Academic literature on the topic 'Polyolefins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polyolefins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polyolefins"
Zhang, Ni, Mingzhu Ding, and Yingjin Yuan. "Current Advances in Biodegradation of Polyolefins." Microorganisms 10, no. 8 (July 29, 2022): 1537. http://dx.doi.org/10.3390/microorganisms10081537.
Full textKresge, E. N. "Polyolefin Thermoplastic Elastomer Blends." Rubber Chemistry and Technology 64, no. 3 (July 1, 1991): 469–80. http://dx.doi.org/10.5254/1.3538564.
Full textGoring, Paul D., Colin Morton, and Peter Scott. "End-functional polyolefins for block copolymer synthesis." Dalton Transactions 48, no. 11 (2019): 3521–30. http://dx.doi.org/10.1039/c9dt00087a.
Full textNajaf Kakhramanov, Najaf Kakhramanov, Khayala Allakhverdiyeva Khayala Allakhverdiyeva, Qalina Martynova Qalina Martynova, Fatima Mustafayeva Fatima Mustafayeva, Yunis Kahramanli Yunis Kahramanli, Nazim Sadikhov Nazim Sadikhov, and Azer Amirov Azer Amirov. "New Approaches for the Interpretation of the Structure and Phase Transitions in Nanocomposites Based on Modified Polyolefins and Technical Carbon." Journal of the chemical society of pakistan 45, no. 2 (2023): 119. http://dx.doi.org/10.52568/0012142/jcsp/45.02.2023.
Full textFazekas, Timothy J., Jill W. Alty, Eliza K. Neidhart, Austin S. Miller, Frank A. Leibfarth, and Erik J. Alexanian. "Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer." Science 375, no. 6580 (February 4, 2022): 545–50. http://dx.doi.org/10.1126/science.abh4308.
Full textSilva-Vela, Alejandro, Francine Roudet, Nataly Calderón, Paul Huanca-Zuñiga, Danny Tupayachy-Quispe, and Jonathan Almirón. "Study of the Mechanical Properties of Polymer Composites Based on Polyolefins with the Addition of Rice Husk and Compatibilizer." Materials Science Forum 1053 (February 17, 2022): 9–15. http://dx.doi.org/10.4028/p-804xor.
Full textChristakopoulos, Fotis, Paul M. H. van Heugten, and Theo A. Tervoort. "Additive Manufacturing of Polyolefins." Polymers 14, no. 23 (November 26, 2022): 5147. http://dx.doi.org/10.3390/polym14235147.
Full textPasch, Harald, Lars-Christian Heinz, Tibor Macko, and Wolf Hiller. "High-temperature gradient HPLC and LC-NMR for the analysis of complex polyolefins." Pure and Applied Chemistry 80, no. 8 (January 1, 2008): 1747–62. http://dx.doi.org/10.1351/pac200880081747.
Full textTumasev, R. V., O. A. Arkatov, M. A. Goryaynov, V. K. Dudchenko, E. A. Mayer, and A. N. Pestryakov. "Modernization of Technology and Organization of Production of Triethylaluminium Co-Catalyst for Olefin Polymerization." Advanced Materials Research 772 (September 2013): 15–19. http://dx.doi.org/10.4028/www.scientific.net/amr.772.15.
Full textShi, Bo, and Mike Shlepr. "Thermoplastic films containing lignin and their optical polarization properties." Journal of Polymer Engineering 36, no. 5 (July 1, 2016): 521–28. http://dx.doi.org/10.1515/polyeng-2015-0052.
Full textDissertations / Theses on the topic "Polyolefins"
Назаренко, В. В. "Polyolefins in Packing." Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7345.
Full textOfoma, Ifedinma. "Catalytic Pyrolysis of Polyolefins." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10439.
Full textHall, Denise K. "Factors affecting adhesion to polyolefins." Thesis, Loughborough University, 1994. https://dspace.lboro.ac.uk/2134/31958.
Full textSmith, P. W. R. "NMR investigations of solid polyolefins." Thesis, University of East Anglia, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373108.
Full textFrance, C. N. "Some morphological aspects of polyolefins." Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381233.
Full textLungu, Cristian 1968. "Crystallization behavior and kinetics of polyolefins." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31061.
Full textKefaleas, Christos. "Physical properties of molecules in polyolefins." Thesis, University of Sussex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391878.
Full textHarding, Gareth. "The structure-property relationships of polyolefins." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1386.
Full textPolypropylene is an extremely versatile material and has a broad spectrum of applications due to the variations in properties which are possible with this material. The variations in the properties of the material are governed by the microstructure of the chains constituting the polymer. The microstructure varies according to the production methods, i.e. the polymerisation conditions. Varying the manner in which the polymer is produced therefore changes the properties of the material allowing the polymers’ use for different applications. The most important factor affecting the way in which the polymers are produced is the nature of the active sites on the catalyst. Changing the chemical environment of the active sites changes the way in which the polymerisation is controlled and greatly affects the types of chains produced and thus polymer properties. The study examines the structure-property relationships of polyolefins with specific focus on the polypropylene homopolymer. The temperature rising elution fractionation (TREF) technique is used extensively in order to isolate specific fractions of the polymer. The importance of specific TREF fractions is investigated via a two pronged investigative methodology. On the one hand specific TREF fractions are removed from a sample, allowing the analysis of the properties of the material without that specific fraction, thereby revealing the influence which the fraction in question has on the properties. The other branch of the study investigates the chemical modification of the active sites of a Ziegler-Natta catalyst so as to be able to modify the properties of the polymer in the reactor, in a similar manner to physically removing fractions. The techniques are related and it was discovered that the amount of the fractions of the polymer, found to be important using the one technique, also turned out to be important using the other method. Initial method development work utilised a polypropylene-1-pentene copolymer since the molecular heterogeneity of this material is such that large differences are observed upon removal of fractions. The technique was then applied to a Ziegler-Natta catalysed polypropylene homopolymer. Each TREF fraction is successively removed and the residual material analysed. Specific TREF fractions were found to play a significant role in determining the polymer properties since there was a drastic reduction in properties upon removal of these fractions. The polymerisation of propylene was also performed at a variety of conditions in order to investigate different ways in which the catalyst system could be modified. Specific reaction conditions were chosen for in-depth analysis and structure-property correlation. The chemical modification of the active sites was accomplished via the introduction of an external Lewis base (electron donor) to the polymerisation system, and also by varying the external donor/catalyst ratio used. Two different external donors were used during the study namely Diphenyl-dimethoxysilane (DPDMS) and methyl-phenyl-dimethoxysilane (MPDMS). It is observed that there are definite links between the amounts of specific fractions present in the polymer and the polymer properties, as observed via both the physical removal of fractions and the chemical modification of active sites.
CARMELI, ENRICO. "Crystallization behaviour of recycled polyolefins blends." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1071022.
Full textLuruli, Nyambeni. "New synthetic and characterization strategies for polyolefins." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/21672.
Full textENGLISH ABSTRACT: Metalloxycarbene complexes [(CO)5M1=O(R)M2(Cl)L2] (M1 = Cr , W; M2 = Zr, Hf; L = Cp, Cp*) were synthesized from the reaction between anionic Fischer-type carbene complex salts [(CO)5M1=C(O)R][NEt4] and metallocene chlorides. The molecular and crystal structures of [(CO)5W=C(Me)OZr(Cp)2Cl], [(CO)5Cr=C(Me)OZr(Cp)2Cl] and [(CO)5W=C(Ph)OHf(Cl)Cp2] determined by X-ray methods, show a short Ccarbene-O and relatively long O-Zr and O-Hf separations. Metalloxycarbene complexes in the presence of MAO are active catalysts for homo- and copolymerization of -olefins and produce polymers with heterogeneous properties. 1-Pentene oligomers, homopolymers of ethylene and ethylene/1-pentene copolymers were successfully synthesized using metalloxycarbenes/MAO and the results obtained were critically compared with those synthesized with metallocene/MAO catalysts. The GC and GPC show that 1-pentene oligomers produced with both metalloxycarbenes and metallocenes catalysts range from simple dimers to more complicated high molecular weight (2 600 g/mol) products. The properties of polyethylene and ethylene/1-pentene copolymers were evaluated by, among others, GPC, SEC-FTIR, preparative molecular weight fractionation and HPer DSC. Generally the polymers obtained using metalloxycarbene/MAO catalysts have broad and bimodal molecular weight distributions. The copolymers have higher concentration of 1- pentene in the lower molecular weight fraction than those produced with metallocene/MAO as shown by SEC-FTIR. Consequently, HPer DSC shows a decrease of melting and crystallization temperature towards the low molecular weight fractions.
AFRIKAANSE OPSOMMING: Metaaloksikarbeenkomplekse [(CO)5M1=C(R)OM2(Cl)L2] (M1 = Cr , W; M2 = Zr, Hf; L = Cp, Cp*] is gesintetiseer in die reaksie tussen anioniese Fischer-tipe karbeenkomplekssoute, [(CO)5M1=C(O)R][NEt4], en metalloseen dichloriedes. Die molekulêre- en kristalstrukture van [(CO)5W=C(Me)OZr(Cp)2Cl], [(CO)5Cr=C(Me)OZr(Cp)2Cl] en [(CO)5W=C(Ph)OHf(Cl)Cp2] bepaal deur X-straalkristallografiese metodes, toon die aanwesigheid van kort Ckarbeen-O- en relatief lang O-Zr- en O-Hf-bindings. Metaaloksikarbeenkomplekse, in die aanwesigheid van MAO, is aktiewe katalisatore vir die homo- en ko-polimerisering van α-olefiene en is verantwoordelik vir die vorming van polimere met heterogene eienskappe. 1-Penteen oligomere, homopolimere van etileen en etileen/1-penteen ko-polimere is suksesvol gesintetiseer met metaaloksikarbeenkomplekse/MAO en die resultate sodoende verkry, is krities vergelyk met produkte gesintetiseer vanuit metalloseen/MAO prekatalisatore. Die GC en GPC resultate toon dat die 1-penteen oligomere, geproduseer met beide metaaloksikarbeenkomplekse en metallosene, kan wissel van eenvoudige dimere tot meer komplekse, hoë molekulêre massa (2 600g/mol) produkte. Die polietileen en etileen/1- penteen ko-polimere is gekarakteriseer deur onder andere gevorderde, GPC, SEC-FTIR, preparatiewe molekulêre massa fraksionering en HPer DSC. In die algemeen het die polimere verkry met metaaloksikarbeen/MAO katalisatore, breë en bimodale molekulêre massaverspreidings. Die ko-polimere bevat hoër konsentrasies van 1-penteen in die lae molekulêre massa fraksie in vergelyking met dié gevorm vanuit metalloseen/MAO–gekataliseerde mengsels, soos aangedui deur SEC-FTIR-analise. HperDSC wys 'n verlaging in smelt- en kristallisasietemperature in die laer molekulêre massa fraksies.
Books on the topic "Polyolefins"
White, James L., and David D. Choi. Polyolefins. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446413030.
Full textWhite, James L., and David D. Choi. Polyolefins. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2005. http://dx.doi.org/10.1007/978-3-446-41303-0.
Full textSeymour, Raymond B., and Tai Cheng, eds. History of Polyolefins. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-5472-4.
Full textSeymour, Raymond B., and Tai Cheng, eds. Advances in Polyolefins. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9095-5.
Full text1942-, Vasile Cornelia, ed. Handbook of polyolefins. 2nd ed. New York: Marcel Dekker, 2000.
Find full textBaneesh, N. S., P. S. Sari, Tatana Vackova, and Sabu Thomas, eds. Plasma Modification of Polyolefins. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-52264-3.
Full textChung, T. C., ed. New Advances in Polyolefins. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2992-7.
Full textAlbertsson, Ann-Christine, ed. Long Term Properties of Polyolefins. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b13502.
Full textBook chapters on the topic "Polyolefins"
Saunders, K. J. "Polyolefins." In Organic Polymer Chemistry, 46–75. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1195-6_2.
Full textFiscus, David, Antonios Doufas, and Sudhin Datta. "Polyolefins." In Springer Handbook of Petroleum Technology, 1081–116. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49347-3_37.
Full textvan Lierop, Ben, Laurence Castle, Alexandre Feigenbaum, and Achim Boenke. "Polyolefins." In Spectra for the Identification of Additives in Food Packaging, 411–15. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5222-8_81.
Full textMCMILLAN, FRANK M. "Polyolefins." In ACS Symposium Series, 333–61. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch016.
Full textVeit, Dieter. "Polyolefins." In Fibers, 693–720. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_33.
Full textWhite, James L., and David D. Choi. "Origins of Polyolefins." In Polyolefins, 1–22. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446413030.001.
Full textWhite, James L., and David D. Choi. "Characterization Methods." In Polyolefins, 23–47. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446413030.002.
Full textWhite, James L., and David D. Choi. "Crystallography of Polyolefins." In Polyolefins, 49–73. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446413030.003.
Full textWhite, James L., and David D. Choi. "Single Crystals: Structural Hierarchy and Morphology." In Polyolefins, 75–90. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446413030.004.
Full textWhite, James L., and David D. Choi. "Spherulites and Quiescent Crystallization." In Polyolefins, 91–105. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446413030.005.
Full textConference papers on the topic "Polyolefins"
Yuliu, Zhifei, Yuqing Luo, and Marianthi Ierapetritou. "Design of Plastic Waste Chemical Recycling Process Considering Uncertainty." In Foundations of Computer-Aided Process Design, 229–35. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.126108.
Full textSt. Clair, David J. "Polyolefin Diol in Coatings for Thermoplastic Polyolefins." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/980707.
Full textMakio, Haruyuki, and Terunori Fujita. "Polyolefins – Challenges for the Future." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_760.
Full textQiao, Bo, G. Teyssedre, C. Laurent, and N. Shimizu. "The significance of electroluminescence in polyolefins." In 2016 IEEE International Conference on Dielectrics (ICD). IEEE, 2016. http://dx.doi.org/10.1109/icd.2016.7547751.
Full textChikhradze, Nikoloz. "STABILIZATION�AND�REINFORCING�OF�THE�POLYOLEFINS." In SGEM2012 12th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2012. http://dx.doi.org/10.5593/sgem2012/s21.v4017.
Full textUray, A., G. Riess, T. Lucyshyn, C. Holzer, and W. Kern. "Crosslinked polyolefins using a modified filler." In MATERIALS CHARACTERIZATION USING X-RAYS AND RELATED TECHNIQUES. Author(s), 2019. http://dx.doi.org/10.1063/1.5088309.
Full textTartakowski, Zenon, Katarzyna Cimander, and Jan Bursa. "Modified polyolefins with reduced electrostatic properties." In 2018 Innovative Materials and Technologies in Electrical Engineering (i-MITEL). IEEE, 2018. http://dx.doi.org/10.1109/imitel.2018.8370487.
Full textSomayajula, Harish. "De-Carbonisation Through Energy Management." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211098-ms.
Full textVan Every, Kenneth W., and William J. Long. "High-temperature GPC/IR characterization of polyolefins." In Fourier Transform Spectroscopy: Ninth International Conference, edited by John E. Bertie and Hal Wieser. SPIE, 1994. http://dx.doi.org/10.1117/12.166762.
Full textUray, A., G. Riess, T. Lucyshyn, C. Holzer, and W. Kern. "Modified talcum as crosslinking agent for polyolefins." In PROCEEDINGS OF PPS-33 : The 33rd International Conference of the Polymer Processing Society – Conference Papers. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5121690.
Full textReports on the topic "Polyolefins"
Ahn, Andrew. Selective Laser Sintering of Polyolefins. Office of Scientific and Technical Information (OSTI), March 2023. http://dx.doi.org/10.2172/1963608.
Full textWagener, Ken. Precision Morphology in Sulfonic, Phosphonic, Boronic, and Carboxylic Acid Polyolefins. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada606523.
Full textBarron, Andrew R. Tert-butylalumoxanes: Synthetic Analogs for Methylalumoxane (MAO) and New Catalytic Routes to Polyolefins and Polyketones. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada280511.
Full textBrüll, Robert, Hamza Mahmoud Aboelanin, Subrajeet Deshmukh, Tibor Macko, Jan-Hendrik Arndt, and Stepan Podzimek. Characterization of polyolefins using high-temperature size exclusion chromatography coupled with an infrared detector (HT-SEC-IR5). Peeref, December 2022. http://dx.doi.org/10.54985/peeref.2212p1310865.
Full textShewey, Megan, Patti Tibbenham, and Dan Houston. Carbon Fiber Reinforced Polyolefin Body Panels. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1600931.
Full textChung, T. C. Mike. Developing a New Polyolefin Precursor for Low-Cost, High-Strength Carbon Fiber. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1808293.
Full text