To see the other types of publications on this topic, follow the link: Polypropylene Mechanical properties.

Dissertations / Theses on the topic 'Polypropylene Mechanical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Polypropylene Mechanical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Duxbury, J. "Mechanical properties and structure of highly oriented polypropylene." Thesis, University of Leeds, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Espert, Ana. "Srategies for improving mechanical properties of polypropylene/cellulose composites." Doctoral thesis, KTH, Fibre and Polymer Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179.

Full text
Abstract:

The interest for polypropylene/cellulose composites has experienced a great increase in different applications such as car interiors and construction materials. Cellulose fibres are inexpensive, renewable, biodegradable, they present lower density and their mechanical properties can be compared to those of inorganic fillers. However, several factors must be considered when designing polypropylene/cellulose composites: the poor compatibility between the hydrophilic fibres and the hydrophobic thermoplastic matrix leads to a weak interface, which has to be improved by coupling agents; the hydrophilic nature of the fibres makes them very sensitive towards water absorption, which also leads to a loss of properties and swelling with subsequent dimensional instability; the reduced thermal stability of cellulose fibres leads to degradation of the fibres at thermoplastic processing temperatures producing odours in the final material; and finally the properties of composites are greatly influenced by the structure, size and quality of the fibres.

Pulp fibres modified by different methods in order to enhance the compatibility fibre-matrix, were tested. Modified fibres led to improved mechanical properties and thermal behaviour when used in composites with recycled polypropylene.

Four different types of natural fibres were used as reinforcement in two different polypropylene types: virgin and recycled polypropylene. The mechanical properties of the composites were mostly dependent on the fibre loading and slightly dependent on the type of fibre. Moreover, water absorption kinetics was studied by the Fickian diffusion theory. After absorption, a remarkable loss of properties was observed.

Hydrolysed cellulose fibres showed a greater enhancing effect on polypropylene than non-hydrolysed cellulose fibres. This is attributed to the greater mechanical properties of reduced cellulose structures.

The effect of using cellulose fibres in PP/clay nanocomposites was also studied. The interaction between the clay particles and the cellulose fibres and the combined effect of both reinforcements were believed to be the main reasons for the enhancing properties.

APA, Harvard, Vancouver, ISO, and other styles
3

Espert, Ana. "Strategies for improving mechanical properties of polypropylene/cellulose composites." Doctoral thesis, Stockholm : Fiber- och polymerteknologi, KTH, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhong, Zhaoping. "Relationship between the micromorphology and mechanical properties of semicrystalline polypropylene." Thesis, Brunel University, 1996. http://bura.brunel.ac.uk/handle/2438/5354.

Full text
Abstract:
The objective of this research project was to carry out the investigation of the relationship between processing conditions, micromorphology and mechanical properties of isotactic polypropylene homopolymer using conventional and shear controlled orientation injection moulding (SCORIM) techniques by systematically changing carefully controlled processing conditions, mould geometry and compound additives. Both SCORIM and conventional techniques were employed for iPP injection moulding using three moulds of different shapes by varying the processing conditions, including nozzle temperature, mould temperature, injection speed, hold pressure and oscillating patterns of pistons. The results obtained were compared so as to indicate the differences in microstructure and physical properties resulting from the two moulding techniques. A range of analytical methods were employed. Optical transmitted light microscopy was used to reveal the skin-core morphology and preferentially oriented fibrous textures. Transmitted Electron Microscopy represented the enlargement of the fibrous alignment. Micro hardness analysed the hardness and isotropy characteristics by measuring the diagonal lengths of the indentations. Mechanical testing determined Young's modulus, the strength and toughness of the mouldings. X-ray diffraction exhibited the distribution of the cc, 6 and 7 crystalline phases of the iPP mouldings. The WAXS Debye patterns confirmed the existence of the preferred orientation through the thickness of the moulding. Differential Scanning Calorimetry analysed the thermal behaviour from the endothermal and exothermal curves. In the initial stage of the study, the polypropylene was moulded in the form of a standard tensile bar on a conventional Sandretto injection machine in order to obtain the basic characteristics of the polypropylene study material, which could then be used to compare with those properties to be gained using the SCORIM technique. A ring mould was then used in a Negri Bossi twin injection machine to investigate improvements in uniformity of micromorphology and dimensional reproducibility of mouldings made possible by four live-feed injection moulding. Later, a study was carried out on injection moulding of polypropylene by varying processing conditions, including three hold pressures, two mould temperatures and two nozzle temperatures for both conventional and SCORIM injection processes by using a rectangular bar mould in a Demag injection moulding machine. In the finial stage, the study explores the influences of composition, in essence a limited range of nucleating agents, and processing methods, and aspects of the micromorphology, dimensional control and the mechanical properties of polypropylene. Polypropylene, as a sernicrystalline polymer, represents a class of materials in which mechanical properties are strongly influenced by processing conditions and micromorphology.
APA, Harvard, Vancouver, ISO, and other styles
5

Msuya, Winston Filipo Seth. "The influence of physical ageing and morphology on yield in polypropylene." Thesis, [Hong Kong] : University of Hong Kong, 1988. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12434036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kalyanam, Sriram. "Effect of silane coupling agents on the mechanical properties of glass polypropylene composites." Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/8563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roy, Saroj K. (Saroj Kumar). "Dynamic mechanical relaxations of ultradrawn polyethylene and polypropylene films." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hill, Alistair R. "The mechanical properties of glass fibre reinforced and rubber toughened polypropylene." Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/843764/.

Full text
Abstract:
The mechanical properties and fracture mechanics of a series of short glass fibre reinforced and rubber toughened polypropylene composite grades has been studied. The microstructural characteristics of composite grades were examined and, through appropriate models, related to the observed mechanical properties. The moulded material was modelled as being composed of fibre reinforced plies of varying average fibre orientation. The rubber was distributed uniformly throughout the specimens. The main effect of the rubber was to reduce the stiffness of the matrix and hence also the efficiency of the load transfer at the fibre/matrix interface while at the same time improving the fracture toughness and critical strain energy release rate of the matrix. Automated image analysis has been used to characterise the rubber particles' size, shape and distribution, and glass fibres' length and orientation distributions. The fibre/matrix interface has been studied using a novel single fibre fragmentation technique. Iterative computer simulations have been developed to accurately predict the stress-strain response of the various grades. The fracture mechanics properties of this series of materials are highly strain rate sensitive. At low strain rates the addition of glass fibres reduces the toughness of the material because the fibres act as discontinuities within the matrix, aiding initiation and propagation of a crack. At higher strain rates the fibres toughen the material by increasing the energy dissipation associated with fibre pull-out. These effects result in changes in the fracture surface morphology. Fibres pulled-out at low strain rates had clean surfaces. At higher strain rates the surfaces of pulled-out fibres were coated in an adherent sheath of matrix material. These effects are considered to be a consequence of the viscoelastic nature of the matrix. At low strain rates the matrix deforms plastically. At impact speeds the matrix responds in a predomoninantly brittle manner.
APA, Harvard, Vancouver, ISO, and other styles
9

Thiraphattaraphun, Linda. "Structure/property relationships in polypropylene nanocomposites." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/structureproperty-relationships-in-polypropylene-nanocomposites(388eafc0-a98e-4a78-be0d-4d647a122d87).html.

Full text
Abstract:
In this work, structure/property relationships in polypropylene (PP) nanocomposites have been investigated for different nanofillers. Nanofillers of modified clay based on montmorillonite (MMT) and multi-wall carbon nanotubes (MWNTs) have been selected and incorporated to the PP matrix as either single nanofillers or hybrid nanofillers. Melt mixing via a twin screw extruder and further moulding by injection moulding have been used to prepare PP nanocomposites. Moreover, the dilution of MWNT masterbatch has been used to prepare PP/MWNT and PP/clay/MWNT nanocomposites. Three types of the PP nanocomposites have been obtained: PP/clay, PP/MWNT and PP/clay/MWNT nanocomposites. In all three types of the PP nanocomposites, α- and -PP crystals were observed in the wide angle X-ray diffraction (WAXD) patterns. Furthermore, the addition of nanofillers to the PP did not appear to affect the PP orientation. Slight PP orientation in the PP nanocomposites was shown in the two-dimensional X-ray diffraction (2D-XRD) patterns. Mixed clay layers were combined in the PP/clay and PP/clay/MWNT nanocomposites and investigated by WAXD as well as transmission electron microscopy (TEM). In addition, the aggregated and individual MWNTs were present in both the PP/MWNT and PP/clay/MWNT nanocomposites TEM images. A rough fracture surface with cracks was revealed from the scanning electron microscopy (SEM) images of the three types of PP nanocomposites. Polarized optical microscopy (POM) micrographs were taken at different temperatures during cooling in a hot stage and revealed the limitation of PP spherulite growth upon adding the nanofillers to the PP. The incorporation of nanofillers was found not to affect the glass transition temperature (Tg) of PP which investigated by dynamic mechanical analysis (DMA). However, the increase of both the peak melting temperature (Tm) and the peak crystallization temperature (Tc) of PP with adding the nanofillers was shown by differential scanning calorimetry (DSC) thermograms. In addition, the nanofillers also have been shown to act as nucleating agents. The thermal stability of PP in a nitrogen atmosphere was enhanced by the nanofillers when examined by thermogravimatric analysis (TGA). DMA and tensile testing were performed and showed that the nanofillers act as reinforcement for the PP. The distribution, orientation and deformation of MWNTs in the PP/MWNT and PP/clay/MWNT nanocomposites have been followed by Raman spectroscopy. Significant shifts of the Raman G'-band from the MWNTs was obtained during deformation of the MWNT nanocomposites and the hybrid clay/MWNT nanocomposites as the stress transfer from the PP matrix to the MWNTs has occurred. A correlation between calculated modulus from deformation and measured modulus from DMA and tensile testing has been found for PP/MWNT and PP/clay/MWNT nanocomposites. Finally, the PP nanocomposites have been considered for use in packaging applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Wong, Tsun Wah. "A study on mechanical properties of high density polyethylene/polystyrene/SBES [i.e. SEBS] polymer blends." access abstract and table of contents access full-text, 2001. http://libweb.cityu.edu.hk/cgi-bin/ezdb/dissert.pl?msc-ap-b21175202a.pdf.

Full text
Abstract:
Thesis (M.Sc.)--City University of Hong Kong, 2001.
"A dissertation submitted in part-fulfilment of the requirements for the degree of Master of Science of City University of Hong Kong." Title from title screen (viewed on Sept. 4, 2006) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
11

Cook, Mark. "The influence of magnesium hydroxide morphology on the mechanical properties of polypropylene." Thesis, Loughborough University, 1996. https://dspace.lboro.ac.uk/2134/12115.

Full text
Abstract:
Magnesium hydroxide is of growing interest as a halogen-free flame retardant, and has a high thermal stability, so it can be melt processed into most thermoplastics without premature decomposition. The hydrated mineral filler commences endothermic decomposition at approximately 340°C, withdrawing heat from the polymer substrate, releasing water of crystallisation to dilute the fuel supply. However, to be an effective flame retardant filler, high loadings up to 66% are required. This may cause detrimental effects on both rheological and mechanical properties of composites produced. Two synthetic seawater magnesium hydroxide fillers (DP393 and DP390s), of different morphologies but similar surface area, were selected as flame retardant fillers for polypropylene. These were coated with stearate, oleate, rosin and vinyl silane and compounded at 60% by weight into an injection moulding grade ofpolypropylene. The effect of filler morphology, coating agent, coating type and coating level on the crystallisation, rheological and mechanical properties of polypropylene were studied. DP393 is a one-micron platey structure which was found (by XRD) to be orientated parallel to the flow direction, whereas DP390s is a five-micron porous sphere residing isotropically within the matrix. Incorporation of uncoated magnesium hydroxide increased the overall crystallisation rate of polypropylene, causing orientation of the polymer b axis parallel to the flow direction, this being induced by the 001 crystal face of magnesium hydroxide.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Yan. "Relationship between morphology, crystallization behavior and mechanical properties of polypropylene micro- and nanocomposites /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CENG%202004%20ZHANG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

O'Donnell, Hugh J. "In situ composites of compatibilized polypropylene/liquid crystalline polymer blends." Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-02052007-081243/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Khalil, Roya, and roya khalil@gmail com. "Impact of the surface chemistry of rice hull ash on the properties of its composites with polypropylene." RMIT University. Civil & Chemical Engineering, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090219.115140.

Full text
Abstract:
Rice hull ash (RHA) is a by-product of the rice industry. RHA is produced when rice hulls are incinerated, for example, when they are used to power steam engines in rice milling plants. Typically, this ash is disposed of in landfill sites, which may cause environmental problems. RHA has a naturally occurring silica content that is very high, ranging from 95 to 98%. This high silica content makes RHA a potential filler for polymer products. The aim of this project was to investigate the application of RHA as a filler in polypropylene. The study used a systematic approach to characterising the RHA physiochemical properties and comparing these to another commercially available grade of silica filler. The processing conditions for mixing RHA with Polypropylene (PP) were optimised to obtain the maximum tensile modulus value. Attempts were made to improve the interaction of RHA and PP by treating the RHA surface with silane coupling agents and adding functionalised polymers to the composite. Mechanical, rheological and morphological properties of the non-silanated, silanated and coupled composites were characterised and compared to determine their structure -property relationships. Rice hull ash (RHA) has a similar chemical structure to other silicas. Like any metals and metalloids, the surface of RHA contains -OH functional groups but these are very limited in quantity. RHA and PP composites have a wide processing window and the optimised processing conditions in a small batch mixer are 12 minutes, 60 rpm and 180°C. Addition of RHA into PP increases the modulus but decreases the tensile strength of the composites, attributed to poor compatibility between RHA and PP, as RHA is hydrophilic and PP is hydrophobic. The optimum loading of RHA is 20wt%. To improve the RHA and PP composites, 2 grades of silane and maleic anhydride grafted PP (MAPP) is used. Silane treated RHA composites have improved mechanical properties, especially tensile strength, attributed to enhanced interfacial interaction. The optimum is 1.5wt% for APS and 2.wt% for MPS in this system. The optimum MAPP concentration in this system is 3wt%. Properties of the RHA / PP composites show modest improvements compared to PP. The properties are not sufficient to make RHA a commercially attractive reinforcing filler for PP for high performance composite. It has potential for a cost reduction filler for low end application composites.
APA, Harvard, Vancouver, ISO, and other styles
15

Ratnayake, Upul Nishantha. "Polypropylene-clay nanocomposites : effects of incorporating short chain amide molecules on rheological and mechanical properties." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/11600.

Full text
Abstract:
The influence of low molecular weight additives containing polar groups and modified polyolefin-based compatibilisers on polypropylene (PP)-clay nanocomposites (PPCN) has been studied, in terms of intercalation and degree of exfoliation achievable by melt state mixing processes. PPCN were prepared by melt mixing of two commercial pp homopolymers with organically modified clay (OMMT) in the presence of maleic anhydride grafted pp (PP-MA). X-ray diffraction (XRD) analysis shows that the interlayer spacing of clay increases dramatically, whilst transmission electron microscopy (TEM) results show a significant improvement of clay dispersion in the PP matrix, when nanocomposites are prepared with commercial PP containing short chain organic additives with polar groups (amide-type slip and antistatic additives). Subsequent studies based upon customised PP formulations, with short chain amide molecules (AM), confirm the intercalation of this additive into clay galleries. The maximum interiayer spacing is achieved with low concentrations of this additive (0.5 wt. %). Contact angle measurements and low shear melt flow properties (MF!) further confirm the diffusion of this additive (AM) into the clay galleries rather than migrating away from the bulk of the PPCN. The interaction between the polar group (CONH2) of this additive and polar sites of the clay surface appears to be the driving force for the intercalation. Although this additive intercalates and allows the formation of an intercalated nanocomposite structure with non homogeneous dispersion of clay, an exfoliated PPCN structure is yet to be formed with this additive alone. A new preparation method for PPCN has therefore been developed by co-intercalation of AM and PP-MA. PPCN were prepared by this method with a significant reduction of overall PP-MA concentration in the nanocomposite structure, relative to conventional PPCN prepared with compatibiliser (PP-MA) only. XRD and TEM analysis showed that nanocomposite structures are formed with significantly improved clay dispersion, compared to PPCN prepared using the conventional method. Quantification of clay exfoliation, using image analysis software, showed that higher degrees of exfoliation can be achieved in PPCN from this new cointercalation method. Normalised melt flow index (n-MFI) data showed the relationship between low shear flow properties and clay structure and is an appropriate parameter to examine clay exfoliation and its interaction with pp in PPCN. Enhanced thennal stability of PPCN, in comparison to pure PP, further demonstrates the improved clay dispersion in nanocomposite structures prepared by the co-intercalation method. A possible mechanism for the co-intercalation of AM and PP-MA into clay galleries has been proposed, based upon hydrogen bonding between these additives and the silicate layers. Rheological characterisation of PPCN, using capillary rheometry experiments at high shear rates, shows a shear thinning, pseudoplastic behaviour similar to pure PP. However, a comparatively higher concentration of AM appears to reduce the shear viscosity of PPCN. Die swelling behaviour revealed a reduction in melt elasticity in PPCN melts in comparison to unmodified PP. Reduced die swell occurs as a result, together with a delay in the onset of melt fracture. Sheet extrusion was used to produce PPCN products with increasing clay loading levels that were evaluated for a range of mechanical properties. Significant enhancement of modulus in PPCN is achieved in comparison to pure PP whilst maintaining similar strength characteristics. However, impact resistance of extruded PPCN sheets is not improved in comparison to unmodified PP. Results have been interpreted with reference to the degree of exfoliation, additive content and differences in PP crystallinity.
APA, Harvard, Vancouver, ISO, and other styles
16

Cerezo, Frances Therese, and francestherese_cerezo@hotmail com. "Thermal stability and mechanical property of polymer layered graphite oxide composites." RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080627.161157.

Full text
Abstract:
Polymer composites formed from layered fillers with high surface volume ratio show enhanced reinforcement. Graphite oxide is a high modulus material that can be separated into thin layers with high surface area. The aim of this study is to prepare polymer layered graphite oxide composites using functionalised polyolefin to enhance compatibility with various forms of layered graphite oxide in varying concentration. Functionalised polyolefins reinforced with layered graphite oxides and expanded graphite oxides were prepared using solution blending and melt blending methods. Three different mixing methods with varying shear intensity were employed to prepare polymer layered graphite oxide composites. The crystalline structure, thermal and mechanical properties of the prepared polymer layered graphite oxide composites was studied. Oxidised graphite prepared from the Staudenmaier method and its exfoliated form were dispersed in poly(ethylene-co-methyl acrylate-co-acrylic acid) (EMAA) via solution blending to prepare EMAA layered composites. The thermal stability was determined using thermogravimetric analysis. The EMAA layered composites showed higher thermal stability in comparison with pure EMAA. The mechanical properties of these EMAA layered composites were determined through dynamic mechanical analysis. Shear modulus, yield stress and storage modulus of EMAA in the presence of graphite oxide fillers decreased. A solution blending method was used to prepare poly(propylene-grafted-maleic anhydride) layered expanded graphite oxide composites (PPMA-EGO). Two types of PPMA-EGO were prepared using different mixing methods - low and high shear were employed. The effects of preparative mixing methods on the PPMA-EGO properties were investigated. The mechanical properties of PPMA-EGO obtained from dynamic mechanical analysis indicated that EGO had a reinforcing effect on the elastic behaviour of PPMA-EGO. This is due to strong interfacial adhesion between PPMA and EGO as a result of hydrogen bonding. The elastic behaviour of PPMA-EGO was affected by the surface area of graphite flakes. Low sheared PPMA-EGO elastic behaviour was found to be higher compared with that of high sheared PPMA-EGO. A melt blending method was used to prepare PPMA-EGO with varying EGO concentration. The interconnected network structure of EGO in the PPMA-EGO was not observed as shown by its scanning electron microscopy images. Thermogravimetric analysis of PPMA-EGO indicates increased decomposition temperature of the PPMA matrix. Dynamic mechanical analysis showed enhanced storage modulus of PPMA-EGO. The maximum elastic modulus of PPMA-EGO was observed at 3 %wt of EGO. The electrical conductivity of PPMA-EGO was measured only for EGO concentrations above 2 %wt. The EGO concentration was found to be the most critical factor in the enhancement of the electrical conductivity of PPMA-EGO. Wide angle X-ray diffraction analysis of all polymer layered graphite oxide composites revealed no change in interlayer spacing of graphite layers, indicating the absence of EMAA intercalation in the graphite layers. The crystallisation temperature and crystallinity of all polymer layered graphite oxide composites were determined using differential scanning calorimetry. The results indicated that graphite oxide and expanded graphite oxides acted as nucleating agents in inducing the crystallisation of functionalised polyolefin in the layered composites. However, the degree of crystallinity of functionalised polyolefin decreased in the layered composites.
APA, Harvard, Vancouver, ISO, and other styles
17

Al-Shehri, Abdulhadi S. "Tensile and fracture behaviour of isotropic and die-drawn polypropylene-clay nanocomposites : compounding, processing, characterization and mechanical properties of isotropic and die-drawn polypropylene/clay/polypropylene maleic anhydride composites." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/5223.

Full text
Abstract:
As a preliminary starting point for the present study, physical and mechanical properties of polypropylene nanocomposites (PPNCs) for samples received from Queen's University Belfast have been evaluated. Subsequently, polymer/clay nanocomposite material has been produced at Bradford. Mixing and processing routes have been explored, and mechanical properties for the different compounded samples have been studied. Clay intercalation structure has received particular attention to support the ultimate objective of optimising tensile and fracture behaviour of isotropic and die-drawn PPNCs. Solid-state molecular orientation has been introduced to PPNCs by the die-drawing process. Tensile stress-strain measurements with video-extensometry and tensile fracture of double edge-notched tensile specimens have been used to evaluate the Young's modulus at three different strain rates and the total work of fracture toughness at three different notch lengths. The polymer composite was analyzed by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, wide angle x-ray diffraction, and transmission electron microscopy. 3% and 5% clay systems at various compatibilizer (PPMA) loadings were prepared by three different mixing routes for the isotropic sheets, produced by compression moulding, and tensile bars, produced by injection moulding process. Die-drawn oriented tensile bars were drawn to draw ratio of 2, 3 and 4. The results from the Queen's University Belfast samples showed a decrement in tensile strength at yield. This might be explained by poor bonding, which refers to poor dispersion. Voids that can be supported by intercalated PP/clay phases might be responsible for improvement of elongation at break. The use of PPMA and an intensive mixing regime with a two-step master batch process overcame the compatibility issue and achieved around 40% and 50% increase in modulus for 3% and 5% clay systems respectively. This improvement of the two systems was reduced after drawing to around 15% and 25% compared with drawn PP. The work of fracture is increased either by adding nanoclay or by drawing to low draw ratio, or both. At moderate and high draw ratios, PPNCs may undergo either an increase in the size of microvoids at low clay loading or coalescence of microvoids at high clay loading, eventually leading to an earlier failure than with neat PP. The adoption of PPMA loading using an appropriate mixing route and clay loading can create a balance between the PPMA stiffness effect and the degree of bonding between clay particles and isotropic or oriented polymer molecules. Spherulites size, d-spacing of silicate layers, and nanoparticles distribution of intercalated microtactoids with possible semi-exfoliated particles have been suggested to optimize the final PPNCs property.
APA, Harvard, Vancouver, ISO, and other styles
18

Zaeni, Akhmad Materials Science &amp Engineering Faculty of Science UNSW. "Modification of fly ash colour from grey black to near white and incoporation of fly ash in polypropylene polymer." Publisher:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/43755.

Full text
Abstract:
Particulate filled polymer composites are gaining growing acceptance in the commodity industry because the properties can be adjusted according to the industry's requirements. As particulate filler, fly ash is ready to compete with other particular fillers in polymer composites industries. Although fly ash is a cheap material but the fact that fly ash is grey-black in colour, limits the application of fly ash only to product where colour is not important. As such, a method was needed to be developed to increase the whiteness of fly ash without reducing the advantages of it as a cheap material. In this research, twelve commercially provided fly ash samples from Australian thermal power stations were investigated with respect to composition. Seven of them were thermally modified and further investigated and characterized with respect to colour, size, size distribution, and density. Of these seven fly ashes a particular grade was modified to a whiteness of 93.3 in L*a*b* scale (using barium sulfate as standard), without changing other inherent properties such as particle size and density. By comparison L*a*b* value for Omy carb 20, based on calcium carbonate is 96.9. The whiteness of fly ash was increased using a one stage thermal method ensuring the related cost of production would be not a major hurdle. The next aspect of the thesis involved incorporating as-received and heat treated fly ash samples in isotactic polypropylene up to 80 parts of fly ash per hundred resins (phr), demonstrating that fly ash content in polypropylene composites can be quite high with properly maintained combination of mechanical properties -- in particular up to 200 % improvement in Young's modulus and 63 % gain in notched impact properties, as explained in the thesis. Whilst the Young's modulus properties of the fly ash PP composites match very well with Kerner model, they lie in between the Rule of Mixture series and parallel. The tensile strength properties obtained in this research are at least 25 % higher than those predicted by Nielsen, Landon and Nicolais; whereas the strain to failure values are between 25 - 50 % higher than those predicted by Nielsen, and Smith. Whilst tensile strength of the fly ash filled polypropylene composites were less than the original polypropylene samples, as normally reported in the literature, in this thesis surface modification of fly ash particles by using 10% vinyl triethoxy silane (VTES) coupling agent gave a nominal increase in tensile strength especially at higher fly ash content. The final aspect involved study of oxidation behavior of fly ash filled polypropylene composites. Fillers, including fly ash can shorten the life time of polymers from both chemical as well as physical factors. As-received fly ash contains iron based impurities which may catalyze the anti oxidant in polypropylene, therefore reducing the service life time of the polymer. In this work, thermal treatment studies showed that the iron in fly ash can be changed to a chemically inert material so the effective service life of the polymer will only be influenced by physical factors. Therefore thermal treatment of fly ash not only increases the whiteness but also it reduces the risk of the filler on the life time of the polymer, and hence the composites.
APA, Harvard, Vancouver, ISO, and other styles
19

Hosseini, Ehsan. "Mechanical Properties of Outer Protection Layer on Submarine High Voltage Cables." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-859.

Full text
Abstract:
In this thesis, the Mechanical properties of polypropylene yarn of outer protection layer on Submarine High Voltage Cable, twisted around submarine cable,is determined on various conditions at ABB Company. In the first step, tensile tests are done with polypropylene yarn specimens with and without Bitumen at Room temperature. In the second step,tensile tests are done with polypropylene yarn specimens with and without Bitumen and with knotted polypropylene yarn namely: the Fishermen’s knot, the Weaver’s knot, the Square knot and the Overhand knot at Warm Condition (60˚c) and Cold Condition(-5˚c). In the final step,it is proposed to obtain numerical solution using FEM analysis with ABAQUS Software to obtain the hoop stress , the yarn stresses from twisting cable and analyzing of the cylindrical buckling in the buckling torsion and buckling bending on the outer layer of submarine cable with polypropylene material that is mixed with Bitumen.
APA, Harvard, Vancouver, ISO, and other styles
20

Guclu, Mehmet. "Light Stability And The Effect Of Temperature On Mechanical Properties Of Polypropylene / Poly(ethylene-vinyl-acetate) Blends." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608535/index.pdf.

Full text
Abstract:
The variation in properties of Polypropylene (PP) / Ethylene Vinyl Acetate (EVA) blends upon EVA content, temperature, and light stability were followed by using tensile testing, impact testing, and differential scanning calorimetry (DSC). Young&rsquo
s modulus of the blends decreased with increasing drawing temperature and EVA content. The stress at break values of the blends slightly increased with EVA whereas decreased with drawing temperature. The percent strain at break values of the blends were found to increase abruptly by increasing EVA content and drawing temperature. These changes in the mechanical properties are the indication of compatibility. The impact tests were performed only at 0°
C, 25°
C and the impact strength increased with the temperature and EVA content, but none of the samples were broken at higher testing temperatures. The effect of stabilizer was very obvious because stabilizer-free samples failed after 400 hours whereas, the samples with stabilizer resisted up to 750 hours. Elongation values of the samples decreased because of increasing brittleness by UV irradiation. We also observed chain stiffening effect by crosslinking in all samples upon UV irradiation. Thermal analysis of the blends of the drawn samples showed an increasing trend of crsytallinity with increasing drawing temperature. Increasing drawing temperature made polymer chains more flexible because of the increasing chain mobility. These flexible chains were then oriented in one direction during tensile testing and therefore uniaxial crystallization occurred. The morphology of impact and tensile tests samples were also analyzed by scanning electron microscope (SEM). The fibrillation of pure PP is higher than the fibrillation of the blends.
APA, Harvard, Vancouver, ISO, and other styles
21

Chaishome, Jedsada. "The effect of processing parameters on the mechanical properties of vacuum formed flax fibre reinforced polypropylene composites." Thesis, University of Nottingham, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.594739.

Full text
Abstract:
The main aim of this thesis is to gain an improved understanding of the use and limitations of flax fibres as a reinforcement for thermoplastic composites manufactured by the vacuum forming process. The effect of process variables on void content and on mechanical properties of flax fibre/polypropylene composites has been investigated. An isothermal vacuum forming process has been studied and the following process parameters varied : consolidation time; fibre volume fraction; moisture content; reinforcement stacking sequence. The thermal degradation of untreated and alkaline treated flax fibres and its effect on the composite properties has been investigated using fourier transform infrared spectrometry (FTIR) and thermogravimetry (TG) techniques. Characterisation of the micro structure of failure surfaces following tensile testing of the composites has also been observed using scanning electron microscopy (SEM). The results of the investigation show that an increase in consolidation time at temperature and/or a reduction in fibre volume fraction reduces void content, as expected . By contrast and in spite of the reduction in voidage levels, mechanical tests show that an increase in consolidation time reduces ultimate tensile strength (UTS), strain to failure and impact strength of the composite. This reduction in properties is attributed to increased thermal degradation of the flax fibres and consequently the composite. Degradation manifests itself as hemicellulose and pectin decomposition in the fibres, particularly at low heating rates. Alkaline treatment was investigated as a potential method of improving the thermal stability of the fibres by reducing the low thermal stability hemicellulose and pectin components. Furthermore, such treatment improves the surface roughness of the fib res and results in an improved consolidation due to the reduction in void content. However, these positive effects did not significantly improve composite strength because of an apparent reduction in reinforcement volume fraction resulting from reduced fibre volume.
APA, Harvard, Vancouver, ISO, and other styles
22

Kanbur, Yasin. "Conductive Polymer Nanocomposites Of Polypropylene And Organic Field Effect Transistors With Polyethylene Gate Dielectric." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613312/index.pdf.

Full text
Abstract:
One of the aim of this study is to prepare conductive polymer nanocomposites of polypropylene to obtain better mechanical and electrical properties. Composite materials based on conductive fillers dispersed within insulating thermoplastic matrices have wide range of application. For this purpose, conductive polymer nanocomposites of polypropylene with nano dimentional conductive fillers like carbon black, carbon nanotube and fullerene were prepared. Their mechanical, electrical and thermal properties were investigated. Polypropylene (PP)/carbon black (CB) composites at different compositions were prepared via melt blending of PP with CB. The effect of CB content on mechanical and electrical properties was studied. Test samples were prepared by injection molding and compression molding techniques. Also, the effect of processing type on mechanical and electrical properties was investigated. Composites become semiconductive with the addition of 2 wt% CB. Polypropylene (PP) / Carbon Nanotube (CNT) and Polypropylene / Fullerene composites were prepared by melt mixing. CNT&rsquo
s and fullerenes were surface functionalized with HNO3 : H2SO4 before composite preparation. The CNT and fullerene content in the composites were varied as 0.5, 1.0, 2.0 and 3.0 % by weight. For the composites which contain surface modified CNT and fullerene four different compatibilizers were used. These were selected as TritonX-100, Poly(ethylene-block-polyethylene glycol), Maleic anhydride grafted Polypropylene and Cetramium Bromide. The effect of surface functionalization and different compatibilizer on mechanical, thermal and electrical properties were investigated. Best value of these properties were observed for the composites which were prepared with maleic anhydride grafted polypropylene and cetramium bromide. Another aim of this study is to built and characterize transistors which have polyethylene as dielectric layers. While doing this, polyethylene layer was deposited on gate electrode using vacuum evaporation system. Fullerene , Pentacene ve Indigo were used as semiconductor layer. Transistors work with low voltage and high on/off ratio were built with Aluminum oxide - PE and PE dielectrics.
APA, Harvard, Vancouver, ISO, and other styles
23

Lu, Xinyao. "Effects of HALSs and Nano-ZnO Worked as UV Stabilizers of Polypropylene." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062903/.

Full text
Abstract:
This work reports the outdoor weathering performance of ultraviolet (UV)-stabilized polypropylene (PP) products (using PP resins from Encore Wire). Different hindered amine light stabilizers (HALSs) and nano-ZnO were used to stabilize PP-film-based formulations that were exposed under UV light for 6 weeks simulating for in harsh outdoor weather of Dallas, Texas, USA in 2016. Characterization of the exposed PP film products was done in terms of mechanical and friction spectroscopic properties. The PP film formulations were divided into 15 categories based on the type of HALS and nano-ZnO incorporated. This was done to derive meaningful comparison of the various film formulations. Following exposure under UV light, the lifetimes of certain formulations were determined. On the basis of the mechanical and friction properties, it was determined that generally, the HALS or nano-ZnO stabilized PP film give better properties and if those two kinds of UV stabilizers can work together.
APA, Harvard, Vancouver, ISO, and other styles
24

Han, Hongchang. "Study of agro-composite hemp/polypropylene : treatment of fibers, morphological and mechanical characterization." Thesis, Troyes, 2015. http://www.theses.fr/2015TROY0002/document.

Full text
Abstract:
L’utilisation des fibres végétales dans les polymères composites suscite de nombreuses investigations. Avant de mélanger les fibres végétales dans le polymère, un traitement chimique peut être effectué permettant de réduire l’hydrophilicité des fibres et d’améliorer l'adhérence à l’interface fibre/matrice. Dans cette thèse, l'eau et l'alcali sont utilisés d'abord pour traiter les fibres de chanvre, puis trois agents silane : 3-(triméthoxysilyl)propyl méthacrylate (MPS), N-[3- (triméthoxysilyl)propyl] aniline (PAPS) et (3-Aminopropyl)-triéthoxysilane (APS), sont utilisés pour modifier plus ou moins la surface des fibres de chanvre. Ces fibres traitées ou modifiées sont ensuite mélangées avec le polypropylène (PP) pour la fabrication des composites. Les effets de ces différents traitements sur la structure, les composants et l’hydrophilicité des fibres, et les propriétés mécaniques de ces composites sont mis en évidence. Nous avons étudié ensuite l’effet de vieillissement sur leurs comportements mécaniques, notamment l'humidité, la température et le rayonnement ultraviolet. Les résultats ont montré que le traitement de fibres par l'eau et l’alcali a des effets considérables sur la structure de fibres, les propriétés mécaniques et la durabilité des composites renforcés. La modification par l'agent de silane a une influence moins importante sur la structure des fibres, pourtant son groupe fonctionnel a une influence significative sur les propriétés mécaniques et la résistance au vieillissement des composites renforcés
Using agro fiber as reinforcement of polymer com-posites attracts numerous investigations due to the good mechanical properties and environmental benefits. Prior to blend agro fiber with polymer, chemical treatment can be employed to treat agro fiber for the purpose of reducing the hydrophilicity of fiber and improving the interfacial adhesion fi-ber/polymer matrix. In this thesis, water and alkali are utilized to treat hemp fiber firstly and then three silane agent as 3-(Trimethoxysilyl)propyl methacry-late (MPS), N-[3-(Trimethoxysilyl)propyl]aniline (PAPS) and (3-Aminopropyl)-triethoxysilane (APS) are employed to modify the hemp fiber surface. These treated or modified fibers are blended respectively with polypropylene (PP) to fabricate the hemp fiber/PP composites. The effects of these different treatments on the structure, components and hydro-philicity of fiber, and the mechanical properties of the reinforced PP composites are studied. Moreover, the accelerated ageing experiments including humidity, temperature and ultraviolet of the reinforced PP composites are conducted. The results showed that the fiber treatment of water and alkali has a considerable effect on fiber structure, mechanical properties and durability of the reinforced compo-sites. The silane agent modification of fiber has less influence on the fiber structure but its functional group has great influence on the mechanical proper-ties and ageing resistance of the reinforced compo-sites
APA, Harvard, Vancouver, ISO, and other styles
25

Suzuki, Katsuhito. "Study on the continuous production process of microfibrillated cellulose composites." Kyoto University, 2017. http://hdl.handle.net/2433/225321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Dulgerbaki, Cigdem. "Synthesis And Characterization Of Polythiophene/montmorillonite And Polythiophene/polypropylene Composites." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607762/index.pdf.

Full text
Abstract:
In this study, polythiophene(PTP)/montmorillonite(MMT) nanocomposites were synthesized by in situ intercalative polymerization and chemical oxidative polymerization. In in situ intercalative polymerization method, composites containing 90 and 95% MMT were prepared. In chemical oxidative polymerization method, a series of composites ranging from 1 to 15% by weight MMT were synthesized. Thermal and morphological properties of samples were investigated by Differential Scanning Calorimeter (DSC), Thermal Gravimetric Analysis (TGA), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM)
electrical conductivities were measured by four probe technique. Since PTP/MMT composites are unprocessable PTP/polypropylene(PP) composites were prepared. Amounts of PTP were changed in the range 2-30 % by weight in the composites. Mechanical properties were investigated by tensile tests. Four probe technique was used for measurement of electrical conductivities. Morphological characterizations were made by SEM. Formation of PTP and its incorporation in PTP/MMT composite were confirmed by FTIR analysis. DSC results showed that PTP does not have any thermal transition in the range 25-300 0C. TGA results showed that PTP/MMT composites have outstanding stability compared to that of PTP. XRD analysis revealed the formation of nanocomposites resulting from intercalation of thiophene in MMT at high MMT contents. Composites were observed as globular particles and clusters in SEM studies. Conductivity values of PTP/MMT composites were in the order of 10-3 S/cm. It is observed that tensile modulus of PTP/PP composites increases by the addition of PTP, but percentage strain at break does not appreciably change. Increasing PTP content increased electrical conductivity.
APA, Harvard, Vancouver, ISO, and other styles
27

Liauw, Christopher Mark. "Influence of surface modification of aluminium hydroxide on the processing and mechanical properties of aluminium hydroxide/polypropylene composites." Thesis, Manchester Metropolitan University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Al-Kahtani, Salah Msfir. "The effects of hemp fibres on the mechanical and physical properties of E-glass fibres reinforced polypropylene (Twintex) composites." Thesis, University of Portsmouth, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.530113.

Full text
Abstract:
The main aim of this research is to investigate the mechanical and environmental properties of E-glass/polypropylene (Twintex) composite with and without natural fibres (Hemp) reinforcementA. serieso f lab testsw ere done to explain the impact damage characteristics of the composites were evaluated. The impact of mass applied started with 3.6 Kg and was incremented 3 Kg at a time to a maximum mass of 18.6 Kg. The effect of the impact damage and velocity was found to be significant- within the range of the velocities used. The absorbed impact energy significantly affected the impact performance of the Twintex panels. On the other hand, Twintex panels showed an ability to confine the damage zone and hence, to increase the damage tolerance of the panels. The results of impact were analysed using C-Scan. They significantly show that with the increase of mass the area of damage increases accordingly. The flexural properties of composite samples were evaluated by 3-point bending test methods. In contrast, the loads for sample's deformation in three-point bending test proved to be less when high-impact loaded samples were used. For the samples without hemp, the highest flexural stress was 317.616 MPa and the lowest was 116.552 MPa. The highest flexural modulus was 9937.63 MPa and the lowest was 4439.898 MPa. The effect of the flexural percentage of the load decreases with the increase of mass. The load decrease from sample 1 to sample 7, which indicated a loss in flexural strength by 63.03% and a loss in flexural modulus by 55.32%. With hemp reinforcement the highest flexural stress was found 189.092 MPa and the lowest was 101.763 MPa. The highest flexural modulus was found 10299.37 MPa and the lowest was 2437.73 MPa. The effect of the flexural percentage of the load decreases with the increase of mass. Twintex plus hemp retained 85.81 % of the original flexural strength it means that adding of hemp into the Twintex reduces the strength of the sample by 2.01 %. IV Abstract Tensile test results show the tangent modulus for the Twintex has reach to 1967.79 MPa, however adding hemp into the Twintex decrease the tangent modulus by 1.465% times. This is meant that the Twintex plus hemp makes the material weaker and softer. The Twintex plus hemp will be weaker by 30.765%. The SEM evaluation also shows that by increasing the impact load the state of the damage becomes more severe. There arc more instances of brittle and catastrophic fibre damages with high impact load. The Twintex plus hemp samples gained in weight, as expected, by an average of 2.64%. This 2.64% increase, assuming that the hemp absorbs all the water and not the polypropylene, means that the fibres increased weight by approximately 8.2%. Along with this increase in weight, the fibres also expanded due to the water absorption. After the water bath the samples lost only 2.5% of their flexural strength and an insignificant loss in flexural modulus. The addition of hemp caused a 35.4% reduction in the flexural modulus of the samples. This means that the samples with hemp became more elastic, deforming more than samples without the hemp layers. The effect of water absorption seemed to have little effect on any of the samples, with the largest effect being a 5.4% reduction in water boiled Twintex and hemp samples. Twintex obtains its highest flexural modulus properties from the glass fibres in the matrix. A reduction (35.4%) suggests that the reinforcement properties of the glass fibres are being reduced due to the incorporation of the hemp. This could be due to the hemp fibres taking away matrix material from the glass fibres in the centre of the sample. Creep and Stress relaxation properties of the sandwich panels with and without natural reinforcements were investigated and compared under different temperatures such as 30 °C, 40 °C, 50 °C, 60 °C. Melting point of both materials was determined. These qualitative and quantitative conclusions can be drawn regarding the use of hemp as reinforcement in Twintex sandwich panel.
APA, Harvard, Vancouver, ISO, and other styles
29

Elsabbagh, Ahmed [Verfasser], and Gerhard [Akademischer Betreuer] Ziegmann. "Processing and optimising the mechanical and physical properties of natural fibre reinforced polypropylene composites / Ahmed Elsabbagh ; Betreuer: Gerhard Ziegmann." Clausthal-Zellerfeld : Technische Universität Clausthal, 2017. http://d-nb.info/1231364947/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Marquina, Edgar Alberto. "Use of Dynamic Mechanical Testing, WAXD and SEM Image Analysis to Study the Properties of Polypropylene/Calcium Carbonate Nanocomposites." University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1269363578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ozturk, Serhat. "Modification Of Calcium Carbonate Surfaces In Natural Gas Plasma For Their Use In Polypropylene Composite Systems." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12608004/index.pdf.

Full text
Abstract:
In this study calcium carbonate (CaCO3) particles are surface modified by using plasma polymerized natural gas and effects of surface modification of CaCO3 filler on mechanical properties of CaCO3-PP composites are investigated. Different combination of plasma factors
RF power, natural gas flow rate, and plasma discharge durations, are investigated. Mechanical properties such as tensile strength and Young&rsquo
s Modulus are measured by tensile testing machine. Storage modulus and loss modulus measurements are done by DMA. Some information about structures generated by natural gas plasma surface modification is obtained by FTIR tests. The tensile fracture surfaces of prepared composites are investigated by using SEM micrographs. It is concluded that, despite some enhancement obtained in the moduli
the technique of natural gas plasma surface modification of CaCO3 particles did not introduce significant improvement in mechanical properties of composite as expected. This result may partially be attributed to selected plasma parameters (i.e., flow rate, RF power, and discharge duration).
APA, Harvard, Vancouver, ISO, and other styles
32

Alkoles, Omar M. S. "Mechanical behaviour and fracture toughness of unfilled and short fibre filled polypropylene both drawn and undrawn. Experimental investigation the effect of fibre content and draw ratio on the mechanical properties of unfilled and short glass fibre filled polypropylene." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5510.

Full text
Abstract:
The goal of this research is to investigate the combined effects of glass fibre reinforcement and molecular orientation in polypropylene-short glass fibre composites. Specimens have been fabricated using the injection moulding process and drawn using a small die drawing rig. The effects of die drawing on the fibre composites are complex, with the drawing process orienting both the polymer molecules and the glass fibres. This may be accompanied by the creation of voids in the polymer matrix and their destruction in the compressive stress field thus restoring the interfacial contact area between fibre and matrix. Unfilled and short glass fibre filled polypropylene specimens, with fibre content 7% wt, 13%wt, 27%wt, and 55%wt, were injection moulded prior to the die drawing process. An experimental program of die drawing within an oven at elevated temperature was conducted for polypropylene filled to various levels and at different strain rates. The specimens drew to draw ratios in the range ¿=1.41 to ¿=5.6. Mechanical characterization of the test materials has been conducted by examining the tensile stress strain and fracture behaviour under uniaxial conditions. The influence of glass fibre content and drawing conditions (draw ratio) on the fracture toughness and crack propagation was investigated using the double edge notched fracture test. The notch lengths ranged from 1.5 to 2.5 mm for 10 mm wide specimens. The critical stress intensity factor increased as the fibre content increased up to a limiting filler level. The fracture toughness of both unfilled and fibre filled polypropylene were found to be highly dependent on draw ratio. The results were analysed to find out the optimal draw ratio and fibre content that yielded the maximum modulus, strength and fracture toughness. Data showed that, at a given draw ratio, modulus, strength and fracture toughness increased with increasing fibre content to a maximum and then decreased. The optimum material was obtained at a draw ratio of 2.5 and filler loading 13wt%.
APA, Harvard, Vancouver, ISO, and other styles
33

Alkoles, Omar M. "Mechanical behaviour and fracture toughness of unfilled and short fibre filled polypropylene both drawn and undrawn : experimental investigation of the effect of fibre content and draw ratio on the mechanical properties of unfilled and short glass fibre filled polypropylene." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5510.

Full text
Abstract:
The goal of this research is to investigate the combined effects of glass fibre reinforcement and molecular orientation in polypropylene-short glass fibre composites. Specimens have been fabricated using the injection moulding process and drawn using a small die drawing rig. The effects of die drawing on the fibre composites are complex, with the drawing process orienting both the polymer molecules and the glass fibres. This may be accompanied by the creation of voids in the polymer matrix and their destruction in the compressive stress field thus restoring the interfacial contact area between fibre and matrix. Unfilled and short glass fibre filled polypropylene specimens, with fibre content 7% wt, 13%wt, 27%wt, and 55%wt, were injection moulded prior to the die drawing process. An experimental program of die drawing within an oven at elevated temperature was conducted for polypropylene filled to various levels and at different strain rates. The specimens drew to draw ratios in the range γ=1.41 to γ=5.6. Mechanical characterization of the test materials has been conducted by examining the tensile stress strain and fracture behaviour under uniaxial conditions. The influence of glass fibre content and drawing conditions (draw ratio) on the fracture toughness and crack propagation was investigated using the double edge notched fracture test. The notch lengths ranged from 1.5 to 2.5 mm for 10 mm wide specimens. The critical stress intensity factor increased as the fibre content increased up to a limiting filler level. The fracture toughness of both unfilled and fibre filled polypropylene were found to be highly dependent on draw ratio. The results were analysed to find out the optimal draw ratio and fibre content that yielded the maximum modulus, strength and fracture toughness. Data showed that, at a given draw ratio, modulus, strength and fracture toughness increased with increasing fibre content to a maximum and then decreased. The optimum material was obtained at a draw ratio of 2.5 and filler loading 13wt%.
APA, Harvard, Vancouver, ISO, and other styles
34

Ezat, Gulstan S. "The influence of multi-walled carbon nanotubes on the properties of polypropylene nanocomposite : the enhancement of dispersion and alignment of multiwalled carbon nanotube in polypropylene nanocomposite and its effect on the mechanical, thermal, rheological and electrical properties." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5703.

Full text
Abstract:
Carbon nanotubes are known as ideal fillers for polymer systems; the main advantage of carbon nanotubes over other nano-reinforcing particles is the combination of superior strength and stiffness with large aspect ratio. Carbon nanotubes may improve the mechanical, electrical and thermal properties of polymers, but to realise their potential in polymer systems uniform dispersion, strong interfacial adhesion and alignment of nanotubes within the polymer matrix are necessary. These properties are not easy to achieve and they are key challenges in producing CNT/Polymer system. This research was carried out in an attempt to understand how the properties of CNT/Polymer composite can be optimised by manipulation of additives, compounding and postcompounding conditions. Polypropylene/Multi-Walled Carbon Nanotube (PP/MCNT) composites were prepared by conventional twin screw extrusion. Dispersants and compatibilisers were used to establish good interaction between filler and polymer. Several different extruder screw configurations were designed and the properties of PP/MCNT composite prepared by each configuration investigated. The results indicated that the addition of carbon nanotubes without additives enhanced mechanical, electrical and thermal properties of polypropylene polymer. Incorporation of compatibilisers into PP/MCNT improved the stiffness but decreased the strength of the nanocomposite, whilst addition of dispersants decreased the mechanical properties of the nanocomposite. Addition of both additives at high concentration improved electrical conductivity and induced electrical percolation in the nanocomposite. Extruder screw configuration was found to have significant effect on the electrical conductivity whilst only slightly affecting mechanical properties of the nanocomposite, possibly due to the competition between dispersion and degradation of polymer chains and possible reduction of carbon nanotube length by intensive shear during compounding. The use of screw configuration with high mixing intensity promoted the dispersion of nanotubes and favoured the conduction process in the nanocomposite. Finally in an attempt to improve dispersion and alignment of carbon nanotubes, compounded PP/MCNT composite was subjected to micromoulding, fibre spinning and biaxial stretching processes and the resultant properties investigated. Application of post-compounding process was found to have significant effect on mechanical and rheological properties of the nanocomposite. Stiffness and strength of the nanocomposites treated by post-compounding processes were found to increase by up to 160% and 300%, respectively. The reinforcement effect of carbon nanotubes in the stretched nanocomposites was found to be the greatest. Rheological analysis suggested that the application of post-compounding processes enhanced dispersion of carbon nanotubes within the nanocomposite. Overall, this finding of this research has shown that carbon nanotubes can be incorporated into polypropylene using conventional equipment to provide significant improvement in properties. By careful choices of additives, compounding and postcompounding conditions, specific properties can be further enhanced.
APA, Harvard, Vancouver, ISO, and other styles
35

McShane, P. M. "Optimization of the morphological, mechanical and rheological properties of novel polypropylene/ethylene-octene copolymer blends for automotive fuel line protection applications." Thesis, Queen's University Belfast, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mattsson, Josephie. "Technical Analysis of Flax Fiber Reinforced Polypropylene : Prerequisites for Processing and Recycling." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-32352.

Full text
Abstract:
Nowadays, when environmental concerns are becoming increasingly important are there great interest in natural materials and recyclability. The possibility of reusing materials with maintained mechanical properties are essential for sustainability. Today produced approximately 90,000 tons of natural fiber reinforced composites in Europe of those are 40,000 tons compression molded of which the automotive industry uses 95%. Natural fiber reinforced composites is recyclable and therefore interesting in many applications. Also, natural fiber reinforced composites is inexpensive, light in weight and shows decent mechanical properties which makes them attractive to manufactures. However, the problem with natural fiber reinforced composites is the poor adhesion between fiber and matrix, the sensitivity of humidity and their low thermal stability. Those problems could be overcome by addition of compatibilizer and reactive filler. This study will examine the technical requirement in order to develop a sustainable and recyclable biocomposite. It investigates the composition of matrix (polypropylene), fiber (flax), compatibilizer (maleic anhydride grafted polypropylene) and reactive filler (CaO) in order to obtain various combinations of stiffness, strength and processability. The two main methods used for preparing samples were compounding and injection molding. Results shows that 20 wt% flax was the optimal fiber content and that maleic anhydride grafted polypropylene is a very good compatibilizer by enhancing the strength significant. Surprisingly was the strength impaired due to the addition of CaO. The composition of 20 wt% flax, 1 wt% maleic anhydride grafted polypropylene and 79 wt% polypropylene is the technically most favorable composition.
APA, Harvard, Vancouver, ISO, and other styles
37

Liang, Jiarong. "Cellulose oxalates in biocomposites." Thesis, KTH, Fiber- och polymerteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297506.

Full text
Abstract:
Under de senaste åren, på grund av överanvändningen av icke förnybara resurser har den ekologiska miljön på jorden påverkats allvarligt. I takt med detta ökade oron bland människor om att resurserna skulle ta slut. Därför är det nödvändigt att utveckla och använda mer miljövänliga förnybara resurser. Ett av dessa alternativ är cellulosabaserat material, vilket är ett utmärkt val. Vanligtvis består cellulosabaserat material av ett förstärkande material (cellulosafiber) och en matris (polymer eller metall). Dock bör kompatibiliteten mellan cellulosamaterialet och polymermatrisen ses över, eftersom generellt är kompatibiliteten mellan de låg. I detta projekt studerades olika metoder för att förbättra kompatibiliteten mellan cellulosamaterialet och polymermatrisen. Två cellulosamaterial (mikrokristallin cellulosa (MCC) och cellulosaoxalat (COX)) behandlades med olika modifieringsmetoder för att förbättra kompatibiliteten och gränssnittsinteraktionen mellan materialen. För att modifiera MCC och COX användes bland annat kulmalning, vatten som dispergeringsmedel, förestring av cellulosafibrerna med oljesyra under olika reaktionstider (6, 18, respektive 48 timmar), samt att tillsätta ett kompatibiliseringsmedel, maleinsyraanhydrid-ympad polypropylen (MAPP), i olika halter (1% respektive 2%). För att framställa kompositproverna användes extrudering och formsprutning. Dragprovning genomfördes för att testa de mekaniska egenskaperna hos proverna. Ytterligare karakteriseringsanalyser som utfördes på de olika cellulosapulvren var kontaktvinkeln (CA), svepelektronmikroskopi (SEM), infrarödspektroskopi (FTIR), och röntgendiffraktion (XRD). Resultatet från dragprovningen visade att COX-proverna med 1% MAPP som kompatibilisator gav den högsta draghållfastheten och Youngs modul av alla kompositproverna som producerades i detta exjobb. Användningen av MAPP som kompatibiliseringsmedel visade ett bättre resultat än de andra undersökta metoderna för att förbättra kompatibiliteten mellan den hydrofila ytan på MCC/COX och den hydrofoba ytan på polymermatrisen. Att använda MAPP som kompatibilisator bör prioriteras vid tillverkningen av kompositmaterial.
In recent years, with the excessive use of non-renewable resources on the earth, the ecological environment has been seriously affected. At the same time, humans began to worry about running out of resources. Therefore, it is necessary to develop environmentally friendly renewable resources. Cellulose-based material is an excellent choice. Commonly, cellulose-based material consists of reinforcement (cellulose fiber) and matrix (polymer or metal). However, the compatibility between cellulosic material and polymer matrix should be considered. In general, the compatibility between them is poor. In this project, several methods to improve the compatibility between the cellulose material and polymer matrix were studied. Two cellulosic materials (microcrystalline cellulose (MCC) and cellulose oxalate (COX)) were treated with different modification methods to improve the compatibility and interfacial interaction between the cellulosic material and polymer matrix. Ball milling, using water as a dispersing agent, using oleic acid to esterify cellulose fiber for different reaction times (6 h, 18 h, and 48 h), and using different concentrations (1% and 2%) of maleic anhydride grafted polypropylene (MAPP) as compatibilizers were applied to improve the compatibility between cellulose fiber and polymer matrix.  To produce the composite specimens, extrusion and injection molding were utilized. Tensile testing was done to test the mechanical properties of the specimens. Contact angle (CA), scanning electron microscope (SEM), Fourier Infrared Spectrometer (FTIR), X-ray diffraction (XRD) were also performed on the various cellulose powders as characterization methods. According to the result of tensile testing, COX samples with 1% MAPP as compatibilizer, showed the highest tensile strength and Young’s modulus of all the composite samples produced in this master thesis. Using MAPP as a compatibilizer shows a better result than using other methods to improve the compatibility between hydrophilic MCC/COX surface and hydrophobic PP matrix. The use of MAPP as a compatibilizer should be prioritized when producing composite materials.
APA, Harvard, Vancouver, ISO, and other styles
38

Xiong, Bijin. "Contribution to the study of elastic and plastic deformation mechanisms of polyethylene and polypropylene as a function of microstructure and temperature." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0120/document.

Full text
Abstract:
Les propriétés mécaniques des polymères semi-cristallins en relation avec leur microstructure ont fait l'objet d'un grand nombre d'études. Cependant, il reste encore des questions non résolues, concernant les mécanismes de la déformation plastique à température élevée, les propriétés intrinsèques de la phase amorphe interlamellaire ou encore la distribution des contraintes locales dans les sphérolites… L'objectif de cette thèse est d‘adresses ces questions dans les cas du PE et du PP en fonction de la température. Pour atteindre cet objectif, une série d'échantillons de PE et PP des différents microstructures ont été préparées et caractérisés par DSC, SAXS, WAXS et spectroscopie Raman. Dans le domaine élastique, la déformation locale (εlocal) dans les régions équatoriales et polaires des sphérolites ont été mesurés par SAXS in situ. Le ratio εlocal / εmacro a été utilisé dans un modèle mécanique permettant le changement d‘échelle de mésoscopique macroscopique. En outre, le module apparent de la phase amorphe interlamellaire Ma a été estimé par la contrainte et la déformation locale. Les Ma valeurs du PE sont dans la gamme 250 - 500 MPa, ce qui est très élevé par rapport au module du PE amorphe caoutchoutique. Dans le domaine plastique, la cavitation, la transformation martensitique et le cisaillement du cristal ont été observées par SAXS et WAXS in situ. Une concurrence entre ces mécanismes plastiques a été mise en évidence. L‘augmentation de la température entraine une disparition progressive de la cavitation et un retard de la transformation martensitique vers de plus haute déformation. La structure fibrillaire, induite par étirage à différentes températures a été étudiée par SAXS in-situ. Il a été observé que la longue période et le diamètre des micro-fibrilles dépendent de la température d‘étirage de la structure initiale, via les mécanismes de « fusion-recristallisation » et « fragmentation-réarrangement ». Une étude similaire a été effectuée pour le PP
The mechanical properties of semicrystalline polymers in relation to microstructure have been the subject of a large number of studies. However, there are still some unresolved issues, for instance, plastic deformation mechanisms in elevating temperature, intrinsic properties of interlamellar amorphous phase, local stress distribution in spherulites etc. The aim of this thesis is to address these issues in the case of PE and PP in different temperatures. A series of PE and PP samples with wide range of microstructures thanks to various thermal treatments were characterized by DSC, SAXS, WAXS and Raman spectroscopy. In elastic domain, the local strain εlocal in equator and polar regions of spherulites were measured by in situ SAXS. The ratio is a constant which only depends on drawing temperature. This ratio was used in a mechanical modelling as a transition factor from mesoscopic to macroscopic scale. Furthermore, the apparent modulus of the interlamellar amorphous phase Ma was estimated by the measured local stress and strain. The Ma of PE was found to be in the range 250 - 500 MPa which is surprisingly high comparing with the modulus of bulk rubbery PE. In the plastic domain, cavitation, martensitic transformation and crystal shear were observed by in situ SAXS and WAXS and their respective strain onsets were shown to be strongly dependent on crystallite thickness and temperature. It was found that competition exists between these plastic mechanisms. With increasing temperature, cavitation gradually disappears and martensitic transformation is delayed. A map for the onset of these plastic mechanisms was produced. In addition, the fibrillar structure induced by drawing at different temperature was studied by in situ SAXS. The long period and diameter of micro-fibrils proved to be dependent on the drawing temperature and also the initial structure via the melting-recrystallization and fragmentation-rearrangement mechanism. Similar investigations were performed with PP
APA, Harvard, Vancouver, ISO, and other styles
39

Leucker, Karsten [Verfasser], Dirk W. [Akademischer Betreuer] Schubert, and Dirk W. [Gutachter] Schubert. "Influence of the calender pattern on the mechanical properties of polypropylene spunbond nonwovens / Karsten Leucker ; Gutachter: Dirk W. Schubert ; Betreuer: Dirk W. Schubert." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/1212242793/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Men, Yongfeng. "Understanding of the mechanical response of semicrystalline polymers based on the block like substructure of crystalline lamellae a comprehensive study of mechanical relaxation, tensile deformation and yielding properties of two model polymers: polyethylene and syndiotactic polypropylene /." [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9590128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Huczala, Vít. "Vliv fyzikální úpravy sráženého CaCO3 na vlastnosti kompozitu na bázi PP." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2014. http://www.nusl.cz/ntk/nusl-217005.

Full text
Abstract:
The diploma thesis deals with study of system of polypropylene and inorganic filler. As filler was used commercially available particulate filler CaCO3 termed NPCC 201. The objective of the study was a surface plasma treatment of filler in order to obtain composite based on polypropylene. Mechanical properties of this composite will show significantly greater value than basic matrix. The filler was treated in dielectric barrier plasma discharge by atmospheric pressure. The characterization of filler was performed before and after plasma treatment by x-ray photoelectron spectroscopy (XPS), electron microscope (SEM) and sedimentation analysis. The distribution of particle size was measured by laser diffraction and by dynamic light scattering. The composite materials with various weight concentration of filler were prepared in POLYMER INSTITUTE BRNO by using the twin-screw extruder and the test specimens were prepared by the injection molding technology. Their mechanical properties was studied by using of short and long-term tests. The uniaxial creep testing in tension was used for study of long-term behavior of composites.
APA, Harvard, Vancouver, ISO, and other styles
42

Soares, Rodrigo Gonçalves. "Avaliação das propriedades mecânicas dos polipropilenos utilizados para confecção de placas oclusais." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/58/58133/tde-06022014-083917/.

Full text
Abstract:
O objetivo desse estudo foi avaliar algumas propriedades mecânicas como a rugosidade de superfície, microdureza, módulo de elasticidade e resistência flexural dos polipropilenos em comparação com as resinas acrílicas. Para avaliação das propriedades foram confeccionados doze corpos de prova (65 x 10 x 3 mm) de cada marca comercial de resina acrílica: Vipi Flash (autopolimerizável), Vipi Wave (termopolimerizável por calor de microondas), Vipi Crill, Lucitone, QC-20 (termopolimerizáveis por calor de banho de água); e Bioflex (termoplástico do tipo rígido) e Flexsystem (termoplástico do tipo flexível). As médias e desvios padrões do teste de rugosidade superficial em Ra foram Vipi Flash (0,10 ± 0,03); Vipi Wave (0,10 ± 0,02); Vipi Cril (0,12 ± 0,04); Lucitone (0,10 ± 0,02); QC-20 (0,11 ± 0,03); Bioflex (0,13 ± 0,01) e Flexsystem (0,10 ± 0,02). Microdureza Knoop: Vipi Flash (15,36 ± 0,32); Vipi Wave (16,60 ± 0,87); Vipi Cril (18,89 ± 2,10); Lucitone (15,73 ± 0,33); QC-20 (15,91 ± 0,47); Bioflex (71,64 ± 3,99) e Flexsystem (65,37 ± 7,08). Módulo de elasticidade: Vipi Flash (2952,76 ± 292,12); Vipi Wave (2511,69 ± 304,09); Vipi Cril (2745,61± 288,86); Lucitone (1904,53 ± 149,05); QC-20 (1913,86 ± 147,80); Bioflex (523,57 ± 151,19) e Flexsystem (367,04 ± 171,61). Resistência flexural: Vipi Flash (81,62 ± 4,62); Vipi Wave (83,52 ± 8,42); Vipi Cril (64,17± 5,23); Lucitone (74,71± 9,03); QC-20 (75,80 ± 8,44); Bioflex (22,99 ± 5,46) e Flexsystem (22,99 ± 7,59). O polipropileno Bioflex apresentou o maior valor de rugosidade de superfície (p<0,05) e microdureza Knoop (p<0.01), quando comparado com as demais resinas avaliadas; e os polipropilenos Bioflex e Flexsystem apresentaram os menores valores do módulo de elasticidade (p<0.01) e resistência flexural (p<0.01), quando comparado com as demais resinas avaliadas.
The aim of this study was to evaluate the mechanical properties such as surface roughness, hardness, elastic modulus and flexural strength of polypropylene compared to acrylic resins. To evaluate the properties were made twelve specimens (65 x 10 x 3 mm) of each brand acrylic resin: Vipi Flash (self-curing), Vipi Wave (thermo microwave heat), Vipi Crill, Lucitone QC - 20 (thermo heat water bath) and Bioflex (thermoplastic rigid type) and Flexsystem (thermoplastic flexible type). The means and standard deviations of the test surface roughness in Ra were Vipi Flash (0.10 ± 0.03); Vipi Wave (0.10 ± 0.02); Vipi Cril (0.12 ± 0.04); Lucitone (0.10 ± 0.02); QC -20 (0.11 ± 0.03) Bioflex (0.13 ± 0.01) and FlexSystem (0.10 ± 0.02). Knoop hardness: Vipi Flash (15.36 ± 0.32); Vipi Wave (16.60 ± 0.87); Vipi Cril (18.89 ± 2.10); Lucitone (15.73 ± 0.33); QC- 20 (15.91 ± 0.47); Bioflex (71.64 ± 3.99) and FlexSystem (65.37 ± 7.08). Modulus of elasticity: Vipi Flash (2952.76 ± 292.12); Vipi Wave (2511.69 ± 304.09); Vipi Cril (2745.61 ± 288.86); Lucitone (1904.53 ± 149.05), QC- 20 (1913.86 ± 147.80); Bioflex (523.57 ± 151.19) and FlexSystem (367.04 ± 171.61). Flexural strength: Vipi Flash (81.62 ± 4.62); Vipi Wave (83.52 ± 8.42); Vipi Cril (64.17 ± 5.23); Lucitone (74.71 ± 9.03); QC- 20 (75.80 ± 8.44) ; Bioflex (22.99 ± 5.46) and FlexSystem (22,99 ± 7,59). Polypropylene Bioflex showed the highest surface roughness (p < 0.05) and Knoop hardness (p < 0.01), when compared to other resins evaluated, and polypropylenes Bioflex and FlexSystem showed the lower modulus of elasticity (p < 0.01), and flexural strength (p < 0.01) as compared with other resins evaluated.
APA, Harvard, Vancouver, ISO, and other styles
43

FERMINO, DANILO M. "Estudo das propriedades mecânicas, reológicas e térmicas de nanocompósito de HMSPP (Polipropileno com alta resistência do fundido)com uma betonita brasileira." reponame:Repositório Institucional do IPEN, 2011. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10028.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:33:59Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:00:53Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO, and other styles
44

LOPERGOLO, LILIAN C. "Estudo da estrutura e dos parametros de reticulacao de membranas hidrofilas a base de poli(N-vinil-2-pirrolidona) induzidas por radiacao." reponame:Repositório Institucional do IPEN, 2002. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11073.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:47:53Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:09:05Z (GMT). No. of bitstreams: 1 08353.pdf: 6590819 bytes, checksum: 6bd431fef4518d9f2aacc4d2c2809274 (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
FAPESP:97/07146-6
APA, Harvard, Vancouver, ISO, and other styles
45

SILVA, NETO João Emídio da. "Efeito de compatibilizantes no desempenho de sistemas PP/argila organofílica." Universidade Federal de Campina Grande, 2015. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1156.

Full text
Abstract:
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-07-12T10:48:17Z No. of bitstreams: 1 JOÃO EMÍDIO DA SILVA NETO - DISSERTAÇÃO (PPGCEMat) 2015.pdf: 4756921 bytes, checksum: 06e32a45828b2df2ef5a64d06f2272b8 (MD5)
Made available in DSpace on 2018-07-12T10:48:17Z (GMT). No. of bitstreams: 1 JOÃO EMÍDIO DA SILVA NETO - DISSERTAÇÃO (PPGCEMat) 2015.pdf: 4756921 bytes, checksum: 06e32a45828b2df2ef5a64d06f2272b8 (MD5) Previous issue date: 2015-02-09
CNPq
Neste trabalho, utilizando a técnica de intercalação por fusão, foram preparados híbridos à base de polipropileno homopolímero com 5% em peso de argila bentonítica organofílica, compatibilizante polipropileno enxertado com anidrido maleico em teores de 5 e 15%, e co-intercalante erucamida em teores de 0,5 e 1,0%. Os sistemas foram processados em misturador interno e extrusora dupla rosca corrotacional interpenetrante, sob uma única condição de processamento. Os híbridos foram caracterizados por índice de fluidez (MFI), calorimetria exploratória diferencial (DSC), termogravimetria (TG), difração de raios-X (DRX), microscopia óptica, microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET) e propriedades mecânicas em tração e impacto. Os resultados de índice de fluidez evidenciaram a redução deste parâmetro com a adição da argila e/ou aditivos (compatibilizante e co-intercalante), indicando aumento da viscosidade nos sistemas. Por DSC e TG foi possível observar que a presença da argila e do agente compatibilizante elevou a estabilidade térmica dos materiais quando comparados ao polipropileno puro. Os resultados de difração de raios X mostraram aumento da distância interplanar basal d(001) dos sistemas, formando estruturas intercaladas, em especial nas composições em que o agente co-intercalante foi empregado. A resistência à tração dos sistemas não foi afetada significativamente, mas foi observado um aumento no módulo de elasticidade e na resistência ao impacto com a incorporação dos compatibilizantes. A microscopia eletrônica de transmissão revelou a formação de nanocompósitos com estruturas parcialmente esfoliadas e/ou intercaladas.
In this work, hybrids of polypropylene homopolymer containing 5% by weight organoclay, 5 and 15% maleic anhydride grafted polypropylene and 0.5 and 1.0% erucamide, respectively, were prepared by melt intercalation. The systems were processed in an internal mixer and corotating twin screw extruder, at a single processing condition. The hybrids were characterized by melt flow index (MFI), differential scanning calorimetry (DSC), thermogravimetry (TG), X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile and impact properties. Melt flow rate results showed a decrease in this parameter with clay and/or additives (compatibilizer and co-intercalant) addition, which indicates an increase in the system´s viscosity. DSC and TG, data suggested that the thermal stability of the systems increased with clay and coupling agent incorporation. X-ray diffraction results showed increased basal interplanar distance d(001) of the systems forming intercalated structures, in particular in compositions where the co-intercalating agent was utilized. The tensile strength of the systems was not significantly affected, however, an increase on elastic modulus and on impact resistance was observed with the additives incorporation. Transmission electron microscopy revealed the formation of partially exfoliated and/or intercalated nanocomposites.
APA, Harvard, Vancouver, ISO, and other styles
46

Pliya, Bidossessi amen prosper. "Contribution des fibres de polypropylène et métalliques à l'amélioration du comportement du béton soumis à une température élevée." Thesis, Cergy-Pontoise, 2010. http://www.theses.fr/2010CERG0479/document.

Full text
Abstract:
Le but de ce travail de recherche est d'étudier l'effet de fibres de polypropylène et de fibres métalliques sur le comportement du béton soumis à une température élevée. D'une part, les fibres de polypropylène ont été ajoutées au béton pour améliorer sa stabilité thermique, et d'autre part les fibres métalliques ont été ajoutées au béton pour améliorer ses propriétés mécaniques résiduelles. De nouvelles formulations de béton ont ensuite été définies, en utilisant un cocktail de fibres de polypropylène et métalliques, afin d'améliorer à la fois la stabilité thermique et les propriétés mécaniques résiduelles du béton. Quatre familles de bétons ont été étudiées : - bétons témoins sans fibres, - bétons contenant des fibres de polypropylène, - bétons contenant des fibres métalliques, et – bétons contenant un cocktail de fibres de polypropylène et métalliques. Trois rapports eau/ciment sont utilisés : 0.30, 0.45 et 0.61. Les éprouvettes de béton, issues de ces compositions, ont été soumises à des cycles de chauffage – refroidissement de la température ambiante à une température de consigne de 150°C, 300°C, 450°C et 600 °C. La vitesse de chauffage a été fixée à 1 °C.min-1. Les teneurs en fibres étaient de 0.11, 0.17 ou 0.22 % en proportion volumique pour les fibres de polypropylène et de 0.25, 0.38 ou 0.51 % pour les fibres métalliques. Les proportions volumiques de cocktail de fibres étaient de 0.49, 0.60, 0.62 et 0.73%. La stabilité thermique, les propriétés mécaniques (résistance en compression, résistance en traction, module d'élasticité), la porosité initiale et résiduelle des bétons formulés ont été analysées. La perte de masse des éprouvettes lors des différents chauffages a été aussi mesurée.Cette étude expérimentale aboutit à la formulation de bétons dont à la fois la stabilité à haute température et le comportement mécanique après refroidissement sont améliorés
The aim of this study was to investigate the effect of polypropylene and steel fibres on the behaviour of concrete subjected to high temperature. Polypropylene fibres were added to the studied concrete mixes in order to improve the concrete thermal stability. Steel fibres were added to the studied concrete mixes in order to improve the concrete residual mechanical properties. News concretes mixes were then designed by adding a cocktail of polypropylene fibres and steel fibres in order to improve both the thermal stability and the residual mechanical properties of the studied concrete. Four groups of concrete mixes were studied: - concretes without fibres, - concretes with polypropylene fibres, - concretes with steel fibres, and - concretes with a cocktail of polypropylene and steel fibres. Three water/cement ratios were used: 0.30, 0.45 and 0.61. The concrete specimens were subjected to various heating – cooling cycles from the room temperature to 150°C, 300°C, 450°C and 600 °C. The heating rate was fixed at 1 °C.min-1. The amounts of fibres in the concrete were 0.11%, 0.17% or 0.22% in volume for polypropylene fibres and 0.25%, 0.38% or 0.51% in volume for steel fibres. The amounts of fibres in concrete with a cocktail of polypropylene and steel fibres were 0.49, 0.60, 0.62 and 0.73%, in volume. The thermal stability, the initial and residual mechanical properties (compressive strength, tensile strength, modulus of elasticity), the porosity and the mass loss of the studied concrete mixes were investigated.This experimental study shows a way to design a concrete mix in order to improve both the thermal stability and the residual mechanical properties
APA, Harvard, Vancouver, ISO, and other styles
47

Santos, Alessandra Fernandes. "Efeito da irradiação por feixe de elétrons sobre as propriedades físicas e químicas de uma resina de polipropileno." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-05082011-141252/.

Full text
Abstract:
No presente trabalho modificou-se o polímero polipropileno por meio de radiação por feixes de elétrons com dose de 20, 40, 60, 100, 200 e 300kGy. Foram estudados os efeitos das doses de radiação nas propriedades físicas e químicas do polímero e a possível existência de uma correlação entre os resultados da indentação instrumentada e as demais propriedades físico-químicas do polímero, assim como ocorre com os metais. O polímero foi submetido aos ensaios de tração, indentação instrumentada, difração de raios-X (DRX), espectroscopia de elétrons na região do ultravioleta próximo e visível (UV VIS), espectroscopia vibracional no infravermelho com transformada de Fourier (FTIR), índice de fluidez, fração gel e análise térmica. Sobre as propriedades químicas do polímero observa-se que em doses de esterilização (até 20kGy) o mesmo não sofre oxidação radiolítica. A partir de doses superiores a 40kGy o polímero apresentou modificação permanente de cor (amarelecimento). Esta formação da cor mostrou ser ocasionada pela presença crescente do grupo cromóforo -C=O, fato este confirmado pelos resultados de espectroscopia UV-VIS. O resultado não pode ser comprovado no espectro de FTIR, porém observou-se que o método de preparação das amostras afetou o resultado deste ensaio lançando dúvidas sobre sua representatividade. A falha em identificar a presença crescente de grupos carbonila por FTIR, portanto, não invalida esta conclusão. Sobre as propriedades físicas do polímero comprovou-se com o ensaio de DRX que o aumento da dose de radiação não alterou a estrutura cristalina do polímero e não houve mudança significativa nos parâmetros de rede da célula monoclínica. Observou-se, entretanto, a diminuição da cristalinidade do polímero irradiado com doses de radiação até 60kGy. Para doses maiores observou-se novamente o aumento de fração cristalina, ou seja, a amostra sofreu recristalização induzida por irradiação. O polímero apresentou um aumento da resistência à degradação térmica com doses até 60kGy, permanecendo constante para doses maiores. Os resultados obtidos no ensaio de tração mostraram que o polímero irradiado com doses até 40kGy, não apresentaram alteração do limite de escoamento, porém para doses de radiação maiores houve decréscimo desta propriedade. Finalmente observou-se ensaio de indentação instrumentada não é sensível o suficiente para reproduzir as significativas alterações de propriedades mecânicas produzidas no polímero aqui estudado em função da irradiação por feixe de elétrons, porém observa-se uma queda acentuada do módulo de rigidez estimado no ensaio a partir do material irradiado com uma dose de 100kGy, que correlaciona com a recuperação da cristalinidade observada.
A polypropylene resin was modified in the present work by submitting standard tensile specimens to electron beam irradiation, with doses corresponding to 20, 40, 60, 100, 200 and 300kGy. The effect of this irradiation upon the polymer\'s chemical and physical properties was investigated, in particular seeking a possible correlation between these properties and instrumented indentation results, as it is common usage in the case of metals and alloys. The polymer was submitted to tensile, instrumented indentation, X-ray diffraction (DRX), electron spectroscopy (UV-VIS), vibrational infrared spectroscopy (FTIR), melt-flow index, gel fraction and thermal analysis tests. Concerning the chemical properties, it was observed that up to 20kGy dose there is no evidence of radiolytic oxidation in the polymer. Above 40kGy dose it was observed the irreversible yellowing of the samples, indicating the growing presence of chromophore groups (e.g. -C=O), which was confirmed by the UV-VIS results. The FTIR data could not confirm this hypothesis, but it was observed that the sample preparation method severely affected the FTIR spectra, casting doubt about its representativity. This failure of the FTIR data to identify the growing presence of carbonyl groups does not invalidate the previous results. Concerning the physical properties, X-ray diffraction showed that irradiation did not change the crystal structure of the polymer and no significant changes in lattice parameters could be identified either. The samples crystallinity, however, shows a remarkable reduction up to 60kGy dose. At the 100kGy sample, however, it was observed a recover of the crystallinity, which was attributed to radiation induced recrystallization. The thermal degradation resistance of the polymer enhanced up to 60kGy dose and remained approximately constant for higher doses. The yield strength of the samples kept approximately constant up to 60kGy dose, but decreased after that. Finally the instrumented indentation results where not sensible enough to detects the macroscopic mechanical properties, but the estimated Young\'s modulus shows a remarkable reduction for radiation doses equal or higher than 100kGy, which correlated well with the other chemical and physical properties.
APA, Harvard, Vancouver, ISO, and other styles
48

LUGAO, ADEMAR B. "Estudos da sintese por irradiacao, da estrutura e do mecanismo de formacao de polipropileno com alta resistencia do fundido." reponame:Repositório Institucional do IPEN, 2004. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11212.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:49:33Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:01:18Z (GMT). No. of bitstreams: 1 10451.pdf: 10032363 bytes, checksum: b57b5911da64da404a5cee965c7494e4 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
49

Fojtlová, Lucie. "Charakterizace polypropylénu metalocenového typu s úzkou distribucí molekulových hmotností." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2013. http://www.nusl.cz/ntk/nusl-216951.

Full text
Abstract:
Metallocene based polypropylene (mPP) with very narrow distribution of molecular weight was peroxide-degraded to materials of four different molecular weights including the original mPP labeled MET1–MET3 and MET0, respectively. Double bonds formed after peroxide-degradation was proved on material surfaces by FTIR-ATR (attenuated total reflection of Fourier-transformed infrared spectroscopy). The decreasing molecular weight led to gradual decrease of the tensile strength, tensile modulus as well as the strain and to the decrease of the temperature of thermal decomposition. Confocal laser scanning microscopy (CLSM) of chemically etched surfaces of MET0–MET3 revealed supramolecular structure of commonly occurred structure (radical spherulites) but also supramolecular structure of form (sheaf-like structure). The latter was proved by XRD together with the fact that the content of form decreases with decreasing molecular weight. The mentioned structure differences were not visible on DSC curves because the amount of structure was small and melting temperature, temperature of crystallization and the degree of crystallinity remained the same for all four types of mPP. The structure of the original materials was also characterized after isothermal crystallization performed on differential scanning calorimetry (DSC) and under polarizing optical microscope (POM). The first was performed at 120–126 °C and the latter at 130 °C (Tic). The materials obtained on DSC always contained the structure and its amount increased with increasing Tic whereas higher content of form was always in MET0 with respect to MET3. The structure was proved by XRD and also by DSC heating run followed immediately after the isothermal process. The latter revealed two endotherms belonging to melting of and forms. The presence of form was on the surfaces proved by CLSM. The formation of structure was in-situ observed on POM and the amount of it decreased with decreasing molecular weight. The spherulite growth rate increased with decreasing molecular weight whereas the rate of crystalline portion expressed as half-time of crystallization decreased with decreasing molecular weight.
APA, Harvard, Vancouver, ISO, and other styles
50

Rosa, Anderson Donizete Alves da. "Estudo da incorporação da fibra de juta como modificadora nas propriedades mecânicas do polipropileno reciclado." Universidade Presbiteriana Mackenzie, 2009. http://tede.mackenzie.br/jspui/handle/tede/1373.

Full text
Abstract:
Made available in DSpace on 2016-03-15T19:36:58Z (GMT). No. of bitstreams: 1 Anderson Donizete Alves da Rosa.pdf: 2211851 bytes, checksum: ddc079d1d3a7fdfc01e60d2071aa7c25 (MD5) Previous issue date: 2009-08-10
Fundo Mackenzie de Pesquisa
The large-scale production of plastics increased to 200 million tonnes in the world, in 2005. This represents a considerable increase in annual productions of 9.9% since 1950. A considerable part of these synthetic polymers, 36% focused on Asia and Oceania, followed by Europe and America with 29%. The production volume of the Middle East and Africa had a stake of 6%. These raw materials are used for a very short period of time and generate a significant volume of discarding. Even with a considerable development of lines of management of discarding, its treatment and disposal problems still arise from the difficulty in reuse packaging such as where they are generated, either by the state of cleanliness in which they are discarded, either by multi-material composition which is used to produce them. This paper seeks the use of natural fiber as a reinforcing and modifier in mechanical properties in the composite of recycled polypropylene. Through the begin process of incorporation of fibers to the matrix polymer (calendering), it was followed by extrusion in order to better mix the composite formed. After its extrusion, the pellets were subjected to the injection process to obtain the bodies of evidence for the trials of characterization. The samples were then carried out the tests of traction, bending by three points, hardness and resistance to impact. The viscometer properties of the composite were evaluated by the rate of flow. The work shows that different amounts of jute fiber incorporated into the matrix of recycled polypropylene, and the treatments in both the polypropylene fiber as in, change their characteristics thereby different properties studied.
A larga escala de produção de plásticos elevou-se para 200 milhões de toneladas no mundo, no ano de 2005. Isso representa um aumento considerável na produções anuais de 9,9%, desde 1950. Uma parte considerável destes polímeros sintéticos, 36% concentrou-se na Ásia e Oceania, seguidas pela Europa e América com 29%. O volume de produção do Oriente Médio e África tiveram uma participação de 6%. Estas matérias-primas são utilizadas por um período de tempo bastante curto e geram um volume de descartes importante. Mesmo com um desenvolvimento considerável de linhas de gestão dos descartes, seu tratamento e sua eliminação colocam ainda problemas provenientes da dificuldade em reutilizar tais embalagens na forma em que são geradas, seja pelo estado de limpeza em que são descartadas, seja pela composição multi-material que é utilizada para sua produção. O presente trabalho pesquisou o emprego de uma fibra natural como reforçadora e modificadora nas propriedades mecânicas na matriz de polipropileno reciclado. Por meio do processo inicial de incorporação das fibras à matriz o polímero (calandragem), foram seguidas de extrusão com o objetivo de homogeneizar melhor o compósito formado. Após sua extrusão, o material granulado foi submetido ao processo de injeção para obtenção dos corpos de prova para os ensaios de caracterização. Os corpos de prova foram então caracterizados através dos ensaios de tração, flexão por três pontos, dureza e resistência ao impacto. As propriedades viscosimétricas do compósito foram avaliadas por meio do índice de fluidez. O trabalho mostra que diferentes quantidades de fibra de juta incorporadas à matriz de polipropileno reciclado, bem como os tratamentos tanto na fibra de juta quanto no polipropileno, modificam suas características obtendo assim diferentes resultados nas propriedades estudadas.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography