To see the other types of publications on this topic, follow the link: Polyolefin.

Dissertations / Theses on the topic 'Polyolefin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Polyolefin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Jones, Robert Lawrence. "Photochromic switches on polyolefin catalysts." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976729598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oiarzabal, Lierni. "Miscibility study of polyolefin blends." Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Finlay, Joanna. "A study of polyolefin blends." Thesis, University of Bristol, 2003. http://hdl.handle.net/1983/765bb977-09b6-424e-970d-4c052a37f3f3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chaudhary, Bharat Indu. "The relaxation characteristics of polyolefin foams." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/47801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bani-Hani, Manar. "Polyolefin plastomers in composites for flooring applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0005/MQ39471.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sriniwas, Ganti Ravi. "Estimation and control of a polyolefin reactor." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/10266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ogbobe, Okoro. "Dispersion of additive masterbatches in polyolefin plastics." Thesis, Loughborough University, 1985. https://dspace.lboro.ac.uk/2134/15384.

Full text
Abstract:
There has been a growing trend in recent years for polymer product manufacturers to use natural polymer and additive masterbatches instead of premixed compounds. For both polymer converters and polymer manufacturers, masterbatching makes economic sense. For the converter, the advantage is in the ability to buy and store in bulk a small number of base polymers which may be modified according to the dictates of the order book. This prevents the need to maintain an inventory of a large number of special compounds. Masterbatch base is very often low molecular weight polyethylene or some suitable low molecular weight compound. They are usually used with a wide range of polymer compounds. Manufacturers assume good additive dispersion in the products with use of masterbatch. This study investigates the quality of dispersion in masterbatches and the extent they can be used with varying polyolefin polymers. Also investigated is how additive particles are transferred from the masterbatch to another polymer during mixing and any morphological features that might relate to the degree of dispersion. A quantitative dispersion procedure in polyolefin products is also sought. X-ray microradiography, light microscopy and ultraviolet microscopy have enabled pigment and ultraviolet absorber dispersion in masterbatches and products to be studied. Pigment dispersion in low density polyethylene masterbatch is almost invariably bad. Iron oxide particularly was found to be the most poorly dispersed compared to other inorganics such as zinc sulphide, titanium dioxide and cadmium sulphide. On the other hand, the distribution of Cyasorb 531 in LDPE masterbatch is uniform. The degree of dispersion of UV absorber in polyethylene products depends on the difference between the melt flow index between the masterbatch base and the base polymer. Simulated sunlight exposure experiments have shown that increased absorber distribution significantly increases photostability of a high MFI HDPE/LDPE UV masterbatch blend. A semi-automatic procedure for quantifying pigment dispersion in polyolefin products has been developed. It involves a motorised stage scanning of a microtomed section of a polyolefin product with measurements being made with a photometer operating in a dark-field illumination and interfaced to a microcomputer. The procedure has enabled the point of significant agglomeration as well as the effect of shear rate and temperature on degree of dispersion in extruded products to be determined.
APA, Harvard, Vancouver, ISO, and other styles
8

Khare, Neeraj Prasad. "Predictive Modeling of Metal-Catalyzed Polyolefin Processes." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11065.

Full text
Abstract:
This dissertation describes the essential modeling components and techniques for building comprehensive polymer process models for metal-catalyzed polyolefin processes. The significance of this work is that it presents a comprehensive approach to polymer process modeling applied to large-scale commercial processes. Most researchers focus only on polymerization mechanisms and reaction kinetics, and neglect physical properties and phase equilibrium. Both physical properties and phase equilibrium play key roles in the accuracy and robustness of a model. This work presents the fundamental principles and practical guidelines used to develop and validate both steady-state and dynamic simulation models for two large-scale commercial processes involving the Ziegler-Natta polymerization to produce high-density polyethylene (HDPE) and polypropylene (PP). It also provides a model for the solution polymerization of ethylene using a metallocene catalyst. Existing modeling efforts do not include physical properties or phase equilibrium in their calculations. These omissions undermine the accuracy and predictive power of the models. The forward chapters of the dissertation discuss the fundamental concepts we consider in polymer process modeling. These include physical and thermodynamic properties, phase equilibrium, and polymerization kinetics. The later chapters provide the modeling applications described above.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Dabrowska, Izabela. "Polyolefin nanocomposite with different types of nanofillers." Doctoral thesis, Università degli studi di Trento, 2013. https://hdl.handle.net/11572/368488.

Full text
Abstract:
The PhD project was details on the polyolefin nanocomposites compounding, processing and preparation. Two different types of polymer matrix with low melt flow rate for fiber forming polymers have been selected; high density polyethylene (HDPE) and isotactic polypropylene (PP). High density polyethylene was compounded with double layered hydrotalcite (LDH) while in case of polypropylene reinforcement by adding fumed silica and kaolinite was performed. In this way the influence of the nanofiller type on the thermo-mechanical properties of the prepared nanocomposites were studied. In recent years several research efforts have been focused on the preparation of polymer/layered inorganic nanocomposites because of the excellent properties in comparison to the neat polymer. The main reason of this interest lies certainly in the properties of the nanoclay, like high stiffness, and high aspect ratio, that induce enhancement of various polymer properties (thermal stability, mechanical properties, flame resistance and gas barrier) even with small amount of filler. Moreover, nanocomposites can be processed more easily than microcomposite. Recently literature evidences a lot of progress in the nanofilled bulk materials; on the other hand, there are relatively a few publications on fibers made of nanofilled polyolefins. For instance, PP fibers were produced with various types of nanofillers, e.g. layered silicates, carbon nanotubes and montmorillonite. In the case of HDPE, composite fibers containing calcium carbonate, carbon nanotubes, silica and layered silicates were reported. It is worth to mention that so far, no publication could be found on this work using the same nanofillers with the same matrix. This thesis is divided into six chapters; Introduction and Background, Experimental activities, after obtained Results with discussions are reported and finally Conclusions. In the Introduction and Background (Chapter I and II) general information about nanocomposites and characteristic of different nanofillers type were summarized. After that polymer processing method with particular attention on the melt extrusion and fiber spinning were described. Third Chapter is dedicated to the experimental part. Here, the used material characterization, nanocomposite preparation procedure and description of experimental techniques were reported. All nanocomposites were characterized by different experimental techniques. First nanofiller morphology by microscope (SEM and TEM) and X-ray diffraction technique was tested. Thermal stability was investigated by Thermal Gravimetric Analysis (TGA) and crystallization behavior by Differential Scanning Calorimetry (DSC). Finally mechanical properties were characterized by tensile test, Dynamical Mechanical Thermal Analysis (DMTA) and creep test. The Results and Discussion have been divided into two parts; first one was dedicated to the high density polyethylene layered double hydrotalcite nanocomposites (HDPE-LDH), while in the second polypropylene with fumed silica (PP-FS) and kaolinite (PP-K) nanocomposite were described. i. High density polyethylene hydrotalcite (HDPE-LDH) nanocomposites after different process of plates and fibers production will be compared in Chapter IV. At the beginning a polypropylene matrix, suitable for fiber production, was firstly melt compounded with organically modified hydrotalcite up to 5% by wt. Similar compositions with up to 3% wt. of LDH were performed by melt spinning. The incorporation of the clay into both bulk and fiber nanocomposite enhanced the thermal stability and induced heterogeneous nucleation of HDPE. Hydrotalcite positively affected the mechanical properties in term of higher Young’s modulus and tensile strength. After the preliminary characterization on bulk and as-spun material the fibers were hot drawn up to draw ratio (DR) 20. XRD analysis revealed intercalation with high degree of exfoliation for the composites with 1-2% wt. of LDH. For this compositions higher elastic modulus 9.0 GPa - 9.3 GPa (with respect to 8.0 GPa of the neat HDPE), and maintain tensile strength and deformation at break were observed. Moreover, the addition of low amount of LDH significantly improved the creep stability. ii. Nanocomposites of isotactic polypropylene fumed silica (PP-FS) were described in the Chapter V. Two types of hydrophobic fumed silica with different surface area (170m2•g-1 and 150m2•g-1) and surface treatment (treated respectively by dimethyldichlorosilane and octylsilane) up to 2% vol. were used. Similar as in case of HDPE-LDH nanocomposites plates production and characterization was a preliminary step to select the best compositions for the fiber preparation. After that, the work has been focused on the iPP-FS fiber production. Introduction of the nanofiller enhanced thermal stability and mechanical properties of the nanocomposite. Elastic modulus at draw ratio 10 increased from 5.3 GPa for neat iPP up to 7.5 – 8.6 GPa for compositions with 0.25 – 0.5% vol. Together with this improvement enhancement in strength at break and maintaining deformation at break were observed. Moreover, isothermal creep tests evidenced improvement in the creep stability due to the FS introduction, over the whole range of investigated draw ratios. iii. The last results of recent research dedicated to the polypropylene kaolinite (PP-K) nanocomposites are reported in Appendix 1. Nanocomposite fibers were successfully spun up to draw ratio (DR) 15 at very high nanofiller content up to 30% wt. The presence of kaolinite not only increased the thermal stability but also enhanced elastic modulus up to 5.6 GPa – 7.0 GPa for compositions with 1% up to 30% wt. of kaolinite, in comparison to 5.4 GPa for neat PP at draw ratio 10. Moreover, for the composition with 10% wt. of kaolinite better drawability with maximum modulus was obtained in comparison to neat PP. Finally the most important observation made on polyolefin nanocomposites fibers were summarized in the Chapter VI. It can be concluded that polyolefin fibers nanocomposites were successfully prepared by two different processing conditions: melt compounding and melt spinning followed by hot drawing. In case of plates the introduction of nanosilica remarkably improved the thermal stability and elastic modulus, with retention of the pristine tensile properties at break. Nanocomposites fibers showed a higher improvement of the elastic modulus with respect to the nanocomposites plates containing the same percentage of nanofiller. Moreover, the introduction of the nanofiller enhanced tensile dynamic mechanical properties especially for higher draw ratio. Similar behavior was also observed in case of creep compliance. Higher creep stability was observed for the drawn fibers with nanofiller in comparison to neat polymer. This behavior could be a consequence of the different orientation and morphology related to the crystallinity developed in the spinning. These results confirmed that polyolefin containing nanofiller could be easily spun into nanofilled fiber. TEM images revealed how the experienced improvements of the mechanical properties could be probably related to the orientation of nanofiller aggregates along the strain direction and to the consequent increase of the filler-matrix interfacial area.
APA, Harvard, Vancouver, ISO, and other styles
10

Dabrowska, Izabela. "Polyolefin nanocomposite with different types of nanofillers." Doctoral thesis, University of Trento, 2013. http://eprints-phd.biblio.unitn.it/1103/1/Izabela_Dabrowska_PhD_Thesis.pdf.

Full text
Abstract:
The PhD project was details on the polyolefin nanocomposites compounding, processing and preparation. Two different types of polymer matrix with low melt flow rate for fiber forming polymers have been selected; high density polyethylene (HDPE) and isotactic polypropylene (PP). High density polyethylene was compounded with double layered hydrotalcite (LDH) while in case of polypropylene reinforcement by adding fumed silica and kaolinite was performed. In this way the influence of the nanofiller type on the thermo-mechanical properties of the prepared nanocomposites were studied. In recent years several research efforts have been focused on the preparation of polymer/layered inorganic nanocomposites because of the excellent properties in comparison to the neat polymer. The main reason of this interest lies certainly in the properties of the nanoclay, like high stiffness, and high aspect ratio, that induce enhancement of various polymer properties (thermal stability, mechanical properties, flame resistance and gas barrier) even with small amount of filler. Moreover, nanocomposites can be processed more easily than microcomposite. Recently literature evidences a lot of progress in the nanofilled bulk materials; on the other hand, there are relatively a few publications on fibers made of nanofilled polyolefins. For instance, PP fibers were produced with various types of nanofillers, e.g. layered silicates, carbon nanotubes and montmorillonite. In the case of HDPE, composite fibers containing calcium carbonate, carbon nanotubes, silica and layered silicates were reported. It is worth to mention that so far, no publication could be found on this work using the same nanofillers with the same matrix. This thesis is divided into six chapters; Introduction and Background, Experimental activities, after obtained Results with discussions are reported and finally Conclusions. In the Introduction and Background (Chapter I and II) general information about nanocomposites and characteristic of different nanofillers type were summarized. After that polymer processing method with particular attention on the melt extrusion and fiber spinning were described. Third Chapter is dedicated to the experimental part. Here, the used material characterization, nanocomposite preparation procedure and description of experimental techniques were reported. All nanocomposites were characterized by different experimental techniques. First nanofiller morphology by microscope (SEM and TEM) and X-ray diffraction technique was tested. Thermal stability was investigated by Thermal Gravimetric Analysis (TGA) and crystallization behavior by Differential Scanning Calorimetry (DSC). Finally mechanical properties were characterized by tensile test, Dynamical Mechanical Thermal Analysis (DMTA) and creep test. The Results and Discussion have been divided into two parts; first one was dedicated to the high density polyethylene layered double hydrotalcite nanocomposites (HDPE-LDH), while in the second polypropylene with fumed silica (PP-FS) and kaolinite (PP-K) nanocomposite were described. i. High density polyethylene hydrotalcite (HDPE-LDH) nanocomposites after different process of plates and fibers production will be compared in Chapter IV. At the beginning a polypropylene matrix, suitable for fiber production, was firstly melt compounded with organically modified hydrotalcite up to 5% by wt. Similar compositions with up to 3% wt. of LDH were performed by melt spinning. The incorporation of the clay into both bulk and fiber nanocomposite enhanced the thermal stability and induced heterogeneous nucleation of HDPE. Hydrotalcite positively affected the mechanical properties in term of higher Young’s modulus and tensile strength. After the preliminary characterization on bulk and as-spun material the fibers were hot drawn up to draw ratio (DR) 20. XRD analysis revealed intercalation with high degree of exfoliation for the composites with 1-2% wt. of LDH. For this compositions higher elastic modulus 9.0 GPa - 9.3 GPa (with respect to 8.0 GPa of the neat HDPE), and maintain tensile strength and deformation at break were observed. Moreover, the addition of low amount of LDH significantly improved the creep stability. ii. Nanocomposites of isotactic polypropylene fumed silica (PP-FS) were described in the Chapter V. Two types of hydrophobic fumed silica with different surface area (170m2•g-1 and 150m2•g-1) and surface treatment (treated respectively by dimethyldichlorosilane and octylsilane) up to 2% vol. were used. Similar as in case of HDPE-LDH nanocomposites plates production and characterization was a preliminary step to select the best compositions for the fiber preparation. After that, the work has been focused on the iPP-FS fiber production. Introduction of the nanofiller enhanced thermal stability and mechanical properties of the nanocomposite. Elastic modulus at draw ratio 10 increased from 5.3 GPa for neat iPP up to 7.5 – 8.6 GPa for compositions with 0.25 – 0.5% vol. Together with this improvement enhancement in strength at break and maintaining deformation at break were observed. Moreover, isothermal creep tests evidenced improvement in the creep stability due to the FS introduction, over the whole range of investigated draw ratios. iii. The last results of recent research dedicated to the polypropylene kaolinite (PP-K) nanocomposites are reported in Appendix 1. Nanocomposite fibers were successfully spun up to draw ratio (DR) 15 at very high nanofiller content up to 30% wt. The presence of kaolinite not only increased the thermal stability but also enhanced elastic modulus up to 5.6 GPa – 7.0 GPa for compositions with 1% up to 30% wt. of kaolinite, in comparison to 5.4 GPa for neat PP at draw ratio 10. Moreover, for the composition with 10% wt. of kaolinite better drawability with maximum modulus was obtained in comparison to neat PP. Finally the most important observation made on polyolefin nanocomposites fibers were summarized in the Chapter VI. It can be concluded that polyolefin fibers nanocomposites were successfully prepared by two different processing conditions: melt compounding and melt spinning followed by hot drawing. In case of plates the introduction of nanosilica remarkably improved the thermal stability and elastic modulus, with retention of the pristine tensile properties at break. Nanocomposites fibers showed a higher improvement of the elastic modulus with respect to the nanocomposites plates containing the same percentage of nanofiller. Moreover, the introduction of the nanofiller enhanced tensile dynamic mechanical properties especially for higher draw ratio. Similar behavior was also observed in case of creep compliance. Higher creep stability was observed for the drawn fibers with nanofiller in comparison to neat polymer. This behavior could be a consequence of the different orientation and morphology related to the crystallinity developed in the spinning. These results confirmed that polyolefin containing nanofiller could be easily spun into nanofilled fiber. TEM images revealed how the experienced improvements of the mechanical properties could be probably related to the orientation of nanofiller aggregates along the strain direction and to the consequent increase of the filler-matrix interfacial area.
APA, Harvard, Vancouver, ISO, and other styles
11

Sarkar, N. "Synthesis and characterization of functionalized polyolefin surfaces." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 1997. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Haghighat, Siavash. "Melt and solid state behaviour of polyolefin blends." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/28165.

Full text
Abstract:
Polymer–polymer blends are rapidly growing as an important resource for obtaining new and improved polymeric materials; and polyolefins are among the most widely used thermoplastics in the polymer industries due to their low cost, desirable physical properties and wide range of applications. For this reason several polyolefin polymers were melt blended and different experimental techniques were used to investigate their characteristics and their properties. The blends under investigation are reported in four chapters, following a literature survey and a description of experimental techniques.
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Lei. "Morphology and optical properties of polyolefin blown films." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0029/NQ64689.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Arnold, Billy Dean. "Application of Kalman filtering to a polyolefin polymerizer." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/11291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Lei 1972. "Morphology and optical properties of polyolefin blown films." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36728.

Full text
Abstract:
Optical properties of polyethylene blown films are of great commercial and scientific interest. An understanding of the relationship between morphology and optical properties will have a significant impact on product and process optimization.
In this work, a number of linear low density polyethylene (LLDPE) resins of different molecular and structural characteristics were studied. Intrinsic properties such as refractive index and absorption coefficient were estimated from resin compositions using group contribution models. The refractive indices of sample films were also measured using the method of Transmission Spectrum.
The morphology of polyethylene films was investigated using Atomic Force Microscopy (AFM) and Near-field Scanning Optical Microscopy (NSOM). Both the surface and bulk morphologies were evaluated. The observation shows the dominant spherulitic structure on the surface as well as in the bulk, as the result of nucleation and crystallization during the film blowing process. In addition to qualitative observations and comparisons; quantitative characterization methods were employed to describe the features of the morphology.
Based on the morphology characterization, the surface reflection was described by the Beckmann-Davies theory of reflection of electro-magnetic waves by rough surface. The directional distribution of reflected intensity was computed according to the surface roughness information. The gloss values of sample films were computed accordingly and compared with experimental measurements. Furthermore, the problem of light transmission and scattering was investigated. A scattering geometry was proposed from the observations of the morphology of sample films. The light scattering by the surface of polymer films was analyzed using a model that is based on the Mie theory of scattering. The haze values of sample films were computed and compared with experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
16

Keulder, Liesl. "The preparation of polyolefin nanofibres by solution electrospinning." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80277.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2013.
ENGLISH ABSTRACT: Solution electrospinning is a technique used to produce polymer micro- or nanofibres. Recently a great deal of research has been done on the application of polymer nanofibres produced by this method. The solution electrospinning of polyolefins have not been researched in-depth mainly due to the difficulty in dissolving these polymers in suitable electrospinning solvents. We managed to electrospin polypropylene copolymers at room temperature, obtaining both polymer micro- and nanofibres. A suitable solvent system was developed (cyclohexane/DMF/acetone) that allowed for the room temperature solution electrospinning of these crystalline polypropylene copolymers. It was also shown that using propylene-1-alkene copolymers with a low comonomer content was a facile way of producing crystalline polyolefins nano – and microfibers. Similar attempts to electrospin isotactic polypropylene were unsuccessful, even though lower molecular weight materials were used than in the case of the copolymers. This lead to an investigation of solution melting temperature by SCALLS. The copolymers showed great variance in their solution melting temperatures despite the fact that they all had more or less the same crystallinity and amount of comonomer, indicating that the type of comonomer played an important role in the solubility of the copolymer. The effect of different collectors was investigated, but in the end it was found that between spinning unto ice, foil on ice of just foil, foil still seemed to be the best collector. Comparing crystallinity of the polymer powders with that of the polymer fibres by DSC and WAXD, it was found that there is a difference in the crystallinity of the fibres and the powders. EVOH is a polymer with excellent properties and electropspinning of this polymer is relatively easy due to the fact that it dissolves quite easily in conductive solvents. DMF, Isopropanol/water and DMSO were all tested as suitable solvents and the morphology was compared through the use of SEM. The morphology of the fibres indicated that DMSO was the best solvent. The influence of the spinning parameters was determined for both systems of DMF and DMSO. These nanofibres were used as reinforcement in LDPE matrix and the mechanical properties of the LDPE matrix was improved with the addition of both aligned and unaligned fibres. The next step was the electrospinning of EVOH fibres containing MWCNT. TEM, FE-SEM and TGA were used to confirm the presence of the MWCNT as well as determine the distribution of the MWCNT inside the nanofibres. The nanotubes were distributed through the fibres; however agglomeration of the nanotubes did still take place. The nanofibres containing MWCNT were also used to make composites where the fibres were melted, leaving the MWCNT behind in the polymer matrix. This was done in both LDPE and EVOH matrices. The LDPE/MWCNT composites did not give positive results, on the other hand the EVOH/MWCNT composite showed an improvement in the mechanical properties compared to pure EVOH. The attachment of fluorescent dye molecules to the surface of the MWCNT was attempted and through fluorescent microscopy and the dispersion of the nanotubes inside the fibres as well as the composite could be seen. This study proved that polyolefin nanofibres could be obtained, giving rise to more applications for these versatile polymers. It also confirmed the importance of nanofibres as reinforcement and the use of nanofibres as a way to incorporate MWCNT in a polymer matrix.
AFRIKAANSE OPSOMMING: Elektrospin in ‘n oplosmiddel is ‘n tegniek wat gebruik word om polimeer mikro- en nanovesels te produseer. Die afgelope tyd word baie navorsing gedoen oor die aanwending van polimeer nanovesels wat geproduseer word op hierdie manier. Daar is nog min navorsing gepubliseer wat handel oor die elektrospin van poliolefiene uit ‘n oplosmiddel, deels oor hoe moeilik dit is om ‘n geskikte elektrospin oplosmiddel te vind vir hierdie polimere. In hierdie studie het ons mikro- en nanovesels verkry deur polipropileen kopolimere te elektrospin by kamertemperatuur. Die polimere is opgelos in ‘n oplosmiddel sisteem wat bestaan uit sikloheksaan/dimetielformamied/asetoon, by hoë temperatuur en het toegelaat dat die polimere in oplossing bly by kamertemperatuur. Hierdie diverse kopolimere het verskillende resultate gegee, sommige polimere het mikrovesels produseer, waar ander nanovesels geproduseer het. Die vessel morfologie is ondersoek deur die gebruik van Skandering Elektron Mikroskopie (SEM) en daar is gevind dat die vesels nie ‘n gladde voorkoms het nie, maar dat daar kraalvormige morfologie gesien kon word. Om dit te voorkom is sout by die oplosmiddel sisteem gevoeg. Die invloed van die verskillende parameters op die vesels se deursnit is ondersoek vir al die kopolimere. Die byvoeging van sout het gelei tot ‘n meer gladde vesel morfologie. Die effek van die gebruik van verskillende oppervlaktes om die vesels op te vang is ondersoek en die die kristalliniteit van die polimeer poeiers is vergelyk met die kristalliniteit van die polimeer vesels met die hulp van DSC en WAXD. ‘n Poging is aangewend om isotaktiese polipropileen te elektrospin uit oplossing, maar ons kon nie daarin slag om die polimeer op te los nie, al was die molekulêre gewig minder as die van die kopolimere. Dit het gelei tot die ondersoek van die smeltpunt temperatuur in oplossing deur die gebruik van oplossing kristallisasie-analise deur laser lig verstrooing (SCALLS). Al die kopolimere het min of meer dieselfde kristalliniteit en hoeveelheid komonomer bevat, tog het hulle smeltpunt temperatuur in oplossing baie verskil. Dit het gedui op die feit dat die tipe komonomeer ‘n groot rol speel in die oplosbaarheid van die kopolimeer. Die elektrospin van etileen-ko-vinielalkohol (EVOH) is ook ondersoek. DMF, Isopropanol/Water en Dimetielsulfoksied (DMSO) is getoets as geskikte oplosmiddels en die morfologie van die vesels is vergelyk deur die gebruk van SEM. Die tyd wat die polimeer in oplossing gebly het asook die morfologie van die vesels, het aangedui dat DMSO die mees geskikte oplosmiddel was. Die invloed van die elektrospin parameters was vasgestel vir beide DMF en DMSO sisteme. Hierdie nanovesels is gebruik as versterking in ‘n LDPE matriks en die meganiese eienskappe van die LDPE matriks is verbeter deur die toevoeging van beide nie-geweefde en gerigte veselsopppervlakte. Die volgende stap was die elektrospin van EVOH vesels wat multi-ommuurde koolstof nanobuisies (MWCNT) bevat. TEM, FE-SEM en TGA was gebruik om te bevestig dat die vesels wel MWCNT bevat asook om die verspreiding van MWCNT in die vesels aan te dui. Die nanobuisies was versprei deur die vesels, maar bundels nanobuisies het tog voorkom in sommige plekke. Die nanovesels wat MWCNT bevat is ook gebruik om nanosamestellings te maak, waar die vesels gesmelt is om net MWCNT agter te laat in die polimeer matriks. Hierdie was gedoen in beide LDPE en EVOH matrikse. Geen positiewe resultate is verkry vir die LDPE/MWCNT nanosamestelling nie, maar die EVOH/MWCNT nanosamestelling het aan die anderkant ‘n groot verbetering getoon in die meganiese eienskappe in vergelyking met EVOH sonder MWCNT. ‘n Poging was aangewend om fluoreseerende molekules aan die oppervlak van MWCNT te voeg en deur fluoresensie mikroskopie kon die verspreiding van die MWCNT in die vesels asook in die nanosamestellings gesien word. Hierdie studie het bewys dat poliolefien nanovesels gemaak kan word wat lei tot die aanwending van hierdie polimere in nog meer toepassings. Dit het ook die belangrikheid van die gebruik van nanovesels as versterking in nanosamestellings bevestig asook die gebruik van nanovesels as ‘n manier om MWCNT in ‘n matriks te plaas.
APA, Harvard, Vancouver, ISO, and other styles
17

Loveridge, Paul. "The mechanical properties of closed cell polyolefin foams." Thesis, University of Birmingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Madzorera, Tatenda Panashe. "A slow-release organophosphate-filled trilayer polyolefin film." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/66215.

Full text
Abstract:
The development of pyrethroid resistance in mosquitoes threatens the goal of malaria elimination in Africa. Alternative insecticides, e.g. organophosphates, can be considered to control pyrethroid resistant mosquitoes. The problem associated with the deployment of organophosphate-based insecticides is their high volatility. Conventional application forms have a fairly short residual efficacy. This study aimed at extending the residual efficacy of an organophosphate insecticide by using a polymer matrix as a slow release device. A multilayer film blower was used to produce a trilayer film. The middle layer comprised poly(ethylene-co-vinyl acetate), i.e. EVA polymer, impregnated with malathion. This was sandwiched by two low density polyethylene (LDPE) outer layers. These acted as semi-permeable membrane-like barriers that slowed down the release of the contact insecticide to the surfaces of the film. In theory, such a film could be deployed as a long-lasting insecticide-treated wall lining in pyrethroid resistant settings. Scanning electron microscopy (SEM) confirmed the trilayer film structure of the blown film. The malathion release from the film was tracked with Fourier transform infrared spectroscopy (FTIR). The malathion absorption band in the FTIR spectra disappeared gradually over time. Confocal Raman analysis showed a malathion concentration gradient across the thickness of the polyethylene layers. These results suggested diffusion-controlled transport through the LDPE membranes. Bioassays indicated that the residual efficacy of the malathion, against mosquitoes, was increased to about six months. This means that trilayer films, impregnated with an organophosphate, may have potential as alternative mosquito control interventions in pyrethroid resistant settings.
Dissertation (MEng)--University of Pretoria, 2017.
Chemical Engineering
MEng
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
19

Dorigato, Andrea. "Viscoelastic and fracture behaviour of polyolefin based nanocomposites." Doctoral thesis, Università degli studi di Trento, 2009. https://hdl.handle.net/11572/367813.

Full text
Abstract:
In the last years it has been widely proven that the introduction of very small amounts of inorganic nanoparticles in polymeric matrices can lead to noticeable improvements of their mechanical properties, in terms of elastic modulus and tensile properties at yield and at break. Linear low density polyethylene (LLDPE) is widely applied in several industrial applications, especially for the production of transparent high performance film for the packaging industry. The objective of this work is to study the role played by different kinds of amorphous silica (SiO2) micro and nanoparticles on the viscoelastic and fracture behaviour of LLDPE based composites, prepared through a melt compounding process. Different typologies of silica filler have been considered : hydrophilic and hydrophobic fumed silica nanoparticles with different surface area, precipitated silica microparticles, and silica glass microbeads. In this way it has been possible to study the influence of the filler dimensions and morphology on the viscoelastic behaviour of the prepared composites, both in the molten and in the solid states, and on their fracture properties. In the first part of the work, a detailed microstructural characterization was performed to assess the different morphologies and surface properties of the utilized powders. Furthermore a detailed analysis of the dispersion state of the fillers in the matrix and of the thermal behaviour of the prepared composites was also conducted through optical and electron microscopy. In the second part of the work, viscoelastic behaviour of the composites in the molten state was studied through dynamic rheological tests. It was evidenced how the introduction of fumed silica nanoparticles and precipitated silica microparticles could lead very strong enhancement both of the storage (G’) and shear moduli (G’’), and of the viscosity (η), at low frequencies, especially by using high surface area fumed silicas at an high filler loading, while glass filled microcomposites showed the traditional rheological behaviour of microparticles filled polymeric systems, with marginal enhancements of rheological properties. Elaboration of new rheological models allowed us to find important correlations between fitting parameters and microstructural situation of the samples. Viscoelastic behaviour in the solid state was analyzed through quasi-static tensile tests, creep tests and dynamic tensile tests. Elastic moduli of the prepared composites resulted to be strictly related to the surface area of the filler rather than by its dimensions. Even in this case a new model, taking into account the physical interfacial interaction between the matrix and particles, proposed to explain experimental results. The same conclusions could be drawn for the creep behaviour, with important improvements of the creep stability of the material due to the introduction of fumed silica nanoparticles, especially at high filler amounts. Moreover, the limit of the linear viscoelastic region was extended by adding fumed silica nanoparticles. Furthermore, a non linear tensile creep approach was successfully applied to study the dependence of the creep behaviour from the free volume of the samples. The application of the classic time-temperature superposition principle was successfully adopted to the nanocomposite samples, evidencing that the reinforcing effect provided by the nanoparticles was more effective at high temperatures or longer times. Burgers model was adopted to model temperature dependent creep data, revealing interesting correlations between fitting parameters and nanofiller surface area. For as concern tensile dynamic mechanical properties, the introduction of the nanofiller lead to an increase of dynamic moduli (E’ and E’’) and to a lowering of tanδ values, especially when high surface area nanoparticles and elevated filler amounts were used. Even in this case dynamic properties of the material were mainly ruled by the surface area of the filler. The last part of the work was centered on the analysis of the fracture behaviour. Tensile properties at yield and at break increased with the surface area of the nanofiller and were positively affected by the presence of the organosilane on the surface of the nanoparticles. Tensile impact tests confirmed the enhancement of the fracture toughness provided by the nanoparticles. The application of the Essential Work of Fracture (EWF) approach led to the conclusion that the introduction of fumed silica nanoparticles produced a considerable improvement of the essential work of fracture (we) with the nanofiller surface area.
APA, Harvard, Vancouver, ISO, and other styles
20

Dorigato, Andrea. "Viscoelastic and fracture behaviour of polyolefin based nanocomposites." Doctoral thesis, University of Trento, 2009. http://eprints-phd.biblio.unitn.it/88/1/PhD_thesis_Andrea_Dorigato-vfinale.pdf.

Full text
Abstract:
In the last years it has been widely proven that the introduction of very small amounts of inorganic nanoparticles in polymeric matrices can lead to noticeable improvements of their mechanical properties, in terms of elastic modulus and tensile properties at yield and at break. Linear low density polyethylene (LLDPE) is widely applied in several industrial applications, especially for the production of transparent high performance film for the packaging industry. The objective of this work is to study the role played by different kinds of amorphous silica (SiO2) micro and nanoparticles on the viscoelastic and fracture behaviour of LLDPE based composites, prepared through a melt compounding process. Different typologies of silica filler have been considered : hydrophilic and hydrophobic fumed silica nanoparticles with different surface area, precipitated silica microparticles, and silica glass microbeads. In this way it has been possible to study the influence of the filler dimensions and morphology on the viscoelastic behaviour of the prepared composites, both in the molten and in the solid states, and on their fracture properties. In the first part of the work, a detailed microstructural characterization was performed to assess the different morphologies and surface properties of the utilized powders. Furthermore a detailed analysis of the dispersion state of the fillers in the matrix and of the thermal behaviour of the prepared composites was also conducted through optical and electron microscopy. In the second part of the work, viscoelastic behaviour of the composites in the molten state was studied through dynamic rheological tests. It was evidenced how the introduction of fumed silica nanoparticles and precipitated silica microparticles could lead very strong enhancement both of the storage (G’) and shear moduli (G’’), and of the viscosity (η), at low frequencies, especially by using high surface area fumed silicas at an high filler loading, while glass filled microcomposites showed the traditional rheological behaviour of microparticles filled polymeric systems, with marginal enhancements of rheological properties. Elaboration of new rheological models allowed us to find important correlations between fitting parameters and microstructural situation of the samples. Viscoelastic behaviour in the solid state was analyzed through quasi-static tensile tests, creep tests and dynamic tensile tests. Elastic moduli of the prepared composites resulted to be strictly related to the surface area of the filler rather than by its dimensions. Even in this case a new model, taking into account the physical interfacial interaction between the matrix and particles, proposed to explain experimental results. The same conclusions could be drawn for the creep behaviour, with important improvements of the creep stability of the material due to the introduction of fumed silica nanoparticles, especially at high filler amounts. Moreover, the limit of the linear viscoelastic region was extended by adding fumed silica nanoparticles. Furthermore, a non linear tensile creep approach was successfully applied to study the dependence of the creep behaviour from the free volume of the samples. The application of the classic time-temperature superposition principle was successfully adopted to the nanocomposite samples, evidencing that the reinforcing effect provided by the nanoparticles was more effective at high temperatures or longer times. Burgers model was adopted to model temperature dependent creep data, revealing interesting correlations between fitting parameters and nanofiller surface area. For as concern tensile dynamic mechanical properties, the introduction of the nanofiller lead to an increase of dynamic moduli (E’ and E’’) and to a lowering of tanδ values, especially when high surface area nanoparticles and elevated filler amounts were used. Even in this case dynamic properties of the material were mainly ruled by the surface area of the filler. The last part of the work was centered on the analysis of the fracture behaviour. Tensile properties at yield and at break increased with the surface area of the nanofiller and were positively affected by the presence of the organosilane on the surface of the nanoparticles. Tensile impact tests confirmed the enhancement of the fracture toughness provided by the nanoparticles. The application of the Essential Work of Fracture (EWF) approach led to the conclusion that the introduction of fumed silica nanoparticles produced a considerable improvement of the essential work of fracture (we) with the nanofiller surface area.
APA, Harvard, Vancouver, ISO, and other styles
21

Lapshin, Sergey. "POLYOLEFIN-CLAY NANOCOMPOSITES PREPARED WITH AID OF POWER ULTRASOUND." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1149097899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Parkinson, A. "Photostabilising action of a p-hydroxybenzoate compound in polyolefins." Thesis, Manchester Metropolitan University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Joe, Daejune [Verfasser]. "Morphology control in metallocene-catalyzed polyolefin synthesis / Daejune Joe." Mainz : Universitätsbibliothek Mainz, 2013. http://d-nb.info/1042427453/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

France, C. N. "Some morphological aspects of polyolefins." Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Johannsen, Matthias. "Metallocen-katalysierte Synthese von polaren Olefin-basierten Makromonomeren." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-84573.

Full text
Abstract:
1 Ziel und Gegenstand der Untersuchungen Gegenstand der vorliegenden Arbeit war die Synthese und Charakterisierung von polaren Olefin-basierten Makromonomeren mit Hilfe von Metallocen-Katalysatoren. Polyolefine stellen eine Gruppe von Polymeren dar, die durch Additive oder chemische Veränderungen modifiziert, eine große Vielfalt von Einsatzmöglichkeiten auf der Basis einfach aufgebauter Monomere bieten. Sie stellen deshalb heutzutage die wichtigste Kunststoffgruppe dar. Ein Nachteil ist jedoch die unpolare Struktur dieser Polymere. Ziel dieser Arbeit war die Homopolymerisation polarer Olefine, um ein funktionalisiertes Polyolefin zu erzeugen, dass zudem auch als Makromonomer einsetzbar ist. Als Katalysatoren wurden im Wesentlichen die klassischen Metallocene auf Zr-Basis eingesetzt, aktiviert mit MAO. Die Makromonomere wurden im Anschluss an die Synthese umfassend charakterisiert. 2 Ergebnisse Zur Synthese wurde das bekannte 10-Undecen-1-ol (Undecenol) eingesetzt. Für eine erfolgreiche Homopolymerisation dieses Monomers ist eine effektive Abschirmung des Katalysators gegenüber der polaren Gruppe zur Minimierung der Deaktivierung des Katalysators zu gewährleisten. Für die Einführung von Schutzgruppen fand Triisobutylaluminium (TIBA) Verwendung. Auf diese Weise konnte erstmalig erfolgreich die Synthese von Polyundecenol mit Metallocen-Katalysatoren durchgeführt werden. Es zeigte sich, dass Undecenol als polares und zugleich sterisch anspruchsvolles Monomer mit der überwiegenden Anzahl der eingesetzten Metallocene schwierig zu polymerisieren ist, was im Vergleich zur Polymerisation von kurzkettigen 1 Olefinen, wie zum Beispiel Propen, anhand von geringen Molmassen (< 2000 g/mol) aber auch geringen Ausbeuten zum Ausdruck kommt. Die erzielten Molmassen der Polyundecenole sind jedoch für die Verwendung als Makromonomer vorteilhaft. Die höchsten Polymerausbeuten ermöglichte der Einsatz von ansa-Metallocenen. Mit dem Katalysator Et[Ind]2ZrCl2 konnten hierbei relative Ausbeuten im Bereich von 50 % bis 60 % bei gleichzeitig geeigneten Molmassen von < 10^4 g/mol erzielt werden. Bei der Verwendung von unverbrückten Metallocenen (bis-Cyclopentadienylkomplexe) sind die Ausbeuten und Molmassen im Vergleich zu den ansa-Metallocenen deutlich reduziert. Die synthetisierten Polyundecenole wurden hinsichtlich ihres Schmelz- und Kristallisationsverhaltens sowie der kristallinen Struktur untersucht und der Zusammenhang mit der Taktizität und der Molmasse der Polymere hergestellt. Die Ergebnisse der DSC und WAXS Untersuchungen lassen darauf schließen, dass für ataktische und isotaktische Polyundecenole eine Seitenkettenkristallisation als primäre Form der Kristallisation vorliegt. Aufgrund des hohen Gehalts von Hydroxylgruppen, die durch Wasserstoffbrückenbindungen wechselwirken, weist Polyundecenol hohe Schmelztemperaturen auf, im Vergleich mit dem unpolaren Poly(1-Undecen). So besitzt isotaktisches und auch ataktisches Polyundecenol bei vergleichbaren Molmassen eine um rund 80 K höhere Schmelztemperatur als Poly(1-Undecen). Die Wechselwirkung der Hydroxylgruppen wurde mittels FTIR-Spektroskopie nachgewiesen und liegt auch im geschmolzenen Zustand der Polymere vor. Anhand der Ergebnisse von WAXS-Untersuchungen konnte gezeigt werden, dass Polyundecenol in smektischen Schichten kristallisiert. Der Abstand zwischen den Hauptketten entspricht etwa zwei vollständig gestreckten Seitenketten des Polymers, welche orthogonal zur Hauptkette angeordnet sind. Diese Schicht-Anordnung wurde unabhängig von Molmasse und Taktizität der Polymere nachgewiesen und lässt die Schlussfolgerung zu, dass die Kristallisation isotaktischer Rückgrat-Ketten gegenüber der Seitenketten-Kristallisation unterdrückt ist. Es wurde jedoch beobachtet, dass die Taktizität einen Einfluss auf die Kristallisation hat. Polyundecenole mit isotaktischer Hauptkette weisen bei entsprechend langsamer Kristallisation eine Anordnung der Seitenketten in einer monoklinen Packung auf, was als Hinweis auf eine Kristallisation der Hauptkette interpretiert wird, auch wenn diese im Rahmen der Arbeit nicht eindeutig nachgewiesen werden konnte. Bei Polyundecenolen mit ataktischer Hauptkette ordnen sich die Seitenketten hingegen in einer hexagonalen Packung an, da die Hauptkette nicht in der Lage ist zu kristallisieren. Von besonderer Bedeutung für die Synthese der Polyundecenole waren einerseits die erzielbaren Polymerausbeuten, andererseits aber auch die Einführung geeigneter Endgruppen, welche ausschlaggebend sind für eine Nutzung als Makromonomer. Die Untersuchungen zum Polymerisationsverhalten verschiedener Metallocen-Katalysatoren zeigten, dass im Falle von ansa-Metallocenen sowie einem "CGC"-Komplex Polymere erhalten werden, die vor allem Endgruppen mit internen Doppelbindungen, doppelt- und dreifachsubstituiert, aufweisen. Solche Endgruppen sind jedoch für einen späteren Einsatz der Polymere als Makromonomer ungeeignet. Der Einsatz von unverbrückten Metallocen-Katalysatoren auf Basis der Biscyclopentadienyl-Struktur ermöglicht hingegen die Synthese von Polyundecenol mit einem hohen Anteil endständiger Vinyliden-Endgruppen zu synthetisieren. Die so erreichten Vinyliden-Endgruppenanteile bewegten sich nahezu unabhängig vom Katalysator im Bereich von etwa 85 % bis 90 %. Ein wesentliches Ergebnis der Arbeit stellt die Synthese von Polyundecenol mit Allyl-Endgruppen dar. Dieses wurde durch gezielte Kettenabbruchreaktionen mit Hilfe von Vinylchlorid erreicht. Bei Einsatz des Katalysator MBI konnten Anteile der favorisierten Allyl-Endgruppe von rund 90 % erreicht werden. Somit wurden auf diesem Wege erstmalig erfolgreich Polyundecenol-Makromonomere synthetisiert. Ein Einsatz dieser Polymere in der Copolymerisation mit Propen wurde aber durch geringe Ausbeuten verhindert. Jedoch konnte gezeigt werden, dass der Einsatz von Vinylchlorid die Synthese von Polyundecenol-Makromonomeren ermöglicht.
APA, Harvard, Vancouver, ISO, and other styles
26

Okihara, Takumi. "Crystallization Behavior of Long Chain Compounds on Polyolefin Thin Films." Kyoto University, 1991. http://hdl.handle.net/2433/74581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sibanda, Mthokozisi Mayibongwe. "Polyolefin copolymers as controlled release devices for insecticides and repellents." Thesis, University of Pretoria, 2015. http://hdl.handle.net/2263/56108.

Full text
Abstract:
Malaria is a parasitic disease confined mostly to tropical areas and transmitted by female anopheles mosquitoes. It results in approximately 250 million clinical cases and nearly a million deaths annually. Malaria is particularly prevalent in sub-Saharan Africa where it affects mostly pregnant women and children less than five years of age. The World Health Organisation (WHO) mainly recommends the use of long lasting insecticide treated nets (LLIN) and indoor residual spray (IRS) to control mosquitoes. These interventions have been very effective for the most part however they leave gaps that threaten the goal of eliminating malaria: LLIN are only effective when a person is sleeping under the net whilst a mosquito can still bite and infect people outdoors. LLIN also relies on pyrethroid insecticides and mosquitoes are steadily becoming resistant to this class of insecticide. IRS is only effective when using DDT, a persistent organic pollutant whose use in public health is very contentious. Unfortunately insecticide alternatives to DDT, e.g. pyrethroids, carbamates and organophosphates fail prematurely due to alkaline hydrolysis in the environment. Using these alternatives will require repeated applications throughout the malaria transmission season making IRS unaffordable to relatively poor African countries. Lastly, both IRS and LLIN target the malaria vector indoors whilst infection can actually happen outdoors. The work presented here sought to develop two cost effective and innovative ideas that may bridge the gap left by implementing current recommended vector control interventions. These ideas relied on the use of polymer matrices to stabilise and slowly release active agents used in malaria vector control thereby increasing their residual effectiveness. The first idea pursued the development of an insecticide treated wall lining (ITWL). It was envisaged that the lining may substitute the use of IRS and also complement the use of LLIN. This lining was produced using simple extrusion of 10wt.% and 18wt.% (alpahacypemethrin and delatamethrin loading respectively) polyethylene masterbatches with a 1:1 polymer blend of high density polyethylene (HDPE) and low density polyethylene (LDPE) to produce a Netlon® mesh. This mesh contained alphacypermethrin and deltamethrin in concentrations ranging from 0.29wt.% to 0.85wt.%. The mesh linings were evaluated for acceptability, durability and perceived effectiveness in field trials carried out in the Vhembe district of Limpopo province, north of South Africa. In these trials it was established that majority of the field trial participants perceived the Netlon® lining to be effective and user friendly. The linings were stable to environmental elements that persisted inside the dwellings where they were installed however there was some rodent damage observed. Standard bioassay tube tests indicated that these nets remained effective for at least 24 months in the field and 36 months after manufacture. The second idea sought to address the need for protection against mosquito bites outdoors. It entailed the use of polymer matrices to trap large amounts of a repellent and to release it slowly over an extended period of time. This could increase the residual effectiveness of volatile repellents. Possible future product concepts based on this idea include long-life mosquito repellent bracelets and low cost slip slops. The repellent N,N-Diethyl-meta-toluamide (DEET) was incorporated into the polymer via the technique of spinodal decomposition. It was found possible to trap up to 50wt.% in poly(ethylene-co-vinyl acetate) (EVA). Thermogravimetric analysis and oven mass loss studies showed that the filled EVA polymer matrix reduced the rate of release of the repellent. Laboratory repellency tests suggested that these bracelets may be effective in repelling mosquito bites for at least one month. This suggests that, in theory at least, low cost bracelets and slip slops can be designed that would last that long. Future products based on this idea could help reduce infections due to ankle biting by An. gambiae mosquitoes which are responsible for a significant number of malaria infections in Africa.
Thesis (PhD)--University of Pretoria, 2015.
tm2016
Chemical Engineering
PhD
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
28

Lator, B. G. "Structural consequences arising from the application of stress to polyolefins." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sweed, Muhamed. "Co-crystallization in polyolefin blends studied by various crystallization analysis techniques." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019.1/2733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kaneko, Hideyuki. "Polyolefin Hybrids with Designed Topologies and Compositions: Synthesis, Characterization and Properties." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/77980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kikukawa, Shingo. "Development of late transition metal catalysts for olefin polymerization." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rapthel, Andre [Verfasser]. "Untersuchungen zur Entwicklung und zum Einsatzverhalten von halogenfreien Polyolefin-Plastisolen / Andre Rapthel." München : Verlag Dr. Hut, 2011. http://d-nb.info/1015605087/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Basson, Nicolaas Christiaan. "The effect of molecular composition on the properties of polyolefin-wood composites." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80222.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2013.
ENGLISH ABSTRACT: Polymer composites, and in particular wood-polymer composites have become commercially and environmentally important materials. Studies in polyolefin-wood composites have mostly focused on polypropylene (PP) and polyethylene (PE). To our knowledge, no study has been undertaken on advancing impact polypropylene copolymer (IPPC)-wood composites as a suitable alternative to using PP and PE. IPPC have proven to be a suitable alternative to PP at low temperatures to improve impact resistance for manufactured polymer products, and could be a great addition to improved properties for wood polymer composites. This study shows that the physical properties of IPPC-wood composites can be markedly improved when compatibilizer(s) are used to improve the distribution of the wood within the matrix, as well as improving the interaction between the wood and the polymer matrix.. The use of different compatibilizers, vi polypropylene-graft-maleic anhydride (PPgMA) and poly(ethylene-co-vinyl alcohol) (EvOH) results in different physical properties. Using simple admixtures of the PPgMA and EvOH in IPPC-wood composites result in a large spread of results, while pre-reacting the PPgMA and EvOH to form a joint compatibilizer gives reproducible results w.r.t the physical testing. A study of the fundamental interactions of the compatibilizer(s) with the molecular components of the IPPCs was undertaken. The IPPCs used were fractionated by preparative temperature rising elution fractionation, and the fractions were mixed with the compatibilizers. To this end, fluorescence microscopy was utilized to study the interaction. The results clearly indicate that the interaction of the PPgMA with the fractions differ from that of the EvOH. These differences can be explained in terms of the chemical composition distribution within the IPPC fractions. Atomic force microscopy (AFM) was used to study adhesive forces between compatibilizer, polymer and cellulose and lignin. Successful coating of AFM tips with PPgMA and EvOH was achieved. Whilst interactions based on chemical force microscopy (CFM) could not be quantified, the AFM results in conjunction with fluorescence spectroscopy provided meaningful insight in the way that compatibilizers interact with both the wood and the impact copolymers used in this study.
AFRIKAANSE OPSOMMING: Polimeer saamgestelde material, en meer spesifiek hout-polimeer saamgestelde material het die afgelope tyd belangrike produkte geword, beide kommersieel en in verband met omgewingvriendelikheid. Navorsing op die gebied van poli(olefien)-hout komposiete het tot op hede meestal gefokus op die grbruik van poli(propileen) (PP) en poli(etileen) (PE). Sover dit on kennis strek is daar nog geen studie gedoen om die gebied van impak polipropileen kopolimere (IPPK)-hout komposiete uit te bou nie. IPPKs is ‘n geskikte alternatief vir PP in veral laetemperatuur aanwendings. Die gebruik van IPPKs as matriks vir die hout komposiete kan ‘n groot staqp vorentoe beteken. Hierdie studie wys dat die fisiese eienskappe van iPPK-hout komposiete merkwaardig verbeter kan word waneer versoeningmateriale gebruik word om die verspreiding van die hout in die polimeermatriks sowel as die interaksie tussen die hout en polimeer te verbeter. Die gebruik van verskillende versoenings material, t.w poli(propileen-ent-maleinsuur anhidried) (PPeMA) en pol(etlieen-ko-viniel alkohol) (EVOH). Deur gebruik te maak van eenvoudige mengsels van PPeMA en EVOH in IPPK-hout composite het ‘n geweldige wye verpreiding van resultate tot gevolg gehad, terwyl ‘n voorafgaande reaksie tussen die PPeMA en die EVOH om ‘n saamgestelde versoeningmateriaal te maak tot gevolg gehad het dat reproduseerbare resultate verkry kon word. ‘n Studie van die fundamentele interaksies van die versoeningsmateriale met die molkulêre komponente van die IPPKs is uitgevoer. Die IPPKs is gefraksioneer deur preparatiewe temperatuur-stygende uitloog frakasionering en die fraksies is gemeng met die versoeningmateriale. Fluoressensie mikroskopie is gebruik om hierdie interaksies te bestudeer. Die resultate dui duidelik daarop dat die interaksie van die PPeMA met die fraksies verskil met die van die EVOH. Die verskille kan verduidelik word aan die hand van die chemiese samestelling verspreiding van die IPPK fraksies. Atoomkrag mikroskopie (AKM) is gebruik om die adhesive-kragte tussen die versoeningmateriale, polimere, sellulose en lignien. AKM tippe is suksesvol bedek met PPeMA en EVOH, onderskeidelik. Alhoewel interaksies gebaseer op chemiese krag mikroskopie (CKM) nie gekwantifiseer kon word nie, lewer hierdie resultate tesame met die fluoressensie spektroskopie unieke insig in die manier wat versoeningmateriale met beide die hout en die polimeer reageer.
APA, Harvard, Vancouver, ISO, and other styles
34

Vialon, Thomas. "Reactive processing of polymeric materials : application to the upcycling of polyolefin blends." Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLS050.

Full text
Abstract:
La production mondiale de plastiques a doublé au cours des 20 dernières années pour atteindre 391 millions de tonnes en 2021, mais seulement 8.3 % provenaient de filières de recyclage des déchets. Pour établir une industrie plastique durable et circulaire, plusieurs défis sont à relever, comme la disponibilité des collectes et des usines de recyclage, le tri des plastiques par nature chimique, ou encore la présence d’additifs et de contaminants. Plus particulièrement, les polyoléfines représentent plus de la moitié de la production annuelle de plastiques, mais il est difficile de séparer le polyéthylène (PE) et le polypropylène (PP). Le PE et le PP sont incompatibles, et leur mise en forme conjointe en fondu génère des matériaux de faible valeur présentant des propriétés mécaniques médiocres. Dans cette thèse, nous avons développé des additifs azotures de triazine qui permettent de recycler les mélanges de polyoléfines en matériaux de haute performance par extrusion réactive dans des conditions pertinentes pour l’industrie. Après une sélection dans la librairie d’azotures de triazine de structures variées, le greffage de l’additif le plus prometteur sur des polymères modèles a été étudié à l’échelle (macro)moléculaire par diverses techniques. La formation de produits de greffage par insertion C-H et l’oligomérisation du nitrène par formation de liaisons N-N ont été observées. Ces résultats ont été appliqués à l’extrusion réactive de polymères commerciaux. Dans le cas du PE, un réseau est obtenu sous l’effet de la séparation de phase de l’additif dans le fondu de polymère. Le réseau ainsi formé a pu être remis en forme, ce qui a mis en lumière la réversibilité thermomécanique des liaisons N-N réticulantes. L’extrusion réactive de mélanges de polymères incompatibles a donné des résultats similaires, grâce à la polyvalence de la réactivité du nitrène. De plus, la présence dans la fraction insoluble des deux polymères composant le mélange suggère la compatibilisation et le renforcement des interfaces. Cela se traduit par une amélioration significative de la ductilité des mélanges en traction. Enfin, les réseaux ont été recyclés mécaniquement sans perte de propriétés, et le procédé a été appliqué avec succès à des déchets plastiques ménagers
The global production of plastics has doubled in the past 20 years reaching 391 million tons in 2021, but only 8.3 % originated from post-consumer recycling streams. The sustainability and the circularity of the current plastic industry are hampered by several challenges such as the availability of curbside collection and recycling units, the difficulty of sorting polymers by nature, and the presence of additives and contaminants. In particular, polyolefins represent more than half of the annual polymer production, but it is difficult to separate post-consumer polyethylene (PE) and polypropylene (PP). PE and PP are incompatible and their joint processing in the melt results in low-value materials with poor mechanical properties. In this PhD, we developed azido-triazine additives that enable the upcycling of polyolefin blends into high-performance materials by reactive extrusion under industrially-relevant processing conditions. After a selection among a library of azido-triazines, the grafting of the most promising additive onto model polymer matrices was studied at the (macro)molecular scale using various techniques. Both grafting on the polymer chains by C-H insertion and oligomerization of the nitrene by N-N bond formation were observed. These results were applied to the reactive extrusion of commercial polymers, including PE, and the formation of a network was triggered by phase separation of the additive in the polymer matrix. The resulting crosslinked materials could be reprocessed, which highlighted the thermo-mechanical reversibility of the N-N bonds constituting the network. Reactive processing of PE-PP blends gave similar results, thanks to the versatile reactivity of the additive. In addition, incorporation of the two components into the insoluble fraction suggested compatibilization and reinforcement of the interface, associated with significantly improved tensile ductility. Finally, industrially-relevant challenges were tackled, with successful mechanical recycling of polyolefin networks without loss of properties, and efficient implementation of the solution to household plastic waste
APA, Harvard, Vancouver, ISO, and other styles
35

Plawky, Udo. "Der Einfluss thermoplastischer Elastomere auf die Struktur und das Kristallisationsverhalten von Polyolefin-Blends." [S.l. : s.n.], 1997. http://deposit.ddb.de/cgi-bin/dokserv?idn=958615403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lukowiak, Maike C. [Verfasser]. "Synthesis, Properties, and Biomedical Application of Polyolefin-Polyglycerol Hybrid Systems / Maike Christina Lukowiak." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1071547682/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Plawky, Udo. "Der Einfluss thermoplastischer Elastomere auf die Struktur und das Kristallisationsverhalten von Polyolefin-Blends." Gerhard-Mercator-Universitaet Duisburg, 2001. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-09102001-113851/.

Full text
Abstract:
Seit einigen Jahren gewinnt die Forschung an mehrkomponentigen heterogenen Polymersystemen zunehmend Bedeutung. Dies liegt neben dem akademischen Forschungsinteresse auch an dem grossen wirtschaftlichen Interesse in der industriellen Anwendung. In der Materialforschung werden aufgrund des gestiegenen Bedarfs an vielseitigen und preisgüunstigen Hochleistungswerkstoffen mit einem breiten Eigenschaftsprofil neue Polymerwerkstoffe durch Mischung vorhandener Homopolymere entwickelt. Von großer industrieller Bedeutung ist die Kombination der beiden Polymere isotaktisches Polypropylen (iPP) und Polyethylen (PE). In diesen Systemen wird iPP und PE in bestimmten Gewichtsverhältnissen gemischt, um die Eigenschaften des Werkstoffs gezielt zu verändern. Die Verbesserungen des Eigenschaftsprofils werden häufig als das Resultat synergetischer Effekte zwischen den jeweiligen Komponenten des Systems erklärt. Jedoch stellt das Polymersystem iPP/PE innerhalb des gesamten Konzentrationsbereichs ein nichtmischbares Polymersystem dar. Die resultierenden neuen Materialeigenschaften des Systems iPP/PE erreichen deshalb oft nicht das geforderte Eigenschaftsprofil. Aufgrund der Nichtmischbarkeit kommt es zu einer Phasenseparation. Diese führt u.a. zu einer inhomogenen Verteilung der Minorphase in der Matrix. Die schlechte Adhäsion an den Phasengrenzen beeinträchtigt die Kraftübertragung bei Belastung des Materials und beeinflußt so die mechanischen Eigenschaften des Systems. Eine Moeglichkeit, diese aus der Nichtmischbarkeit der Ausgangskomponenten resultierenden Nachteile zu vermeiden, besteht in dem Einsatz von grenzflaechenaktiven Polymeren, sogenannten Vertraeglichkeitsmachern Haeufig werden sogenannte Block- oder Pfropf-Copolymere als Vertraeglichkeitsmacher eingesetzt. Sie sollen in der Phasengrenze der nichtmischbaren Polymere derart lokalisiert sein, dass sie die Grenzphase ueberbruecken. Eine Vielzahl von Untersuchungen wurde durchgefuehrt, um fuer spezielle Polymersysteme die passenden Vertraeglichkeitsmacher zu entwickeln.
APA, Harvard, Vancouver, ISO, and other styles
38

Wolak, Justyna Ewa. "Polyolefin Miscibility: Solid-State NMR Investigation of Phase Behavior in Saturated Hydrocarbon Blends." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-06292005-162025/.

Full text
Abstract:
Polyolefin blends represent a vital material field due to their economic and commercial importance. Potential new properties such as lighter weight, lower cost and higher strength, motivate research to investigate blends of saturated hydrocarbon polymers. However, many questions remain concerning how polymer chain structure and packing influence local thermodynamics, or more specifically, the interplay between enthalpy and entropy, which ultimately control bulk phase behavior. Solid-state NMR has proven to be an essential tool in these studies due to its ability to selectively observe molecular level conformations and dynamics without isotopic labeling. Combinations of basic and advanced variable temperature studies such as 1D and 2D 13C cross-polarization exchange experiments, static 2H lineshape analysis, 1H relaxation/spin-diffusion measurements, and 129Xe experiments were applied in this work. Several systems were studied, including 50/50 weight percent blends of polyisobutylene with polyethylene-co-1-butene, polyisobutylene with head-to-head polypropylene, and atactic polypropylene with the same polyethylene-co-1-butene samples. The results were used to determine a relationship between miscibility, length scales of mixing, and timescales/length scales of the glass transition.
APA, Harvard, Vancouver, ISO, and other styles
39

De, Palmenaer Andreas [Verfasser]. "Ermittlung der Prozessparameter zur kontinuierlichen Herstellung von Polyolefin-basierten Carbonfasern / Andreas De Palmenaer." Aachen : Shaker, 2017. http://d-nb.info/1138176885/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Käselau, Sven [Verfasser], and Gerrit A. [Akademischer Betreuer] Luinstra. "Development of Polyolefin Nanocomposites for Electrical Applications / Sven Käselau ; Betreuer: Gerrit A. Luinstra." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2019. http://d-nb.info/1194165109/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Palmenaer, Andreas de [Verfasser]. "Ermittlung der Prozessparameter zur kontinuierlichen Herstellung von Polyolefin-basierten Carbonfasern / Andreas De Palmenaer." Aachen : Shaker, 2017. http://d-nb.info/1138176885/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Adeniyi, Olushola Rotimi. "Swift heavy ion irradiation of polyester and polyolefin polymeric film for gas separation application." University of the Western Cape, 2015. http://hdl.handle.net/11394/4929.

Full text
Abstract:
Philosophiae Doctor - PhD
The combination of ion track technology and chemical etching as a tool to enhance polymer gas properties such as permeability and selectivity is regarded as an avenue to establish technology commercialization and enhance applicability. Traditionally, permeability and selectivity of polymers have been major challenges especially for gas applications. However, it is important to understand the intrinsic polymer properties in order to be able to predict or identify their possible ion-polymer interactions thus facilitate the reorientation of existing polymer structural configurations. This in turn can enhance the gas permeability and selectivity properties of the polymers. Therefore, the choice of polymer is an important prerequisite. Polyethylene terephthalate (PET) belongs to the polyester group of polymers and has been extensively studied within the context of post-synthesis modification techniques using swift heavy ion irradiation and chemical treatment which is generally referred to as ‘track-etching’. The use of track-etched polymers in the form of symmetrical membranes structures to investigate gas permeability and selectivity properties has proved successful. However, the previous studies on track-etched polymers films have been mainly focused on the preparation of symmetrical membrane structure, especially in the case of polyesters such as PET polymer films. Also, polyolefins such as polymethyl pentene (PMP) have not been investigated using swift heavy ions and chemical etching procedures. In addition, the use of ‘shielded’ material on PET and PMP polymer films prior to swift heavy ion irradiation and chemical etching to prepare asymmetrical membrane structure have not been investigated. The gas permeability and selectivity of the asymmetrical membrane prepared from swift heavy ion irradiated etched 'shielded' PET and PMP polymer films have not been determined. These highlighted limitations will be addressed in this study. The overall objective of this study was to prepare asymmetric polymeric membranes with porous surface on dense layer from two classes of polymers; (PET and PMP) in order to improve their gas permeability and selectivity properties. The research approach in this study was to use a simple and novel method to prepare an asymmetric PET and PMP polymer membrane with porous surface and dense layer by mechanical attachment of ‘shielded’ material on the polymer film before swift heavy ion irradiation. This irradiation approach allowed for the control of swift heavy ion penetration depth into the PET and PMP polymer film during irradiation. The procedure used in this study is briefly described. Commercial PET and PMP polymer films were mechanically ‘shielded’ with aluminium and PET foils respectively. The ‘shielded’ PET polymer films were then irradiated with swift heavy ions of Xe source while ‘shielded’ PMP polymer films were irradiated with swift heavy ions Kr. The ion energy and fluence of Xe ions was 1.3 MeV and 106 respectively while the Kr ion energy was 3.57 MeV and ion fluence of 109. After swift heavy ion irradiation of ‘shielded’ PET and PMP polymer films, the attached ‘shielded’ materials were removed from PET and PMP polymer film and the irradiated PET and PMP polymer films were chemically etched in sodium hydroxide (NaOH) and acidified chromium trioxide (H2SO4 + CrO3) respectively. The chemical etching conditions of swift heavy ion irradiated ‘shielded’ PET was performed with 1 M NaOH at 80 ˚C under various etching times of 3, 6, 9 and 12 minutes. As for the swift heavy ion irradiated ‘shielded’ PMP polymer film, the chemical etching was performed with 7 M H2SO4 + 3 M CrO3 solution, etching temperature was varied between 40 ˚C and 80 ˚C while the etching time was between 40 minutes to 150 minutes. The SEM (surface and cross-section micrograph) morphology results of the swift heavy ion irradiated ‘shielded’ etched PET and PMP films showed that asymmetric membranes with a single-sided porous surface and dense layer was prepared and remained unchanged even after 12 minutes of etching with 1 M NaOH solution as in the case of PET and 2 hours 30 minutes of etching with 7 M H2SO4 + 3 M CrO3 as observed for PMP polymer film. Also, the swift heavy ion irradiated ‘shielded’ etched PET polymer film showed the presence of pores on the polymer film surface within 3 minutes of etching. After 12 minutes chemical etching with 1 M NaOH solution, the dense layer of swift heavy ion irradiated ‘shielded’ etched PET polymer film experienced significant reduction in thickness of about 40 % of the original thickness of as-received PET polymer film. The surface morphology of swift heavy ion irradiated ‘shielded’ etched PET polymer film by SEM analysis revealed finely distributed pores with spherical shapes for the swift heavy ion irradiated ‘shielded’ etched PET polymer film within 6 minutes of etching with 1 M NaOH solution. Also, after 9 minutes and 12 minutes of etching with 1 M NaOH solution of the swift heavy ion irradiated ‘shielded’ etched PET polymer film, the pore walls experienced complete collapse with intense surface roughness. Interestingly, the 12 minutes etched swift heavy ion ‘shielded’ irradiated PET did not lose its asymmetrical membrane structure despite the collapse of the pore walls. In the case of swift heavy ion irradiated ‘shielded’ etched PMP polymer film, SEM morphology analysis showed that the pores retained their shape with the presence of defined pores without intense surface roughness even after extended etching with 7 M H2SO4 + 3 M CrO3 for 2 hours 30 minutes. Also, the pores of swift heavy ion irradiated ‘shielded’ etched PMP polymer films were observed to be mono dispersed and not agglomerated or overlapped. The SEM cross-section morphology of the swift heavy ion irradiated ‘shielded’ etched PMP polymer film showed radially oriented pores with increased pore diameters in the PMP polymer film which indicated that etching was radial instead of lateral, and no through pores were observed showing that the dense asymmetrical structure was retained. The SEM results revealed that the pore morphology i.e. size and shape could be accurately controlled during chemical etching of swift heavy ion ‘shielded’ irradiated PET and PMP polymer films. The XRD results of swift heavy ion irradiated ‘shielded’ etched PET revealed a single diffraction peak for various times of chemical etching in 1 M NaOH solution at 3, 6, 9 and 12 minutes. The diffraction peak of swift heavy ion irradiated ‘shielded’ etched PET was observed to reduce in intensity and marginally shifted to lower angles from 25.95˚ 2 theta to 25.89˚ 2 theta and also became broad in shape. It was considered that the continuous broadening of diffraction peaks due to an increase in etching times could be attributed to disorderliness of the ordered region within the polymer matrix and thus decreases in crystallinity of the swift heavy ion irradiated ‘shielded’ etched PET polymer film. The XRD analysis of swift heavy ion irradiated ‘shielded’ etched PMP polymer films indicated the presence of the diffraction peak at 9.75˚ 2 theta with decrease in intensity while the diffraction peaks located at 13.34˚, 16.42˚, 18.54˚ and 21.46˚ 2 theta disappeared after chemical etching in acidified chromium trioxide (H2SO4 + CrO3) after 2 hours 30 minutes. The TGA thermal profile analysis of swift heavy ion irradiated ‘shielded’ etched PET did not show the evolution of volatile species or moisture at lower temperatures even after 12 minutes of etching in 1 M NaOH solution in comparison with commercial PET polymer film. Also, it was observed that the swift heavy ion irradiated layered’ etched PET polymer film started to undergo degradation at a higher temperature than untreated PET which resulted in an approximate increase of 50 ˚C in comparison with the commercial PET polymer film. The TGA results of swift heavy ion irradiated ‘shielded’ etched PMP polymer film revealed an improvement of about 50 ˚C in thermal stability before thermal degradation even after etching in acidified chromium trioxide for 2 hours 30 minutes at 80 ˚C. Spectroscopy (IR) analysis of the swift heavy ion irradiated ‘shielded’ etched PET and PMP polymer films showed the presence of characteristic functional groups associated with either PET or PMP structures. The variations of irradiation and chemical etching conditions revealed that the swift heavy ion ‘shielded’ irradiated etched PET polymer film experienced continuous degradation of available functional groups as a function of etching time and also with complete disappearance of some functional groups such as 1105 cm-1 and 1129 cm-1 compared with the as-received PET polymer film which are both associated with the para-substituted position of benzene rings. In the case of swift heavy ion irradiated ‘shielded’ etched PMP polymer film, spectroscopic (IR) analysis showed significant variations in the susceptibility of associated functional groups within the PMP polymer film with selective attack and emergence of some specific functional groups such as at 1478 cm-1, 1810 cm-1 and 2115 cm-1 which were assigned to methylene, CH3 (asymmetry deformation), CH3 and CH2 respectively Also, the IR results for swift heavy ion irradiated ‘shielded’ etched PMP polymer showed that unsaturated olefinic groups were the dominant functional groups that were being attacked by during etching with acidified chromium trioxide (H2SO4+CrO3) which is an aggressive chemical etchant. The gas permeability analysis of swift heavy ion irradiated ‘shielded’ etched PET and PMP polymer films showed that the gas permeability was improved in comparison with the as-received PET and as-received PMP polymer films. The gas permeability of swift heavy ion irradiated ‘shielded’ etched PET increased as a function of etching time and was found to be highest after 12 minutes of chemical etching in 1 M NaOH at 80 ˚C. In the case of swift heavy ion irradiated ‘shielded’ etched PMP, the gas permeability was observed to show the highest gas permeability after 2 hours 30 minutes of etching in H2SO4 + CrO3 solution. The gas permeability analysis for swift heavy ion irradiated ‘shielded’ PET and PMP polymer films was tested for He, CO2 and CH4 and the permeability results showed that helium was most permeable compared with CO2 and CH4 gases. In comparison, the selectivity analysis was performed for He/CO2 and CH4/He and the results showed that the selectivity decreased with increasing in etching time as expected. This study identified some important findings. Firstly, it was observed that the use of ‘shielded’ material on PET and PMP polymer films prior to swift heavy ion irradiation proved successful in the creation of asymmetrical polymer membrane structure. Also, it was also observed that the chemical etching of the ‘shielded’ swift heavy ion irradiated PET and PMP polymer films resulted in the presence of pores on the swift heavy ion irradiated side while the unirradiated sides of the PET and PMP polymer films were unaffected during chemical etching hence the pore depth could be controlled. In addition, the etching experiment showed that the pores geometry can be controlled as well as the gas permeability and selectivity properties of swift heavy ion ‘shielded’ irradiated etched PET and PMP polymer films. The process of polymer bulk and surface properties modification using ion-track technology i.e. swift heavy ion irradiation and subsequent chemical treatment of the irradiated polymer serves to reveal characteristic pore profiles unique to the prevailing ion-polymer interaction and ultimately results in alteration of the polymer characteristics.
APA, Harvard, Vancouver, ISO, and other styles
43

Itim, Bachir. "Influence of polyolefin contamination on the thermal characteristics of bottle grade recycled polyethylene terephthalate." Thesis, London Metropolitan University, 2015. http://repository.londonmet.ac.uk/922/.

Full text
Abstract:
During the mechanical recycling, especially during the sorting and separation process of bottle grade PET, cross contamination with polyolefin is inevitable. Very small number of polyolefin bottles, caps and closures pass through the separation process and get recycled with PET bottles and affect the final characteristics of the recyclate. The effect of this cross contamination and the influence of polyolefin contamination on the overall characteristics of bottle grade recycled PET, especially the thermal characteristics with emphasis on crystallinity, were thoroughly investigated. The investigation showed that the inclusion of polyolefin contamination influenced the overall characteristics of the bottle grade rPET matrix and indicated incompatibility of polyolefin contaminants and rPET-bg. This influence had an impact on the viscosity, elasticity and strength of the rPET-bg matrix. Furthermore, the crystallinity of the rPET-bg matrix showed the impact of polyolefin contamination as a result of variation of cooling rates and that cross-linking and chain branching predominated over chain scissions as a result of repetitive extrusions. The crystallisation process of the non contaminated rPET-bg and rPET-bg contaminated with polyolefin depended on many influencing factors, such as impurities, cross-linking, chain branching, chain scissions, cooling rates and repetitive extrusion cycles. Also, the crystallisation mechanism fully depended on the nucleation and growth rates and that competition between nucleation and molecular mobility was influenced by the variation of cooling rates and repetitive extrusion cycles. As a result, the thermal characteristics were greatly influenced by the inclusion of polyolefin contamination, especially crystallinity, as shown and validated by the Avrami and Ozawa models and that the findings are a step forward and an original insight on the influence of polyolefin contamination at industrial scale.
APA, Harvard, Vancouver, ISO, and other styles
44

Yang, Wei-Ta, and 楊偉達. "Synthesis and Application of Polyolefins and Polyolefin Nanocomposites." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/h9xvt2.

Full text
Abstract:
博士
中原大學
化學研究所
91
The research focuses on improving the properties and applications of polyolefin. It contains two parts. In the first part, polyolefin and functional polyolefin were prepared by metallocene and the Brookhart-type catalyst system. The high-density-polyethylene was prepared by the rec-Et(Ind)2ZrCl2/MAO catalyst system. The low-density polyethylene was prepared by the Brookhart-type catalyst, N4Ni2Cl4, /MAO catalyst system. The functional polyethylene was prepared by copolymerization of ethylene and 9-decene-1-ol or 11-chloro-undecene. The quantity of hydroxyl group of the poly(ethylene-co-9-decene-1-ol) prepared by rec-Et(Ind)2ZrCl2/ MAO catalyst system can reach 2.19 mol%. It was also modified to poly(ethylene-co-vinyl mercaptoacetate) graft from this copolymer and then formed PE-g-PMMA. The quantity of chloro group in the poly(ethylene-co-11-chloro-undecene) prepared by N4Ni2Cl4 /MAO catalyst system can reach 9.8 mol%. The polystyrene and functional polystyrene were prepared by N2NiCl2 and N4Ni2Cl4/ MAO catalyst system. The functional polystyrene was prepared by copolymerization of styrene and 4-chloromethyl styrene. The quantity of chloromethyl group of the poly(styrene-co-4-chloromethyl styrene) prepared by N4Ni2Cl4/ MAO catalyst system can reach 13.99 mol%. The PMMA was grafted from the chloromethyl group in the poly(styrene-co-4-chloromethyl styrene) by atomic transfer radical polymerization (ATRP) to form PS-g-PMMA. In the second part, an in situ, emulsion and suspension polymerization was used to prepare for polystyrene/clay and poly(methyl mathacrylate)/clay nanocomposite. The in situ polymerization was use the N4Ni2Cl2 catalyst to support onto the clay layers to prepare polystyrene/clay nanocomposite. There were two different source of clay, PK-802 and Closite® Na+, one and two alkyl substituent quaternary ammonium salt modify clay was used to prepared PS/clay and PMMA/clay nanocomposite. The effect of different clays and modification agents in the nanocomposites were studied. The thermal and mechanical properties were shown significantly increased with clay dispersed in the polymer matrix.
APA, Harvard, Vancouver, ISO, and other styles
45

Ma, Yuechun. "Interaction of chlorinated polyolefin (CPO) with components of thermoplastic polyolefin (TPO)." 2004. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=94907&T=F.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zheng, Lei. "Polyolefin cubic silsesquioxane nanocomposites." 2002. https://scholarworks.umass.edu/dissertations/AAI3068607.

Full text
Abstract:
This thesis focuses on the synthesis and characterization of polyolefin nanocomposites containing polyhedral oligomeric silsesquioxane (POSS) units. Two copolymerization methods were developed utilizing either ring-opening metathesis polymerization or metallocene-catalyzed reactions to incorporate cubic silsesquioxane into polyolefins. Ring-opening metathesis copolymerizations of cyclooctene and the POSS-norbornylene macromonomer have been performed using Grubbs' catalyst RuCl2(=CHPh)(PCy3)2. Random copolymers have been prepared and characterized with POSS loadings as high as 55 wt%. Diimide reduction of these copolymers affords polyethylene-POSS random copolymers. Polyethylene (PE) and isotactic polypropylene (PP) copolymers incorporating POSS have also been prepared using a metallocene/methylaluminoxane (MAO) cocatalyst system. A wide range of POSS concentrations was obtained in these polyolefin POSS copolymers under mild conditions; up to 56 wt% for PE-POSS copolymers and 73 wt% for PP-POSS copolymers were prepared. Copolymerizations of styrene and the POSS-styryl macromonomer have been performed using CpTiCl 3 in conjunction with MAO. Random copolymers of syndiotactic polystyrene and POSS copolymers have been formed and characterized. Novel nanocomposites of PE-POSS have been characterized using Wide Angle X-ray Scattering (WAXS). From both line broadening of the diffraction maxima and also the oriented diffraction in a drawn sample, we conclude that POSS forms anisotropically shaped crystallites. On the basis of this result, a novel approach to obtain nanocomposites containing inorganic nanolayers is proposed. Cubic silsesquioxane (POSS) nanoparticles are used to achieve the nanolayered “clay-like” structure through controlled self-assembly. The organic polymer, covalently connected to POSS, is intended to regulate the POSS crystallization into a two-dimensional lattice. The concept is demonstrated by random copolymers of polybutadiene and POSS. The data from WAXS and transmission electron microscopy clearly show the formation of lamellar nanostructure of POSS aggregates, which bares the similarity at low POSS loadings to the morphology of exfoliated polymer clay nanocomposites. By taking the advantage of controlled interactions between polymer chains, we open the door to the design of polymeric materials at important nanometer length scales beyond their primary sequence length. Ultimately, this may provide materials with properties bridging the performance gap between polymer and ceramics.
APA, Harvard, Vancouver, ISO, and other styles
47

Kuan, Hsih-Chiang, and 關旭強. "Wood fiber reinforced polyolefin composite." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/16103519353349349834.

Full text
Abstract:
碩士
國立清華大學
化學工程學系
88
Wood fiber (WF) reinforced high-density polyethylene (HDPE) composite was prepared in this study. Due to the hydrophilicity of wood fiber and the nonpolar characters of the polyolefin matrix,chemical modification of wood fiber or resin matrix has been conducted to improve the interfacial compatibilization. Rheological properties of wood fiber reinforced HDPE composites were investigated. Results showed that the melt viscosity of wood fiber reinforced HDPE composites decreased as the processing temperature increased. Melt viscosity of composites increased with the fiber loading. The addition of wood fiber into HDPE resin can increase the tensile properties and flexural properties of resulted composites. However, the Izod notch impact strength decreases as the wood fiber content increases. Composites with coupling agent(Vinyltrimethoxysilane) or compatiblizer(High density polyethylene grafted maleic anhydryde) treatment posses better mechanical properties because of the good adhesion between wood fiber and polyolefin matrix,for example,the tensile strength of composite with 30wt% wood fiber content is increased from 27.38MPa to 39.78MPa. SEM microphotographs of the wood fiber/recycling HDPE composites were also investigated。The fracture surface of untreated wood fiber composites showed there are holes and fiber tip indicating that most of the fibers have been pulled-out without breaking during the fracture of untreated composite. This suggested the adhesion between the matrix and fiber is poor. The fracture surface of treated fiber composite showed fiber breakage rather than pull-out,and fibers were embedded in polymer matrix,which indicated better interfacial strength existed. Mechanical and rheological properties of wood fiber reinforced recycled HDPE composites were studied. Properties of polyolefin blend (PP/HDPE blend) were also investigated,results showed that the addition of POEgMA (polyolefin elastomer grafted maleic anhydride) compatibilizer could improve the flexural properties of composites.
APA, Harvard, Vancouver, ISO, and other styles
48

Karmarkar, Ajay. "Wood Fiber Filled Polyolefin Composites." Thesis, 2007. https://etd.iisc.ac.in/handle/2005/508.

Full text
Abstract:
The objective of the study is to improve the interfacial adhesion between the wood fibers and thermoplastic matrix. Efforts were also directed towards improving manufacturing processes so as to realize the full potential of wood fibers as reinforcing fillers. Chemical coupling plays an important role in improving interfacial bonding strength in wood-polymer composites. A novel compatibilizer with isocyanate functional group was synthesized by grafting m-Isopropenyl –α –α –dimethylbenzyl-isocyanate (m-TMI) onto isotactic polypropylene using reactive extrusion process. The compatibilizer was characterized with respect to its nature, concentration and location of functional group, and molecular weight. There are two main process issues when blending polymers with incompatible filler: (1) creating and maintaining the target morphology, and (2) doing so with minimum degradation of fillers. A 28mm co-rotating intermeshing twin screw extrusion system was custom built and the design optimized for (1) blending biological fibers with thermoplastics, and (2) for melt phase fictionalization of thermoplastics by reactive extrusion. To assess the effect of inclusion of wood fibers in polypropylene composites, a series of polypropylene wood fiber/wood flour filled composite materials having 10 to 50 wt % of wood content were prepared using the co-rotating twin screw extrusion system. m-TMI-g-PP and MAPP were used as coupling agents. Addition of wood fibers, at all levels, resulted in more rigid and tenacious composites. The continuous improvement in properties of the composites with the increasing wood filler is attributed to the effective reinforcement of low modulus polypropylene matrix with the high modulus wood filler. Studies on were also undertaken to understand effect of particle morphology, type and concentration of coupling agent, and effect of process additives on mechanical properties. Composites prepared with m-TMI-grafted-PP were much superior to the composites prepared with conventionally used maleated polypropylene in all the cases. Non-destructive evaluation of dynamic modulus of elasticity (MoE) and shear modulus of wood filled polypropylene composite at various filler contents was carried out from the vibration frequencies of disc shaped specimens. The vibration damping behaviour of the composite material was evaluated. MoE and shear modulus were found to increase whereas damping coefficient decreased with the increasing filler content. Knowledge of moisture uptake and transport properties is useful in estimating moisture related effects such as fungal attack and loss of mechanical strength. Hence, a study was undertaken to asses the moisture absorption by wood filled polypropylene composites. Composites prepared with coupling agents absorbed at least 30% less moisture than composites without compatibilizer. Thermo-gravimetric measurements were also carried out to evaluate the thermal stability and to evaluate kinetic parameters associated with thermal degradation of wood fiber and wood flour filled polypropylene composites. The moisture absorption and thermal behaviour are described based on analytical models. High efficiency filler-anchored catalyst system was prepared by substituting of hydroxyl groups present on the cellulosic filler. The process involves immobilizing the cocatalyst onto the cellulosic filler surface followed by addition of metallocene catalyst and then polymerization of ethylene using this filler supported catalyst. The polymerization and composite formation takes place simultaneously. All the polymerization reactions were carried out in a high-pressure stirred autoclave. Effect of temperature, ethylene pressure, and cocatalyst to catalyst ratios (Al/TM ratios) were also studied. Studies on kinetics of polymerization showed that, higher Al/Zr ratio and higher temperature lead to higher polymerization rates but lower the molecular weight. A model incorporating effect of reaction parameter on polymerization rates has been developed.
APA, Harvard, Vancouver, ISO, and other styles
49

Karmarkar, Ajay. "Wood Fiber Filled Polyolefin Composites." Thesis, 2007. http://hdl.handle.net/2005/508.

Full text
Abstract:
The objective of the study is to improve the interfacial adhesion between the wood fibers and thermoplastic matrix. Efforts were also directed towards improving manufacturing processes so as to realize the full potential of wood fibers as reinforcing fillers. Chemical coupling plays an important role in improving interfacial bonding strength in wood-polymer composites. A novel compatibilizer with isocyanate functional group was synthesized by grafting m-Isopropenyl –α –α –dimethylbenzyl-isocyanate (m-TMI) onto isotactic polypropylene using reactive extrusion process. The compatibilizer was characterized with respect to its nature, concentration and location of functional group, and molecular weight. There are two main process issues when blending polymers with incompatible filler: (1) creating and maintaining the target morphology, and (2) doing so with minimum degradation of fillers. A 28mm co-rotating intermeshing twin screw extrusion system was custom built and the design optimized for (1) blending biological fibers with thermoplastics, and (2) for melt phase fictionalization of thermoplastics by reactive extrusion. To assess the effect of inclusion of wood fibers in polypropylene composites, a series of polypropylene wood fiber/wood flour filled composite materials having 10 to 50 wt % of wood content were prepared using the co-rotating twin screw extrusion system. m-TMI-g-PP and MAPP were used as coupling agents. Addition of wood fibers, at all levels, resulted in more rigid and tenacious composites. The continuous improvement in properties of the composites with the increasing wood filler is attributed to the effective reinforcement of low modulus polypropylene matrix with the high modulus wood filler. Studies on were also undertaken to understand effect of particle morphology, type and concentration of coupling agent, and effect of process additives on mechanical properties. Composites prepared with m-TMI-grafted-PP were much superior to the composites prepared with conventionally used maleated polypropylene in all the cases. Non-destructive evaluation of dynamic modulus of elasticity (MoE) and shear modulus of wood filled polypropylene composite at various filler contents was carried out from the vibration frequencies of disc shaped specimens. The vibration damping behaviour of the composite material was evaluated. MoE and shear modulus were found to increase whereas damping coefficient decreased with the increasing filler content. Knowledge of moisture uptake and transport properties is useful in estimating moisture related effects such as fungal attack and loss of mechanical strength. Hence, a study was undertaken to asses the moisture absorption by wood filled polypropylene composites. Composites prepared with coupling agents absorbed at least 30% less moisture than composites without compatibilizer. Thermo-gravimetric measurements were also carried out to evaluate the thermal stability and to evaluate kinetic parameters associated with thermal degradation of wood fiber and wood flour filled polypropylene composites. The moisture absorption and thermal behaviour are described based on analytical models. High efficiency filler-anchored catalyst system was prepared by substituting of hydroxyl groups present on the cellulosic filler. The process involves immobilizing the cocatalyst onto the cellulosic filler surface followed by addition of metallocene catalyst and then polymerization of ethylene using this filler supported catalyst. The polymerization and composite formation takes place simultaneously. All the polymerization reactions were carried out in a high-pressure stirred autoclave. Effect of temperature, ethylene pressure, and cocatalyst to catalyst ratios (Al/TM ratios) were also studied. Studies on kinetics of polymerization showed that, higher Al/Zr ratio and higher temperature lead to higher polymerization rates but lower the molecular weight. A model incorporating effect of reaction parameter on polymerization rates has been developed.
APA, Harvard, Vancouver, ISO, and other styles
50

chuang, kuei-chin, and 莊貴琴. "The study of prepare polyolefin and functional polyolefin via late-transition metal catalyst/MAO system." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/96802573680016150326.

Full text
Abstract:
碩士
中原大學
化學研究所
91
The methallocene catalysts system was succeed to develop the new polyolefin material application and break the polyolefin that was producted by the Zieglar-Natta catalyst system with convention . The metallocene catalyst is homogenerous and single activity site in the cationic polymerization. In this study, it contains five parts , self-synthetic nickel derivatives catalysts to carry the homo- and co-polymerization of ethylene with 11-chloro-undecene and styrene with 4-chloromethyl styrene and styrene-co-4-chloromethyl styrene-graft-mehyl methacrylate. The first part , synthesis catalyst , Ligand and metal compound were stir under nitrogen at room temperature for 20 hours , obtain orange color powder . The catalyst have been characterized by 1H- and 13C-NMR . The second part , ethylene and styrene were copolymerized in the presence of a nickel derivative catalysts based on N2NiCl2 / MAO . The graft copolymer would be prepared by atomic transfer radical polymerization (ATRP) , such as poly(styrene-co-4-chloromethyl styrene-graft-mehyl methacrylate) . NMR , DSC , TGA , GPC were employed to study the structure and character of the polymerization products , such as the structure , melt point and crystallization will be discussed . In conclusion , synthesis linear low-density polyethylene , atactic polystyrene and functional copolymer .
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography