Academic literature on the topic 'Polystyrene sulfonated'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polystyrene sulfonated.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polystyrene sulfonated"
Hu, Xiaotian, Lie Chen, Licheng Tan, Ting Ji, Yong Zhang, Lin Zhang, Di Zhang, and Yiwang Chen. "In situ polymerization of ethylenedioxythiophene from sulfonated carbon nanotube templates: toward high efficiency ITO-free solar cells." Journal of Materials Chemistry A 4, no. 17 (2016): 6645–52. http://dx.doi.org/10.1039/c6ta00287k.
Full textTan, N. C. Beck, X. Liu, R. M. Briber, and D. G. Peiffer. "Immiscibility in polystyrene/sulfonated polystyrene blends." Polymer 36, no. 10 (May 1995): 1969–73. http://dx.doi.org/10.1016/0032-3861(95)91439-e.
Full textHendrana, Sunit, Erwin Erwin, Krisman Krisman, Syakbaniah Syakbaniah, Isna’im Isna’im, Yusmeri Yusmeri, Neti Satria, Tri Susilawati, and Sudirman Sudirman. "APPLICATION OF SULFONATED POLYSTYRENE IN POLYMER ELECTROLYTE FUEL CELL." Jurnal Sains Materi Indonesia 20, no. 1 (October 30, 2018): 44. http://dx.doi.org/10.17146/jsmi.2018.20.1.5406.
Full textYang, Jung-Eun, Young Taik Hong, and Jae-Suk Lee. "Synthesis and Characterization of Polystyrene-Poly(arylene ether sulfone)-Polystyrene Triblock Copolymer for Proton Exchange Membrane Applications." Journal of Nanoscience and Nanotechnology 6, no. 11 (November 1, 2006): 3594–98. http://dx.doi.org/10.1166/jnn.2006.17989.
Full textShi, Chenliang, Ling Lin, Yukun Yang, Wenjia Luo, Maoqing Deng, and Yujie Wu. "Synthesis of aminated polystyrene and its self-assembly with nanoparticles at oil/water interface." e-Polymers 20, no. 1 (June 17, 2020): 317–27. http://dx.doi.org/10.1515/epoly-2020-0038.
Full textSHIN, J., B. CHANG, J. KIM, S. LEE, and D. SUH. "Sulfonated polystyrene/PTFE composite membranes." Journal of Membrane Science 251, no. 1-2 (April 1, 2005): 247–54. http://dx.doi.org/10.1016/j.memsci.2004.09.050.
Full textBoris, David C., and Ralph H. Colby. "Rheology of Sulfonated Polystyrene Solutions." Macromolecules 31, no. 17 (August 1998): 5746–55. http://dx.doi.org/10.1021/ma971884i.
Full textHaryono, Agus, and Sri Budi Harmami. "Sulfonation of Waste High Impact Polystyrene from Food Packaging as a Polymeric Flocculant." Advanced Materials Research 486 (March 2012): 426–31. http://dx.doi.org/10.4028/www.scientific.net/amr.486.426.
Full textCánovas, M. J., I. Sobrados, J. Sanz, J. L. Acosta, and A. Linares. "Proton mobility in hydrated sulfonated polystyrene." Journal of Membrane Science 280, no. 1-2 (September 2006): 461–69. http://dx.doi.org/10.1016/j.memsci.2006.02.001.
Full textNucara, Luca, Vincenzo Piazza, Francesco Greco, Valentina Robbiano, Valentina Cappello, Mauro Gemmi, Franco Cacialli, and Virgilio Mattoli. "Ionic Strength Responsive Sulfonated Polystyrene Opals." ACS Applied Materials & Interfaces 9, no. 5 (January 27, 2017): 4818–27. http://dx.doi.org/10.1021/acsami.6b14455.
Full textDissertations / Theses on the topic "Polystyrene sulfonated"
Huang, Chongwen. "Rheology of Oligomeric Sulfonated Polystyrene Ionomers." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1471281020.
Full textZhang, Huan. "Properties and Structures of Sulfonated Syndiotactic Polystyrene Aerogel and Syndiotactic Polystyrene/Silica Hybrid Aerogel." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1405298489.
Full textBuyukyagci, Arzu. "Synthesis And Characterization Of Monoacetylferrocene Added Sulfonated Polystyrene Ionomers." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/1108026/index.pdf.
Full textLI, XINDI. "MODIFICATION OF SULFONATED SYNDIOTACTIC POLYSTYRENE AEROGELS THROUGH IONIC INTERACTIONS." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1525801145416997.
Full textCui, Xiaoyu. "POLYCATION REINFORCED SULFONATED SYDIOTACTIC POLYSTYRENE GELS& SELF-HEALING LATEX CONTAINING POLYELECTROLYTE MULTILAYERS." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1495204173832965.
Full textBenson, Sonya Denese. "The Effect of Nanoscale Particles and Ionomer Architecture on the Crystallization Behavior of Sulfonated Syndiotactic Polystyrene." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/26137.
Full textPh. D.
Fahs, Gregory Bain. "The Effect of Ionomer Architecture on the Morphology in Gel State Functionalized Sulfonated Syndiotactic Polystyrene." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/97193.
Full textDoctor of Philosophy
Polymers are a class of chemicals that are defined by having a very large set of molecules that are chemically linked together where each unit (monomer) is repeated within the chemical structure. In particular, this dissertation focuses on the construction what are termed as "blocky" copolymers, which are defined by having two chemically different monomers that are incorporated in the polymer chain. The "blocky" characteristic of these polymers means that these two different monomers are physically segregated from each other on the polymer chain, where long portions of the chain that are of one type, followed by another section of the polymer that has the other type of monomer. The goal of creating this type of structure is to try to take advantage of the properties of both types of monomers, which can create materials with superior synergistic properties. In this case a hydrophobic (water hating) monomer is combined with a hydrophilic (water loving) chain. This hydrophobic component in the polymer is able to crystallize, which provides mechanical and thermal stability in the material by acting as a physical tether to hold neighboring chains together. With the other set of hydrophilic monomers, which in this case have an ionic component incorporated, we can now take advantage of this chemical components ability to aide in the transportation of ions. Transportation of ions is useful in a variety of commercially relevant applications, two of the most important applications of these ionic materials is in membranes that can be used to purify water or membrane materials in fuel cell technologies, specifically for proton exchange membranes. The focus of this research in particular was to create a simple synthesis technique that can create these blocky polymer chain architectures, which is done by performing the reaction while the polymer is made into a gel. The key to this is that the crystals within the gel act as a barrier to chemical reactions, creating conditions where we have substantial portions of the material that are able to be functionalized and the crystals within the material that are protected from being functionalized. By looking at the thermal characteristics, such as melting temperatures and amount of crystals within these systems we have seen that functionalizing these polymers in the heterogeneous gel state gives substantially better properties than functionalizing these materials randomly. Much like oil and water, incompatible polymer chains will phase separate from each other. In this case the hydrophobic and ionic components will phase separate from each other. The shape and distribution of these phase separated structure will dictate many of the material properties, which can be described by modeling the data collected from x-ray scattering experiments. All of this information will tell us based on the initial conditions that these polymers were created in, what properties should be expected based on the morphology and thermal behavior. This gives a better understanding of how to fine tune these properties based on the structure of the gel and chemical reaction conditions.
Cai, Liang. "GRAFT COPOLYMER AEROGELS FROM SULFONATED SYNDIOTACTIC POLYSTYRENE FUNCTIONALIZED WITH A QUATERNARY PHOSPHONIUM-CONTAINING RAFT AGENT." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1468851884.
Full textMerche, Delphine. "Synthèse et caractérisation de couches de polystyrène et de polystyrène sulfoné obtenues par polymérisation-plasma à pression (sub)-atmosphérique." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209871.
Full textNos résultats ont montré que la DBD permettait d’obtenir des films de polystyrène de meilleure qualité (degré d’oxydation moindre…) qu’avec la torche commerciale en raison de l’atmosphère contrôlée de l’enceinte DBD. Les films sont déposés en présence d’un gaz porteur (Ar ou He dans la DBD). Nous avons pu mettre en évidence l’influence de la nature de ce gaz porteur sur la structure des films (degré de branchement, et de réticulation des films et de préservation des cycles aromatiques de la molécule de départ).
Les dépôts de polystyrène sulfoné ont été synthétisés dans la DBD en une seule étape, par « copolymérisation » de deux précurseurs (styrène et acide trifluorométhane sulfonique) injectés simultanément dans la décharge. Ces membranes pourraient servir d’électrolyte dans les piles à combustibles miniaturisées de type PEMFC (« Polymer Electrolyte Membrane Fuel Cell »), utilisant de l’hydrogène ou du méthanol et ce pour des applications portables.
L’acide trifluorométhane sulfonique permet le greffage de groupements sulfoniques échangeurs d’ions (nécessaires pour la conductivité de la membrane) sur le squelette de polystyrène.
La complémentarité des différentes techniques spectroscopiques utilisées -Spectroscopie des Photoélectrons X (XPS), Infra-Rouge à Transformée de Fourier (FTIR), Spectroscopie des Ions Secondaires (SIMS) statique et dynamique- ont montré que les groupements acides sulfoniques (bien préservés dans la décharge à pression sub-atmosphérique) étaient bien greffés dans la matrice de polystyrène, et ce sur toute l’épaisseur de la membrane. L’influence des paramètres (température de l’acide, tension appliquée entre les électrodes, nature du gaz porteur…) sur la quantité de groupements ionisables greffés, sur la vitesse de dépôt et aussi sur la morphologie des films a été étudiée respectivement par XPS et par microscopie.
En plus des dépôts sur substrats usuels (Si, acier…) utilisés pour les caractérisations chimiques, nous avons synthétisé les films directement sur des électrodes de carbone enrichies en platine.
Nous avons déposé le catalyseur à partir d’une solution colloïdale de platine nébulisée dans la post-décharge d’une torche plasma atmosphérique sur des couches de carbones poreuse et sur du carbone vitreux (utilisé comme modèle pour le profilage par SIMS dynamique) dans différentes configurations et ce pour différents paramètres afin de constituer des électrodes servant de substrat pour l’adhésion de la membrane-plasma pour des perspectives d’assemblage membrane-électrodes pour PAC. /
\
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Proença, Marcela Pinheiro. "Desenvolvimento de membranas íon-seletivas com poliestireno sulfonado e polianilina dopada para a aplicação em eletrodiálise." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/18585.
Full textNowadays the concern with the reduction of industrial pollution has motivated researchers to found out new technologies for treatment of industrial waste. The clean technologies, as electrodialysis, are capable of treating some these residues, as for example the galvanoplasty’s waste, minimizing the impacts that would happen to them if they were discarded directly on the environment. The main component of this technique is the membrane on which occurs the ions removal stage of the solution. The membranes are imported and expensive what justifies the development of efficient and accessible membranes. In this sense, in the present work membranes of sulfonated polystyrene / high impact polystyrene (SPS/HIPS), polyaniline doped with camphorsulfonic acid / sulfonated polystyrene / high impact polystyrene (PAniCSA/SPS/HIPS), sulfonated polyaniline/ sulfonated polystyrene / high impact polystyrene (SPAN/SPS/HIPS), and polyaniline doped with p-toluenesulfonic acid / sulfonated polystyrene / high impact polystyrene (PAniTSA/SPS/HIPS) were developed using chemical mixture method. Membranes were characterized by Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA) and Scanning Electronic Microscopy (SEM). Membranes were submitted to current-voltage curves and electrodialysis experiments with NaCl and KCl solutions, in order to determine ionic transport through them. Results were compared with a commercial membrane, Selemion CMT. The average percent extraction for Na+ ions obtained by membranes developed were beyond 20%.
Books on the topic "Polystyrene sulfonated"
Belanger, Denis R. Effect of sodium polystyrene sulfonate on lithium bioavailability. [Ottawa: Ottawa General Hospital, 1989.
Find full textBook chapters on the topic "Polystyrene sulfonated"
Fitzgerald, J. J., and R. A. Weiss. "Cation-Anion and Cation-Cation Interactions in Sulfonated Polystyrene Ionomers." In ACS Symposium Series, 35–53. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0302.ch003.
Full textZhang, Zhicheng, Elena Chalkova, Mark Fedkin, Chunmei Wang, Serguei N. Lvov, Sridhar Komarneni, and T. C. Chung. "Synthesis and Characterization of Poly(vinylidene fluoride)-g-Sulfonated Polystyrene Graft Copolymers for Proton Exchange Membrane." In ACS Symposium Series, 31–48. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1040.ch003.
Full textBährle-Rapp, Marina. "Sodium Polystyrene Sulfonate." In Springer Lexikon Kosmetik und Körperpflege, 516. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_9693.
Full textStorey, F., and Scott E. George. "Synthesis and Characterization of Star-Branched Ionomers Composed of Sulfonated Polystyrene Outer Blocks and Elastomeric Inner Blocks." In ACS Symposium Series, 330–52. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0395.ch013.
Full textStockton, Jon D., Joseph F. Lomax, Charles A. Edmondson, John J. Fontanella, and Mary C. Wintersgill. "Studies in Mesoporous Silicates: Impedance Measurements on SBA-15 Loaded with Sulfonated-Polystyrene and Nafion with SBA-15 Filler." In Advances in Science and Technology, 2033–38. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.2033.
Full textMöller, Martin, Jürgen Omeis, and Elke Mühleisen. "Association and Gelation of Polystyrenes via Terminal Sulfonate Groups." In Reversible Polymeric Gels and Related Systems, 87–106. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0350.ch007.
Full textTomita, Hidemi, and Richard A. Register. "Blends of lightly sulfonated polystyrene ionomers with poly (xylenyl ether)." In Advanced Materials '93, 207–10. Elsevier, 1994. http://dx.doi.org/10.1016/b978-1-4832-8380-7.50054-7.
Full text"Polystyrene sulfonates." In Meyler's Side Effects of Drugs, 868–71. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-444-53717-1.01317-2.
Full text"Polystyrene sulfonates." In Meyler's Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions, 2894–98. Elsevier, 2006. http://dx.doi.org/10.1016/b0-44-451005-2/01462-5.
Full text"X-ray evanescent wave-induced fluorescence study of adsorption of a sulfonated polystyrene ionomer from dimethyl sulfoxide to the solution/vapor interface." In Fundamentals of Adhesion and Interfaces, 109–24. De Gruyter, 1995. http://dx.doi.org/10.1515/9783112318515-009.
Full textConference papers on the topic "Polystyrene sulfonated"
Yanhou Geng, Xianhong Wang, Lixiang Wang, Xiabin Jing, and Fosong Wang. "Macromolecular complex of polyaniline/sulfonated polystyrene." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835258.
Full textDai, Ying, Haiping Hong, and Jeffry S. Welsh. "Reinforced membrane based on crosslink reaction between water soluble sulfonated carbon nanotubes and sulfonated polystyrene." In NanoScience + Engineering, edited by Geoffrey B. Smith and Akhlesh Lakhtakia. SPIE, 2008. http://dx.doi.org/10.1117/12.792933.
Full textSousa, W. S., A. C. Maciel, A. J. F. Carvalho, and R. M. Faria. "Thermally stimulated depolarization current studies in thin films of sulfonated polystyrene ionomers." In 2011 IEEE 14th International Symposium on Electrets ISE 14. IEEE, 2011. http://dx.doi.org/10.1109/ise.2011.6085003.
Full textZubir, N. A., A. F. Ismail, M. M. Nasef, and H. I. Maarof. "Thermal stability and structural investigations of sulfonated polystyrene pore-filled poly(vinylidene fluoride) membranes." In 2010 International Conference on Science and Social Research (CSSR). IEEE, 2010. http://dx.doi.org/10.1109/cssr.2010.5773783.
Full textBüchi, F. N., B. Gupta, M. Rouilly, P. C. Hauser, A. Chapiró, and G. G. Scherer. "Radiation Grafted and Sulfonated (FEP-g-Polystyrene) - An Alternative to Perfluorinated Membranes for PEM Fuel Cells?" In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929293.
Full textLee, Haisung, Yoongon Park, Myungwhun Chang, Gangpil Kim, Sangsu Hong, Hyungsik Won, Jongmyeon Lee, and Yongsoo Oh. "The enhancement of light efficiency using modified phosphor which is coated sub-micro size sulfonated polystyrene beads." In SPIE Optics + Photonics, edited by Zeno Gaburro and Stefano Cabrini. SPIE, 2006. http://dx.doi.org/10.1117/12.678629.
Full textPulungan, Ahmad Nasir, Basuki Wirjosentono, Eddiyanto, and Sunit Hendrana. "X-Ray Diffraction and Morphology Studies of Sulfonated Polystyrene and Maleated Natural Rubber Blend with PE-g-MA as Compatibilished." In International Conference on Chemical Science and Technology Innovation. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0008935003240328.
Full textKhanum, Khadija Kanwal, Pritom J. Bora, K. J. Vinoy, and Praveen C. Ramamurthy. "Evaluation of electromagnetic interference shielding using Poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate blend." In 2016 3rd International Conference on Emerging Electronics (ICEE). IEEE, 2016. http://dx.doi.org/10.1109/icemelec.2016.8074607.
Full textPathak, Gaurav, and Dusko Cakara. "Variable Angle Spectroscopic Ellipsometry Study of Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate Thin Films in Contact with Air." In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, 2020. http://dx.doi.org/10.23919/mipro48935.2020.9245443.
Full textSHADRYNA, V. I., T. G. SHUTAVA, and V. E. AGABEKOV. "INVESTIGATION OF HORSERADISH PEROXIDASE ADSORPTION ON GOLD AND POLYSTYRENE SULFONATE MODIFIED SURFACES BY QUARTZ CRYSTAL MICROBALANCE TECHNIQUE." In Proceedings of the International Conference on Nanomeeting 2009. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814280365_0085.
Full text