point.) In this paper we show how to construct EG and HG when G is U(1) or U(1)×π1(Q) and there is no restriction on H1(Q, Z). The method is illustrated with concrete examples, such as a system of charges and monopoles. We argue also that [Formula: see text] is a sort of superbundle from which a large variety of bundles can be obtained by imposing suitable equivalence relations.
APA, Harvard, Vancouver, ISO, and other styles
2

IANOVSKI, EGOR, RUSSELL MILLER, KENG MENG NG, and ANDRÉ NIES. "COMPLEXITY OF EQUIVALENCE RELATIONS AND PREORDERS FROM COMPUTABILITY THEORY." Journal of Symbolic Logic 79, no. 3 (2014): 859–81. http://dx.doi.org/10.1017/jsl.2013.33.

Full text
Abstract:
AbstractWe study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relationsR,S, a componentwise reducibility is defined byR≤S⇔ ∃f∀x, y[x R y↔f(x)S f(y)].Here,fis taken from a suitable class of effective functions. For us the relations will be on natural numbers, andfmust be computable. We show that there is a${\rm{\Pi }}_1^0$-complete equivalence relation, but no${\rm{\Pi }}_k^0$-complete fork≥ 2. We show that${\rm{\Sigma }}_k^0$preorders arising naturally in the above-mentioned areas are${\rm{\Sigma }}_k^0$-complete. This includes polynomial timem-reducibility on exponential time sets, which is${\rm{\Sigma }}_2^0$, almost inclusion on r.e. sets, which is${\rm{\Sigma }}_3^0$, and Turing reducibility on r.e. sets, which is${\rm{\Sigma }}_4^0$.
APA, Harvard, Vancouver, ISO, and other styles
3

Lambek, J. "Least fixpoints of endofunctors of cartesian closed categories." Mathematical Structures in Computer Science 3, no. 2 (1993): 229–57. http://dx.doi.org/10.1017/s0960129500000190.

Full text
Abstract:
Least fixpoints are constructed for finite coproducts of definable endofunctors of Cartesian closed categories that have weak polynomial products and joint equalizers of arbitrary families of pairs of parallel arrows. Both conditions hold in PER, the category whose objects are partial equivalence relations on N, and whose arrows are partial recursive functions. Weak polynomial products exist in any cartesian closed category with a finite number of objects as well as in any model of second order polymorphic lambda calculus: that is, in the proof theory of any second order positive intuitionistic propositional calculus, but such a category need not have equalizers. However, any finite coproduct of definable endofunctors of a cartesian closed category with weak polynomial products will have a least fixpoint in a larger category with equalizers whose objects are right ideals (or sieves) of modulo certain congruence relations, and whose arrows are induced from .
APA, Harvard, Vancouver, ISO, and other styles
4

Bologna, E., M. Di Paola, K. Dayal, L. Deseri, and M. Zingales. "Fractional-order nonlinear hereditariness of tendons and ligaments of the human knee." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2172 (2020): 20190294. http://dx.doi.org/10.1098/rsta.2019.0294.

Full text
Abstract:
In this paper the authors introduce a nonlinear model of fractional-order hereditariness used to capture experimental data obtained on human tendons of the knee. Creep and relaxation data on fibrous tissues have been obtained and fitted with logarithmic relations that correspond to power-laws with nonlinear dependence of the coefficients. The use of a proper nonlinear transform allows one to use Boltzmann superposition in the transformed variables yielding a fractional-order model for the nonlinear material hereditariness. The fundamental relations among the nonlinear creep and relaxation functions have been established, and the results from the equivalence relations have been contrasted with measures obtained from the experimental data. Numerical experiments introducing polynomial and harmonic stress and strain histories have been reported to assess the provided equivalence relations. This article is part of the theme issue ‘Advanced materials modelling via fractional calculus: challenges and perspectives’.
APA, Harvard, Vancouver, ISO, and other styles
5

Rubel, Lee A. "On the ring of differentially-algebraic entire functions." Journal of Symbolic Logic 57, no. 2 (1992): 449–51. http://dx.doi.org/10.2307/2275279.

Full text
Abstract:
Let be the ring of all entire functions of one complex variable, and let DA be the subring of those entire functions that are differentially algebraic (DA); that is, they satisfy a nontrivial algebraic differential equation.where P is a non-identically-zero polynomial in its n + 2 variables. It seems not to be known whether DA is elementarily equivalent to . This would mean that DA and have exactly the same true statements about them, in the first-order language of rings. (Roughly speaking, a sentence about a ring R is first-order if it has finite length and quantifies only over elements (i.e., not subsets or functions or relations) of R.) It follows from [NAN] that DA and are not isomorphic as rings, but this does not answer the question of elementary equivalence.
APA, Harvard, Vancouver, ISO, and other styles
6

Vasylyshyn, T. V. "Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex $L_\infty$." Carpathian Mathematical Publications 9, no. 1 (2017): 22–27. http://dx.doi.org/10.15330/cmp.9.1.22-27.

Full text
Abstract:
It is known that the so-called elementary symmetric polynomials $R_n(x) = \int_{[0,1]}(x(t))^n\,dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space $L_\infty,$ which is dense in the Fr\'{e}chet algebra $H_{bs}(L_\infty)$ of all entire symmetric functions of bounded type on $L_\infty.$ Consequently, every continuous homomorphism $\varphi: H_{bs}(L_\infty) \to \mathbb{C}$ is uniquely determined by the sequence $\{\varphi(R_n)\}_{n=1}^\infty.$ By the continuity of the homomorphism $\varphi,$ the sequence $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^\infty$ is bounded. On the other hand, for every sequence $\{\xi_n\}_{n=1}^\infty \subset \mathbb{C},$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ is bounded, there exists $x_\xi \in L_\infty$ such that $R_n(x_\xi) = \xi_n$ for every $n \in \mathbb{N}.$ Therefore, for the point-evaluation functional $\delta_{x_\xi}$ we have $\delta_{x_\xi}(R_n) = \xi_n$ for every $n \in \mathbb{N}.$ Thus, every continuous complex-valued homomorphism of $H_{bs}(L_\infty)$ is a point-evaluation functional at some point of $L_\infty.$ Note that such a point is not unique. We can consider an equivalence relation on $L_\infty,$ defined by $x\sim y \Leftrightarrow \delta_x = \delta_y.$ The spectrum (the set of all continuous complex-valued homomorphisms) $M_{bs}$ of the algebra $H_{bs}(L_\infty)$ is one-to-one with the quotient set $L_\infty/_\sim.$ Consequently, $M_{bs}$ can be endowed with the quotient topology. On the other hand, it is naturally to identify $M_{bs}$ with the set of all sequences $\{\xi_n\}_{n=1}^\infty \subset \mathbb{C}$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ is bounded.We show that the quotient topology is Hausdorffand that $M_{bs}$ with the operation of coordinate-wise addition of sequences forms an abelian topological group.
APA, Harvard, Vancouver, ISO, and other styles
7

Nevskii, Mikhail V. "Geometric Estimates in Interpolation on an n-Dimensional Ball." Modeling and Analysis of Information Systems 26, no. 3 (2019): 441–49. http://dx.doi.org/10.18255/1818-1015-2019-3-441-449.

Full text
Abstract:
Suppose \(n\in {\mathbb N}\). Let \(B_n\) be a Euclidean unit ball in \({\mathbb R}^n\) given by the inequality \(\|x\|\leq 1\), \(\|x\|:=\left(\sum\limits_{i=1}^n x_i^2\right)^{\frac{1}{2}}\). By \(C(B_n)\) we mean a set of continuous functions \(f:B_n\to{\mathbb R}\) with the norm \(\|f\|_{C(B_n)}:=\max\limits_{x\in B_n}|f(x)|\). The symbol \(\Pi_1\left({\mathbb R}^n\right)\) denotes a set of polynomials in \(n\) variables of degree \(\leq 1\), i.e. linear functions upon \({\mathbb R}^n\). Assume that \(x^{(1)}, \ldots, x^{(n+1)}\) are vertices of an \(n\)-dimensional nondegenerate simplex \(S\subset B_n\). The interpolation projector \(P:C(B_n)\to \Pi_1({\mathbb R}^n)\) corresponding to \(S\) is defined by the equalities \(Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right).\) Denote by \(\|P\|_{B_n}\) the norm of \(P\) as an operator from \(C(B_n)\) on to \(C(B_n)\). Let us define \(\theta_n(B_n)\) as the minimal value of \(\|P\|_{B_n}\) under the condition \(x^{(j)}\in B_n\). We describe the approach in which the norm of the projector can be estimated from the bottom through the volume of the simplex. Let \(\chi_n(t):=\frac{1}{2^nn!}\left[ (t^2-1)^n \right] ^{(n)}\) be the standardized Legendre polynomial of degree \(n\). We prove that \(\|P\|_{B_n}\geq\chi_n^{-1}\left(\frac{vol(B_n)}{vol(S)}\right).\) From this, we obtain the equivalence \(\theta_n(B_n)\) \(\asymp\) \(\sqrt{n}\). Also we estimate the constants from such inequalities and give the comparison with the similar relations for linear interpolation upon the \(n\)-dimensional unit cube. These results have applications in polynomial interpolation and computational geometry.
APA, Harvard, Vancouver, ISO, and other styles
8

Chakraborty, Nilanjan, Alexander Herbert, Umair Ahmed, Hong G. Im, and Markus Klein. "Assessment of Extrapolation Relations of Displacement Speed for Detailed Chemistry Direct Numerical Simulation Database of Statistically Planar Turbulent Premixed Flames." Flow, Turbulence and Combustion, August 10, 2021. http://dx.doi.org/10.1007/s10494-021-00283-w.

Full text
Abstract:
AbstractA three-dimensional Direct Numerical Simulation (DNS) database of statistically planar $$H_{2} -$$ H 2 - air turbulent premixed flames with an equivalence ratio of 0.7 spanning a large range of Karlovitz number has been utilised to assess the performances of the extrapolation relations, which approximate the stretch rate and curvature dependences of density-weighted displacement speed $$S_{d}^{*}$$ S d ∗ . It has been found that the correlation between $$S_{d}^{*}$$ S d ∗ and curvature remains negative and a significantly non-linear interrelation between $$S_{d}^{*}$$ S d ∗ and stretch rate has been observed for all cases considered here. Thus, an extrapolation relation, which assumes a linear stretch rate dependence of density-weighted displacement speed has been found to be inadequate. However, an alternative extrapolation relation, which assumes a linear curvature dependence of $$S_{d}^{*}$$ S d ∗ but allows for a non-linear stretch rate dependence of $$S_{d}^{*}$$ S d ∗ , has been found to be more successful in capturing local behaviour of the density-weighted displacement speed. The extrapolation relations, which express $$S_{d}^{*}$$ S d ∗ as non-linear functions of either curvature or stretch rate, have been found to capture qualitatively the non-linear curvature and stretch rate dependences of $$S_{d}^{*}$$ S d ∗ more satisfactorily than the linear extrapolation relations. However, the improvement comes at the cost of additional tuning parameter. The Markstein lengths LM for all the extrapolation relations show dependence on the choice of reaction progress variable definition and for some extrapolation relations LM also varies with the value of reaction progress variable. The predictions of an extrapolation relation which involve solving a non-linear equation in terms of stretch rate have been found to be sensitive to the initial guess value, whereas a high order polynomial-based extrapolation relation may lead to overshoots and undershoots. Thus, a recently proposed extrapolation relation based on the analysis of simple chemistry DNS data, which explicitly accounts for the non-linear curvature dependence of the combined reaction and normal diffusion components of $$S_{d}^{*}$$ S d ∗ , has been shown to exhibit promising predictions of $$S_{d}^{*}$$ S d ∗ for all cases considered here.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!