Academic literature on the topic 'Polystyre'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polystyre.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polystyre"
Masruroh, D. J. D. H. Djoko, Lalu A. Didik, Eka Rahmawati, Masdiana Pagaga, Abdurrouf, and S. P. Sakti. "Solvent Effect on Morphology of Polystyrene Coating and their Role to Improvement for Biomolecule Immobilization in Application of QCM Based Biosensor." Applied Mechanics and Materials 530-531 (February 2014): 54–57. http://dx.doi.org/10.4028/www.scientific.net/amm.530-531.54.
Full textFord, Warren T., Alanta L. Lary, and Thomas H. Mourey. "Addition of Polystyryl Radicals from TEMPO-Terminated Polystyrene to C60." Macromolecules 34, no. 17 (August 2001): 5819–26. http://dx.doi.org/10.1021/ma0020990.
Full textDonchak, Volodymyr, and Khrystyna Harhay. "Synthesis of fluorinated polystyrene." Chemistry & Chemical Technology 2, no. 1 (March 15, 2008): 11–14. http://dx.doi.org/10.23939/chcht02.01.011.
Full textAlahmad, Waed. "Sunlight Photodegradable Polystyrene-TiO2/SiO2 Composite." Chemistry & Chemical Technology 13, no. 2 (June 10, 2019): 190–97. http://dx.doi.org/10.23939/chcht13.02.190.
Full textLee, Jong-Su, Hyun-Seok Shin, Jin-Woo Seok, Gyu-Wan Jang, and Yeong-Hwan Beag. "Surface Modification of Polystyrene (PS) by Atmospheric Pressure Plasma." Journal of the Korean Vacuum Society 18, no. 1 (January 30, 2009): 1–8. http://dx.doi.org/10.5757/jkvs.2009.18.1.001.
Full textSytnik, O. U. "Polymer composite based on polystyrene containing GdF3 nanoparticles." Functional materials 20, no. 2 (June 25, 2013): 243–47. http://dx.doi.org/10.15407/fm20.02.243.
Full textZhmurin, P. N. "Polystyrene-based plastic scintillator for n/γ -discrimination." Functional materials 21, no. 3 (September 30, 2014): 282–89. http://dx.doi.org/10.15407/fm21.03.282.
Full textWeidner, C. H., and T. E. Long. "Synthesis and characterization of 3-aryl-2-(polystyryl)cyclopropenones via cyclopropenium ion substitution on polystyrene." Journal of Polymer Science Part A: Polymer Chemistry 33, no. 1 (January 15, 1995): 1–6. http://dx.doi.org/10.1002/pola.1995.080330101.
Full textKim, Doo-Hwan, and Sang-Woog Ryu. "Synthesis and Ionic Conductivity of Polystyrene Derivative Containing Cyclic Carbonate." Journal of the Korean Electrochemical Society 18, no. 1 (February 28, 2015): 1–6. http://dx.doi.org/10.5229/jkes.2015.18.1.1.
Full textKim, Jae Seon, and Chung Kun Song. "Performance Improvement of TIPS-pentacene OTFTs by blending with Polystyrene." Journal of the Institute of Electronics and Information Engineers 50, no. 7 (July 25, 2013): 96–101. http://dx.doi.org/10.5573/ieek.2013.50.7.096.
Full textDissertations / Theses on the topic "Polystyre"
Pukančíková, Andrea. "Praktické aspekty blokové polymerace styrenu." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-216622.
Full textDohnalová, Tea. "Skleněný pastýř." Master's thesis, Vysoké učení technické v Brně. Fakulta výtvarných umění, 2019. http://www.nusl.cz/ntk/nusl-396117.
Full textMailhot-Jensen, Bénédicte. "Etude des mécanismes de photooxydation du polystyrène, du polyacrylonitrile et du polystyrene-co-acrylonitrile." Clermont-Ferrand 2, 1993. http://www.theses.fr/1993CLF21502.
Full textMerche, Delphine. "Synthèse et caractérisation de couches de polystyrène et de polystyrène sulfoné obtenues par polymérisation-plasma à pression (sub)-atmosphérique." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209871.
Full textNos résultats ont montré que la DBD permettait d’obtenir des films de polystyrène de meilleure qualité (degré d’oxydation moindre…) qu’avec la torche commerciale en raison de l’atmosphère contrôlée de l’enceinte DBD. Les films sont déposés en présence d’un gaz porteur (Ar ou He dans la DBD). Nous avons pu mettre en évidence l’influence de la nature de ce gaz porteur sur la structure des films (degré de branchement, et de réticulation des films et de préservation des cycles aromatiques de la molécule de départ).
Les dépôts de polystyrène sulfoné ont été synthétisés dans la DBD en une seule étape, par « copolymérisation » de deux précurseurs (styrène et acide trifluorométhane sulfonique) injectés simultanément dans la décharge. Ces membranes pourraient servir d’électrolyte dans les piles à combustibles miniaturisées de type PEMFC (« Polymer Electrolyte Membrane Fuel Cell »), utilisant de l’hydrogène ou du méthanol et ce pour des applications portables.
L’acide trifluorométhane sulfonique permet le greffage de groupements sulfoniques échangeurs d’ions (nécessaires pour la conductivité de la membrane) sur le squelette de polystyrène.
La complémentarité des différentes techniques spectroscopiques utilisées -Spectroscopie des Photoélectrons X (XPS), Infra-Rouge à Transformée de Fourier (FTIR), Spectroscopie des Ions Secondaires (SIMS) statique et dynamique- ont montré que les groupements acides sulfoniques (bien préservés dans la décharge à pression sub-atmosphérique) étaient bien greffés dans la matrice de polystyrène, et ce sur toute l’épaisseur de la membrane. L’influence des paramètres (température de l’acide, tension appliquée entre les électrodes, nature du gaz porteur…) sur la quantité de groupements ionisables greffés, sur la vitesse de dépôt et aussi sur la morphologie des films a été étudiée respectivement par XPS et par microscopie.
En plus des dépôts sur substrats usuels (Si, acier…) utilisés pour les caractérisations chimiques, nous avons synthétisé les films directement sur des électrodes de carbone enrichies en platine.
Nous avons déposé le catalyseur à partir d’une solution colloïdale de platine nébulisée dans la post-décharge d’une torche plasma atmosphérique sur des couches de carbones poreuse et sur du carbone vitreux (utilisé comme modèle pour le profilage par SIMS dynamique) dans différentes configurations et ce pour différents paramètres afin de constituer des électrodes servant de substrat pour l’adhésion de la membrane-plasma pour des perspectives d’assemblage membrane-électrodes pour PAC. /
\
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Svačina, Zdeněk. "Příprava syndiotaktického polystyrenu pomocí monocyklopentadienylových komplexů titanu." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2008. http://www.nusl.cz/ntk/nusl-216371.
Full textYu, Ning. "Étude de la cinétique de polymérisation radicalaire du styrène dans un réseau tridimensionnel et application à la valorisation de pneus usagés." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0277.
Full textThis thesis aims to develop a novel approach to value ground tire rubber (GTR). The latter results from grounding of the rubber part of used tires which retains excellent elasticity. The idea is to take the advantage of its elasticity to toughen brittle polymers such as polystyrene (PS) upon incorporating GTR into them. However, two challenges have to be overcome to realize this idea. (1) Commercial GTR is typically in the form of particles of a few hundreds of micrometers in diameter. However, it has to be at least one to two orders of magnitude smaller when incorporated in a brittle polymer so as to be able to improve its impact resistance. (2) The interfacial adhesion between the polymer and GTR is weak. These two challenges are related to the intrinsic nature of the GTR which is chemically cross-linked. This thesis chooses PS to represent brittle polymers. The approach aiming at toughening it is to polymerize styrene in a free radical manner inside cross-linked GTR particles. This leads to the formation of both free PS and PS that is grafted onto the GTR, denoted as grafted PS. The inclusions of the free PS inside the GTR particles help break them down by mechanical shear in a screw extruder for example and the formation of grafted PS improves the interfacial adhesion between the PS and the GTR. This thesis has developed a comprehensive kinetic model for the polymerization of free PS and that of grafted PS. This model is validated by experimental designs
Bao, Jin-Biao. "Elaboration de polypropylène ou de polystyrène à l'aide du dioxyde de carbone supercritique : procédé – microstructure – propriétés mécaniques." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL111N/document.
Full textIn this work, scCO2 induced foaming of PP or PS is systematically studied with emphasis on the relationship between process, microstructure and mechanical properties. The first part of the thesis deals with the toughening of iPP by scCO2 induced crystallization for the fine separation of rigid crystalline domains and soft amorphous ones in the polymer matrix. The highly oriented iPP with “shish-kebab” and “spherulite” are then used for CO2 foaming to investigate the effect of crystalline structure on the formation of cell nucleation and growth. In addition, the effect of the foaming conditions and the cell structural parameters of PS foams on the mechanical properties are studied systematically. PS foams with isotropic cell morphology and oriented cell one are prepared. Finally, a two-step depressurization batch process is developed to produce bi-modal cell structure PS foams by using scCO2 as the blowing agent. This unique cell structure with both small and large cells homogenously distributed throughout the entire volume of the foam sample might have particular properties
Zhang, Hui [Verfasser], and Günter [Akademischer Betreuer] Reiter. "Pattern formation on single crystals of isotatic polystyrene in thin films = Strukturbildung von Einkristallen aus isotaktischem Polystyrol in dünnen Filmen." Freiburg : Universität, 2014. http://d-nb.info/1123481717/34.
Full textBenbayer, Chahinez. "Nanocomposites à base d'argile et de surfactants polymérisables (surfmers) : synthèse et propriétés." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4151/document.
Full textThe work presented in this thesis focuses on the preparation of new polystyrene-clay nanocomposites using fluorinated polymerizable cationic surfactants as modifiers. Reference systems have also been proposed using conventional surfactants of similar structure than surfmers. The main objective is to highlight the role of the polymerizable group and the fluorine atoms on the structure and the properties of the obtained nanocomposites. The surface properties of surfactants were studied in terms of CMC, surface tensions and Gibbs enthalpies of micellization to evaluate the solution behavior of these surfactants. These surfactants were subsequently used to modify a sodium montmorillonite via cation exchange process. The resultant organoclays were characterized by IR, TGA and XRD analysis. XRD data are in favor of an alignment of the majority of fluorinated surfmers to form a bilayer structure while conventional surfactants tend to form a pseudotrimolecular layer. Determination of surfmer reactivity ratios by NMR was used to predict the behavior of these derivatives in radical copolymerization with styrene. Preparation of polystyrene-clay nanocomposite containing various amounts of organoclays from 1 to 15 wt% by radical polymerization process in bulk or solution, showed the positive effect of the introduction of fluorinated chain and polymerizable functional group on thermal stability of nanocomposites. Exfoliated morphologies were obtained for the majority of the fluorinated nanocomposite. A structure-surface and thermal properties relationship was established on the basis of TGA, XRD and TEM / SEM analysis
Mucklo, Matthew Joseph. "API federation in a polystore." Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/121633.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 97-101).
This thesis describes the design, implementation, test, and evaluation of an extension to a well-known polystore called BigDAWG. As a polystore, BigDAWG binds together multiple diverse data sources into a single system that allows primarily analytical queries to be easily executed against the most appropriate engine for the job. The extension described allows the polystore to source data from APIs such as those publicly available on the internet. Further, an administrative interface was constructed to facilitate the adding, editing, and deleting of access to these APIs. These additions place power into the hands of the BigDAWG polystore user such that not only do they have the ability to source data from many new sources, but can process that data quickly and easily by using the built-in polystore casting facilities, cutting down on the time necessary to create custom ETLs to achieve the same result.
by Matthew Joseph Mucklo.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Books on the topic "Polystyre"
Ita, Paul A., and Pam Safarek. World polystyrene. Cleveland, Ohio: Freedonia Group, 1998.
Find full textSchellenberg, Jrgen, ed. Syndiotactic Polystyrene. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470557006.
Full textCrevecoeur, J. Water expandable polystyrene (weps). Eindhoven: Eindhoven University ofTechnology, 1997.
Find full textexecutive, Health and safety. Expanded polystyrene moulding machines. London: H.M.S.O., 1986.
Find full textGray, James E. Polystyrene: Properties, performance, and applications. New York: Nova Science Publishers, 2011.
Find full textHancox, Robert Neil. Polystyrene pyrolysis: Kinetics and mechanisms. Birmingham: University of Birmingham, 1989.
Find full textHammond, Timothy. A study of polystyrene pyrolysis. Birmingham: University of Birmingham, 1986.
Find full textSchellenberg, Jürgen. Syndiotactic polystyrene: Synthesis, characterization, processing, and applications. Hoboken, N.J: Wiley, 2010.
Find full textGadepally, Vijay, Timothy Mattson, Michael Stonebraker, Fusheng Wang, Gang Luo, Yanhui Laing, and Alevtina Dubovitskaya, eds. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33752-0.
Full textBook chapters on the topic "Polystyre"
Begoli, Edmon, Sudarshan Srinivasan, and Maria Mahbub. "The Transformers for Polystores - The Next Frontier for Polystore Research." In Heterogeneous Data Management, Polystores, and Analytics for Healthcare, 72–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71055-2_7.
Full textBährle-Rapp, Marina. "Polystyrene." In Springer Lexikon Kosmetik und Körperpflege, 441. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_8218.
Full textGooch, Jan W. "Polystyrene." In Encyclopedic Dictionary of Polymers, 571–72. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9215.
Full textGooch, Jan W. "Polystyrol." In Encyclopedic Dictionary of Polymers, 572. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9221.
Full textBaker, Ian. "Polystyrene." In Fifty Materials That Make the World, 175–78. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78766-4_33.
Full textPeacock, Andrew J., and Allison Calhoun. "Polystyrene." In Polymer Chemistry, 309–23. München: Carl Hanser Verlag GmbH & Co. KG, 2006. http://dx.doi.org/10.3139/9783446433434.021.
Full textBeyer, Leslie A., and Julie E. Goodman. "Polystyrene/Styrene." In Hamilton & Hardy's Industrial Toxicology, 809–14. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118834015.ch79.
Full textGooch, Jan W. "Impact Polystyrene." In Encyclopedic Dictionary of Polymers, 383. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6221.
Full textGooch, Jan W. "Expanded Polystyrene." In Encyclopedic Dictionary of Polymers, 285. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4658.
Full textSteiner, G., and C. Zimmerer. "Polystyrene (PS)." In Polymer Solids and Polymer Melts – Definitions and Physical Properties I, 997–1005. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32072-9_113.
Full textConference papers on the topic "Polystyre"
Singhal, Rekha, Nathan Zhang, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun. "Polystore++: Accelerated Polystore System for Heterogeneous Workloads." In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2019. http://dx.doi.org/10.1109/icdcs.2019.00163.
Full textJananthan, Hayden, Ziqi Zhou, Vijay Gadepally, Dylan Hutchison, Suna Kim, and Jeremy Kepner. "Polystore mathematics of relational algebra." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258298.
Full textKhan, Yasar, Antoine Zimmermann, AlokKumar Jha, Dietrich Rebholz-Schuhmann, and Ratnesh Sahay. "Querying web polystores." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258299.
Full textGadepally, Vijay, Peinan Chen, Jennie Duggan, Aaron Elmore, Brandon Haynes, Jeremy Kepner, Samuel Madden, Tim Mattson, and Michael Stonebraker. "The BigDAWG polystore system and architecture." In 2016 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2016. http://dx.doi.org/10.1109/hpec.2016.7761636.
Full textWang, Jing, David F. James, Chul B. Park, Albert Co, Gary L. Leal, Ralph H. Colby, and A. Jeffrey Giacomin. "Planar Extensional Viscosity of Polystyrene and Polystyrene∕CO[sub 2] Solution." In THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964859.
Full textAltavilla, Claudia, Filippo Fedi, Andrea Sorrentino, Salvatore Iannace, and Paolo Ciambelli. "Polystyrene/MoS2@oleylamine nanocomposites." In TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876811.
Full textPodkorytov, Maksim, and Michael Gubanov. "Hybrid.Poly: A Consolidated Interactive Analytical Polystore System." In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019. http://dx.doi.org/10.1109/icde.2019.00223.
Full textZuohao She, Surabhi Ravishankar, and Jennie Duggan. "BigDAWG polystore query optimization through semantic equivalences." In 2016 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2016. http://dx.doi.org/10.1109/hpec.2016.7761584.
Full textLeclercq, Éric, and Marinette Savonnet. "A Tensor Based Data Model for Polystore." In the 22nd International Database Engineering & Applications Symposium. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3216122.3216152.
Full textDu, Jiang, John Meehan, Nesime Tatbul, and Stan Zdonik. "Towards Dynamic Data Placement for Polystore Ingestion." In BIRTE '17: International Workshop on Real-Time Business Intelligence and Analytics. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3129292.3129297.
Full textReports on the topic "Polystyre"
Abrefah, John, and George S. Klinger. Thermal Decomposition of Radiation-Damaged Polystyrene. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/965178.
Full textJ Abrefah GS Klinger. Thermal Decomposition of Radiation-Damaged Polystyrene. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/763386.
Full textMulholland, George, Gary Hembree, and Arie Hartman. Sizing of polystyrene spheres produced in microgravity. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.84-2914.
Full textGuttman, C. M., W. R. Blair, and J. R. Maurey. Recertification of the SRM 706a, a polystyrene. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6091.
Full textRao, G. R., L. Riester, and E. H. Lee. Depth-independent hardness improvements in ion irradiated polystyrene. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/34424.
Full textCazzaniga, L., and R. E. Cohen. Synthesis and Characterization of Isotactic Polystyrene-Polybutadiene Block Copolymers. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada201701.
Full textLargo, Sherly R., Timothy S. Haddad, Rene I. Gonzalez, and Constance Schlaefer. The Specific Refractive Index Increment for Isobutyl Poss-Polystyrene Copolymers. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada419049.
Full textKesavanathan, Jana, and Robert W. Doherty. Test Procedure for Removing Polystyrene Latex Microspheres from Membrane Filters. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada367979.
Full textLettieri, Thomas R., and Gary G. Hembree. Certification of NBS SRM 1691: 0.3�m-diameter polystyrene spheres. Gaithersburg, MD: National Bureau of Standards, January 1988. http://dx.doi.org/10.6028/nbs.ir.87-3730.
Full textDing, Zheng-You, Shenmin Ma, Dennis Kriz, J. J. Aklonis, and R. Salovey. Model Filled Polymers .11. Synthesis of Uniformly Crosslinked Polystyrene Microbeads. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada237472.
Full text