Academic literature on the topic 'Polynomials in Banach spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polynomials in Banach spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polynomials in Banach spaces"
Gonz´lez, Manuel, and Joaquín M. Gutiérrez. "Unconditionally converging polynomials on Banach spaces." Mathematical Proceedings of the Cambridge Philosophical Society 117, no. 2 (March 1995): 321–31. http://dx.doi.org/10.1017/s030500410007314x.
Full textKravtsiv, V. "Zeros of block-symmetric polynomials on Banach spaces." Matematychni Studii 53, no. 2 (June 24, 2020): 206–11. http://dx.doi.org/10.30970/ms.53.2.206-211.
Full textPeris, Alfredo. "Chaotic polynomials on Banach spaces." Journal of Mathematical Analysis and Applications 287, no. 2 (November 2003): 487–93. http://dx.doi.org/10.1016/s0022-247x(03)00547-x.
Full textCarando, Daniel. "Extendible Polynomials on Banach Spaces." Journal of Mathematical Analysis and Applications 233, no. 1 (May 1999): 359–72. http://dx.doi.org/10.1006/jmaa.1999.6319.
Full textFABIAN, M., D. PREISS, J. H. M. WHTTFIELD, and V. E. ZIZLER. "SEPARATING POLYNOMIALS ON BANACH SPACES." Quarterly Journal of Mathematics 40, no. 4 (1989): 409–22. http://dx.doi.org/10.1093/qmath/40.4.409.
Full textGonzález, Manuel, and Joaquín M. Gutiérrez. "Orlicz-Pettis Polynomials on Banach Spaces." Monatshefte f�r Mathematik 129, no. 4 (May 9, 2000): 341–50. http://dx.doi.org/10.1007/s006050050080.
Full textBu, Qingying, Gerard Buskes, and Yongjin Li. "Abstract M- and Abstract L-Spaces of Polynomials on Banach Lattices." Proceedings of the Edinburgh Mathematical Society 58, no. 3 (February 13, 2015): 617–29. http://dx.doi.org/10.1017/s0013091514000297.
Full textYadav, Sarjoo Prasad. "On the denseness of Jacobi polynomials." International Journal of Mathematics and Mathematical Sciences 2004, no. 28 (2004): 1455–62. http://dx.doi.org/10.1155/s0161171204305314.
Full textSarantopoulos, Yannis. "Bounds on the derivatives of polynomials on Banach spaces." Mathematical Proceedings of the Cambridge Philosophical Society 110, no. 2 (September 1991): 307–12. http://dx.doi.org/10.1017/s0305004100070389.
Full textBoyd, C., and R. A. Ryan. "THE NORM OF THE PRODUCT OF POLYNOMIALS IN INFINITE DIMENSIONS." Proceedings of the Edinburgh Mathematical Society 49, no. 1 (February 2006): 17–28. http://dx.doi.org/10.1017/s0013091504000756.
Full textDissertations / Theses on the topic "Polynomials in Banach spaces"
Sarantopoulos, I. C. "Polynomials and multilinear mappings in Banach spaces." Thesis, Brunel University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376057.
Full textBerrios, Yana Sonia Sarita. "Funções holomorfas fracamente continuas em espaços de Banach." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307331.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-08T04:55:28Z (GMT). No. of bitstreams: 1 BerriosYana_SoniaSarita_D.pdf: 951582 bytes, checksum: eb4f2207b2bb049f8b5c1e264d96ec85 (MD5) Previous issue date: 2007
Resumo: Sejam E e F espaços de Banach complexos, e seja U um aberto em E. Neste trabalho estudamos os subespaços Hwu(U; F), Hw(U; F), Hwsc(U; F) e HwC(U; F) de H(U; F). Mais especificamente, se U é aberto equilibrado caracterizamos funções destes subespaços em termos de condições de equicontinuidade dos polinômios da série de Taylor. Estudamos sob que condições estes subespaços coincidem, estendendo assim os resultados dados em Aron, Herves e Valdivia [2] ao caso de abertos equilibrados. Se E tem uma base contrátil e incondicional, e U é uma bola aberta em E mostramos que cada função holomorfa f : U 'seta' F que é limitada nos conjuntos fracamente compactos U-limitados é limitada nos conjuntos U-limitados. Consequentemente, Hw(U; F) = Hwu(U; F)
Abstract: Let E and F be complex Banach spaces, and let U be an open set in E. In this work we study the subspaces Hwu(U; F), Hw(U; F), Hwsc(U; F) and HwC(U; F) of H(U; F). More specifically, if U is a balanced open set we characterize functions of these subespaces in terms of equicontinuity conditions of the polynomials in the Taylor series. We study under which conditions these subspaces coincide, and then we extend the results given in Aron, Herves and Valdivia [2] to the case of balanced open sets. If E has a shrinking and unconditional basis, and U is an open ball in E we show that each holomorphic function f : U 'seta' F that is bounded on weakly compact U-bounded sets is bounded on U-bounded sets. Consequently, Hw(U; F) = Hwu(U; F)
Doutorado
Doutor em Matemática
Santos, Elisa Regina dos 1984. "A equação de Daugavet para polinômios em espaços de Banach." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307318.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-21T23:57:51Z (GMT). No. of bitstreams: 1 Santos_ElisaReginados_D.pdf: 2025728 bytes, checksum: 9a431cb6242382a2edc9a78d9a7467e4 (MD5) Previous issue date: 2013
Resumo: O resumo poderá ser visualizado no texto completo da tese digital
Abstract: The abstract is available with the full electronic document
Doutorado
Matematica
Doutor em Matemática
Kaufmann, Pedro Levit. "Conjuntos de continuidade seqüencial fraca para polinômios em espaços de Banach." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-14032011-155222/.
Full textThis work has the purpose of presenting a study on Banach spaces about sets in which determined homogeneous continuous polynomials are weakly sequentially continuous. Some properties of these sets are studied and illustrated with examples, most in the space $l_p$. We obtain a formula for the weak sequential continuity set of the product of two polynomials, and some consequences. Stronger results are obtained when we restrict our Banach spaces to spaces with unconditional FDD and/or separable. The results studied here were obtained by R. Aron and V. Dimant in: Aron, R. & Dimant, V., {Sets of weak sequential continuity for polynomials, Indag. Mathem., N.S., 13 (3) (2002), 287-299.
Kuo, Po Ling. "Operadores de extensão de aplicações multilineares ou polinomios homogeneos." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307329.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-08T22:02:35Z (GMT). No. of bitstreams: 1 Kuo_PoLing_D.pdf: 378648 bytes, checksum: 3724407371cc36985fd2257b4bc5fe8c (MD5) Previous issue date: 2007
Resumo: Este trabalho está dedicado ao estudo dos operadores de Nicodemi, introduzidos em [7] a partir de uma idéia em [12]. Os operadores de Nicodemi levam aplicações multilineares (resp. polinômios homogêneos) de um espaço de Banach E em aplicações multilineares (resp. polinômios homogêneos) em um espaço de Banach F. O nosso primeiro objetivo é encontrar condições para que os operadores de Nicodemi preservem certos tipos de aplicações multilineares (resp. polinômios homogêneos). Em particular estudamos a preservação de aplicações multilineares simétricas, de tipo finito, nucleares, compactas ou fracamente compactas. O segundo objetivo é encontrar condições para que, se os espaços duais E¿ e F¿ são isomorfos, os espaços de aplicações multilineares (resp. polinômios homogêneos) em E e F sejam isomorfos também. Estudamos também o problema correspondente para os espaços de aplicações multilineares (resp. polinômios homogêneos) de um determinado tipo, como por exemplo, de tipo finito, nuclear, compacto ou fracamente compacto
Abstract: This work is devoted to studying the Nicodemi operators, introduced in [7], following an idea in [12]. The Nicodemi operators map multilinear mappings (resp. homogeneous polynomials) on a Banach spaces E into multilinear mappings (resp. homogeneous polynomials) on a Banach spaces F. Our first objective is to find conditions under which the Nicodemi operators preserve certain types of multilinear mappings (resp. homogeneous polynomials). In particular we examine the preservation of the multilinear mappings that are symmetric, of finite type, nuclear, compact or weakly compact. Our second objective is tofind conditions under which, whenever the dual spaces E¿ and F¿ are isomorphic, the spaces of multilinear mappings (resp. homogeneous polynomials) on E and F are isomorphic as well. We also examine the corresponding problem for the spaces of multilinear mappings (resp. homogeneous polynomials) of a certain type, for instance of finite, nuclear, compact or weakly compact type
Doutorado
Analise Funcional
Doutor em Matemática
Torres, Ewerton Ribeiro. "Hiper-ideais de aplicações multilineares e polinômios homogêneos em espaços de Banach." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05092016-143504/.
Full textIn this work we introduce and develop the theory of hyper-ideals of multilinear mappings and homogeneous polynomials between Banach spaces. The main idea is to refine the concepts of multi-ideal and of ideal of polynomials with the purpose of exploring deeply the nonlinear nature of the underlying mappings. To do this we take the ideal theory of linear operators, multilinear mappings and homogeneous polynomials, developed from the works of Pietsch, both in the linear and nonlinear cases, as a reference. We prove general results for hyper-ideals, provide a number of illustrative examples, and develop methods to generate hyper-ideals of multilinear mappings, as well as of hyper-ideals of homogeneous polynomials.
Zeekoei, Elroy Denovanne. "A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7586.
Full textThesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.
Maia, Mariana de Brito. "Um índice de somabilidade para operadores entre espaços de Banach." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9837.
Full textMade available in DSpace on 2018-05-03T12:04:50Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 1304658 bytes, checksum: e4e550beeae66c0949fd33c9fa86db45 (MD5) Previous issue date: 2017-06-09
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Abstract indisponível neste campo - O PDF foi entregue protegido para cópia
Resumo indisponível neste campo - O PDF foi entregue protegido para cópia
Nascimento, Lucas de Carvalho. "Um índice de somabilidade para pares de espaços de Banach." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9814.
Full textMade available in DSpace on 2018-04-23T21:42:23Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 889863 bytes, checksum: feeec177f9d947c98727574b765d8acb (MD5) Previous issue date: 2017-07-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we study the notion of index of summability for pairs of Banach spaces. This index plays the role of a kind of “measure” of how the space of m-homogeneous polynomials from E to F (or the space of multilinear operators of E1×···×Em to F) are far from being the space of absolutely summing m-homogeneous polynomials (or with the space of multiple summing multilinear operators). In some cases the optimal index of summability is presented.
Neste trabalho, estudamos a noção de índice de somabilidade para pares de espaços de Banach. Esse índice desempenha o papel de um tipo de \medida" de como o espaço dos polinômios m-homogêneos de E em F (ou o espaço dos operadores multilineares de E Em em F) está longe de coincidir com o espaço dos polinômios m- homogêneos absolutamente somantes (ou com o espaço dos operadores multilineares multiplo somantes). Em alguns casos o índice ótimo de somabilidade e apresentado. Palavras-chave: Polinômios absolutamente somantes, operadores multilineares absolutamente somantes, espaços de Banach, índice de somabilidade.
Santos, Lisiane Rezende dos. "Uma versão generalizada do Teorema de Extrapolação para operadores não-lineares absolutamente somantes." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9297.
Full textMade available in DSpace on 2017-08-22T16:24:35Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1096557 bytes, checksum: 096bafe0cd5d1cf118a6fa1546070e5d (MD5) Previous issue date: 2016-03-03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we study a recent general version of the Extrapolation Theorem, due to Botelho, Pellegrino, Santos and Seoane-Sep ulveda [6] that improves and uni es a number of known Extrapolation-type theorems for classes of mappings that generalize the ideal of absolutely p-summing linear operators.
Neste trabalho, dissertamos sobre uma recente vers~ao geral do Teorema de Extrapola c~ao, devida a Botelho, Pellegrino, Santos e Seoane-Sep ulveda [6], que melhora e uni ca v arios teoremas do tipo Extrapola c~ao para certas classes de fun c~oes que generalizam o ideal dos operadores lineares absolutamente p-somantes.
Books on the topic "Polynomials in Banach spaces"
Sarantopoulos, Ioannis C. Polynomials and multilinear mappings in Banach spaces. Uxbridge: Brunel University, 1986.
Find full textKalton, Nigel J., and Elias Saab, eds. Banach Spaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074684.
Full textLin, Bor-Luh, and William B. Johnson, eds. Banach Spaces. Providence, Rhode Island: American Mathematical Society, 1993. http://dx.doi.org/10.1090/conm/144.
Full textE, Jamison James, ed. Isometries on Banach spaces: Function spaces. Boca Raton: Chapman & Hall/CRC, 2003.
Find full textWojtaszczyk, P. Banach spaces for analysts. Cambridge: Cambridge University Press, 1991.
Find full textHytönen, Tuomas, Jan van Neerven, Mark Veraar, and Lutz Weis. Analysis in Banach Spaces. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69808-3.
Full textLedoux, Michel, and Michel Talagrand. Probability in Banach Spaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-20212-4.
Full textHytönen, Tuomas, Jan van Neerven, Mark Veraar, and Lutz Weis. Analysis in Banach Spaces. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48520-1.
Full textBook chapters on the topic "Polynomials in Banach spaces"
Sundaresan, K. "Geometry of spaces of homogeneous polynomials on Banach lattices." In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 571–86. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/dimacs/004/43.
Full textWojtaszczyk, P. "Some remarks about the space of measures with uniformly bounded partial sums and Banach-Mazur distances between some spaces of polynomials." In Lecture Notes in Mathematics, 60–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0090212.
Full textKomornik, Vilmos. "Banach Spaces." In Lectures on Functional Analysis and the Lebesgue Integral, 55–117. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6811-9_2.
Full textBrokate, Martin, and Götz Kersting. "Banach Spaces." In Compact Textbooks in Mathematics, 153–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15365-0_13.
Full textKubrusly, Carlos S. "Banach Spaces." In Elements of Operator Theory, 197–309. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4757-3328-0_4.
Full textLang, Serge. "Banach Spaces." In Real and Functional Analysis, 65–94. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0897-6_4.
Full textPedersen, Gert K. "Banach Spaces." In Analysis Now, 43–78. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-1007-8_2.
Full textFarenick, Douglas. "Banach Spaces." In Fundamentals of Functional Analysis, 165–213. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45633-1_5.
Full textDenkowski, Zdzisław, Stanisław Migórski, and Nikolas S. Papageorgiou. "Banach Spaces." In An Introduction to Nonlinear Analysis: Theory, 255–403. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9158-4_3.
Full textSiddiqi, Abul Hasan. "Banach Spaces." In Functional Analysis and Applications, 15–69. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-3725-2_2.
Full textConference papers on the topic "Polynomials in Banach spaces"
Xiao, Xuemei, Xincun Wang, and Yucan Zhu. "Duality principles in Banach spaces." In 2010 3rd International Congress on Image and Signal Processing (CISP). IEEE, 2010. http://dx.doi.org/10.1109/cisp.2010.5648102.
Full textKopecká, Eva, and Simeon Reich. "Nonexpansive retracts in Banach spaces." In Fixed Point Theory and its Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc77-0-12.
Full textTodorov, Vladimir T., and Michail A. Hamamjiev. "Transitive functions in Banach spaces." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’16): Proceedings of the 42nd International Conference on Applications of Mathematics in Engineering and Economics. Author(s), 2016. http://dx.doi.org/10.1063/1.4968490.
Full textSchroder, Matthias, and Florian Steinberg. "Bounded time computation on metric spaces and Banach spaces." In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2017. http://dx.doi.org/10.1109/lics.2017.8005139.
Full textBaratella, S., and S. A. Ng. "MODEL-THEORETIC PROPERTIES OF BANACH SPACES." In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0004.
Full textGonzález, Manuel. "Banach spaces with small Calkin algebras." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-10.
Full textBamerni, Nareen, and Adem Kılıçman. "k-diskcyclic operators on Banach spaces." In INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: Proceedings of the 2nd International Conference on Mathematical Sciences and Statistics (ICMSS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4952536.
Full textGAO, SU. "EQUIVALENCE RELATIONS AND CLASSICAL BANACH SPACES." In Proceedings of the 9th Asian Logic Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772749_0007.
Full textZhang, Haizhang, Yuesheng Xu, and Jun Zhang. "Reproducing kernel Banach spaces for machine learning." In 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta). IEEE, 2009. http://dx.doi.org/10.1109/ijcnn.2009.5179093.
Full textDeveli, Faruk, and İsa Yıldırım. "Fixed point results in cone Banach spaces." In 7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5078462.
Full textReports on the topic "Polynomials in Banach spaces"
Temlyakov, V. N. Greedy Algorithms in Banach Spaces. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada637095.
Full textYamamoto, Tetsuro. A Convergence Theorem for Newton's Method in Banach Spaces. Fort Belvoir, VA: Defense Technical Information Center, October 1985. http://dx.doi.org/10.21236/ada163625.
Full textRosinski, J. On Stochastic Integral Representation of Stable Processes with Sample Paths in Banach Spaces. Fort Belvoir, VA: Defense Technical Information Center, January 1985. http://dx.doi.org/10.21236/ada152927.
Full text