Academic literature on the topic 'Polytopes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Polytopes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Polytopes"
Schulte, Egon, and Asia Ivić Weiss. "Free Extensions of Chiral Polytopes." Canadian Journal of Mathematics 47, no. 3 (June 1, 1995): 641–54. http://dx.doi.org/10.4153/cjm-1995-033-7.
Full textRamanath, Rohan, S. Sathiya Keerthi, Yao Pan, Konstantin Salomatin, and Kinjal Basu. "Efficient Vertex-Oriented Polytopic Projection for Web-Scale Applications." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 4 (June 28, 2022): 3821–29. http://dx.doi.org/10.1609/aaai.v36i4.20297.
Full textFujita, Naoki. "Newton–Okounkov polytopes of flag varieties and marked chain-order polytopes." Transactions of the American Mathematical Society, Series B 10, no. 15 (April 4, 2023): 452–81. http://dx.doi.org/10.1090/btran/142.
Full textHibi, Takayuki, and Nan Li. "Unimodular Equivalence of Order and Chain Polytopes." MATHEMATICA SCANDINAVICA 118, no. 1 (March 7, 2016): 5. http://dx.doi.org/10.7146/math.scand.a-23291.
Full textRaza, Hassan, Sakander Hayat, and Xiang-Feng Pan. "Binary Locating-Dominating Sets in Rotationally-Symmetric Convex Polytopes." Symmetry 10, no. 12 (December 6, 2018): 727. http://dx.doi.org/10.3390/sym10120727.
Full textDI ROCCO, SANDRA. "PROJECTIVE DUALITY OF TORIC MANIFOLDS AND DEFECT POLYTOPES." Proceedings of the London Mathematical Society 93, no. 1 (June 9, 2006): 85–104. http://dx.doi.org/10.1017/s0024611505015686.
Full textHibi, Takayuki, and Nan Li. "Cutting Convex Polytopes by Hyperplanes." Mathematics 7, no. 5 (April 26, 2019): 381. http://dx.doi.org/10.3390/math7050381.
Full textCunningham, Gabe, Mark Mixer, and Gordon Williams. "Reflexible covers of prisms." Contributions to Discrete Mathematics 19, no. 3 (September 23, 2024): 196–208. http://dx.doi.org/10.55016/ojs/cdm.v19i3.74917.
Full textGubeladze, Joseph. "Affine-compact functors." Advances in Geometry 19, no. 4 (October 25, 2019): 487–504. http://dx.doi.org/10.1515/advgeom-2019-0004.
Full textOkay, Cihan, Ho Yiu Chung, and Selman Ipek. "Mermin polytopes quantum computation and foundations." Quantum Information & Computation 23, no. 9&10 (July 2023): 733–82. http://dx.doi.org/10.26421/qic23.9-10-2.
Full textDissertations / Theses on the topic "Polytopes"
Dinh, Thi Ngoc. "Ordinary polytopes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0026/NQ49553.pdf.
Full textWu, Lei. "Random inscribed polytopes." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3210646.
Full textTitle from first page of PDF file (viewed June 7, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 60-65).
Lundman, Anders. "Classifying Lattice Polytopes." Licentiate thesis, KTH, Matematik (Avd.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134707.
Full textDenna Licentiatuppsats utgörs av två vetenskapliga artiklar inom torisk geometri. I Paper A ger vi en komplett klassificering, upp till isomorfi, av alla 3-dimensionella glatta konvexa gitter polytoper som innehåller högst 16 gitter punkter. Totalt utgörs klassificeringen av 103 olika polytoper. Av dessa 103 polytoper är 99 stycken strikta Cayley polytoper och resterande fyra är inversa stjärnuppdelningar av Cayley polytoper. Från detta resultat härleder vi en klassificering av alla fullständiga inbäddningar av glatta toriska trefalder i PN för N ≤ 15. Återigen får vi 103 sådana inbäddningar. Av dessa är 99 projektiva fiberknippen inbäddade i PN och resterande fyra är uppblåsningar av dito. I Paper B visar vi att en fullstädig glatt torisk imbäddning X ↪ PN som i varje punkt är sådan att, det k:te oskulerande rummet har maximal dimension, men det (k + 1):a oskulerande rummet ej är av maximal dimension, är associerad till en Cayley polytop av grad k. Detta resultat generaliserar en tidigare känd klassificering av David Perkinson. Vidare visar vi att ovanstående antaganden är ekvivalenta med att anta att Seshadrikonstanten är exakt k för varje punkt på X, vilket generaliserar en tidigare klassificering av Atsushi Ito.
QC 20131129
Solhjem, Sara Louise. "Sign Matrix Polytopes." Diss., North Dakota State University, 2018. https://hdl.handle.net/10365/28767.
Full textDobbins, Michael Gene. "Representations of Polytopes." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/141523.
Full textPh.D.
Here we investigate a variety of ways to represent polytopes and related objects. We define a class of posets, which includes all abstract polytopes, giving a unique representative among posets having a particular labeled flag graph and characterize the labeled flag graphs of abstract polytopes. We show that determining the realizability of an abstract polytope is equivalent to solving a low rank matrix completion problem. For any given polytope, we provide a new construction for the known result that there is a combinatorial polytope with a specified ridge that is always projectively equivalent to the given polytope, and we show how this makes a naturally arising subclass of intractable problems tractable. We give necessary and sufficient conditions for realizing a polytope's interval poset, which is the polytopal analog of a poset's Hasse diagram. We then provide a counter example to the general realizablity of a polytope's interval poset.
Temple University--Theses
Christophe, Jean. "Le polytope des sous-espaces d'un espace affin fini." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210798.
Full textDoctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Schwartz, Alexander. "Constructions of cubical polytopes." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970075154.
Full textFinbow, Wendy. "On stability of polytopes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0025/MQ36437.pdf.
Full textChapoton, Frédéric. "Opérades, polytopes et bigèbres." Paris 6, 2000. http://www.theses.fr/2000PA066098.
Full textPhilippe, Eva. "Geometric realizations using regular subdivisions : construction of many polytopes, sweep polytopes, s-permutahedra." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS079.
Full textThis thesis concerns three problems of geometric realizations of combinatorial structures via polytopes and polyhedral subdivisions. A polytope is the convex hull of a finite set of points in a Euclidean space R^d. It is endowed with a combinatorial structure coming from its faces. A subdivision is a collection of polytopes whose faces intersect properly and such that their union is convex. It is regular if it can be obtained by taking the lower faces of a lifting of its vertices in one dimension higher.We first present a new geometric construction of many combinatorially different polytopes of fixed dimension and number of vertices. This construction relies on showing that certain polytopes admit many regular triangulations. It allows us to improve the best known lower bound on the number of combinatorial types of polytopes.We then study the projections of permutahedra, that we call sweep polytopes because they model the possible orderings of a fixed point configuration by hyperplanes that sweep the space in a constant direction. We also introduce and study a combinatorial abstraction of these structures: the sweep oriented matroids, that generalize Goodman and Pollack's theory of allowable sequences to dimensions higher than 2.Finally, we provide geometric realizations of the s-weak order, a combinatorial structure that generalizes the weak order on permutations, parameterized by a vector s with positive integer coordinates. In particular, we answer Ceballos and Pons conjecture that the s-weak order can be realized as the edge-graph of a polytopal complex that is moreover a subdivision of a permutahedron
Books on the topic "Polytopes"
Grünbaum, Branko. Convex Polytopes. Edited by Volker Kaibel, Victor Klee, and Günter M. Ziegler. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9.
Full textVolker, Kaibel, Klee Victor, and Ziegler Günter M, eds. Convex polytopes. 2nd ed. New York: Springer, 2003.
Find full textArthanari, Tirukkattuppalli Subramanyam. Pedigree Polytopes. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9952-9.
Full textZiegler, Günter M. Lectures on Polytopes. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4613-8431-1.
Full textCoxeter, H. S. M. Regular complex polytopes. 2nd ed. Cambridge [England]: Cambridge University Press, 1991.
Find full textCunningham, Gabriel, Mark Mixer, and Egon Schulte, eds. Polytopes and Discrete Geometry. Providence, Rhode Island: American Mathematical Society, 2021. http://dx.doi.org/10.1090/conm/764.
Full textKasprzyk, Alexander M., and Benjamin Nill, eds. Interactions with Lattice Polytopes. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98327-7.
Full textKalai, Gil, and Günter M. Ziegler, eds. Polytopes — Combinatorics and Computation. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8438-9.
Full textRichter-Gebert, Jürgen. Realization Spaces of Polytopes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0093761.
Full textBook chapters on the topic "Polytopes"
Grünbaum, Branko. "Polytopes." In Convex Polytopes, 35–60. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9_3.
Full textDe Concini, Corrado, and Claudio Procesi. "Polytopes." In Topics in Hyperplane Arrangements, Polytopes and Box-Splines, 3–23. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-78963-7_1.
Full textBuchstaber, Victor, and Taras Panov. "Polytopes." In University Lecture Series, 7–20. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/ulect/024/02.
Full textGelfand, Israel M., Mikhail M. Kapranov, and Andrei V. Zelevinsky. "Newton Polytopes and Chow Polytopes." In Discriminants, Resultants, and Multidimensional Determinants, 193–213. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-0-8176-4771-1_7.
Full textGrünbaum, Branko. "3-Polytopes." In Convex Polytopes, 263–328. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9_13.
Full textGrünbaum, Branko. "Neighborly Polytopes." In Convex Polytopes, 136–45. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9_7.
Full textGrünbaum, Branko. "Notation and Prerequisites." In Convex Polytopes, 1–9. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9_1.
Full textGrünbaum, Branko. "Extremal Problems Concerning Numbers of Faces." In Convex Polytopes, 192–222. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9_10.
Full textGrünbaum, Branko. "Properties of Boundary Complexes." In Convex Polytopes, 223–50. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9_11.
Full textGrünbaum, Branko. "k-Equivalence of Polytopes." In Convex Polytopes, 251–62. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9_12.
Full textConference papers on the topic "Polytopes"
Ke, Yekun, Xiaoyu Li, Zhao Song, and Tianyi Zhou. "Faster Sampling Algorithms for Polytopes with Small Treewidth." In 2024 IEEE International Conference on Big Data (BigData), 44–53. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825010.
Full textDevanathan, Srikanth, and Karthik Ramani. "Creating Polytope Representation of Design Spaces for Visual Exploration Using Consistency Technique." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86887.
Full textO'Donnell, Ryan, Rocco A. Servedio, and Li-Yang Tan. "Fooling polytopes." In STOC '19: 51st Annual ACM SIGACT Symposium on the Theory of Computing. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3313276.3316321.
Full textArroyave-Tobón, Santiago, Denis Teissandier, and Vincent Delos. "Tolerance Analysis With Polytopes in HV-Description." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59027.
Full textNg, Louis. "Technically, squares are polytopes." In Summer Workshop on Lattice Polytopes. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811200489_0019.
Full textAronov, Boris, and Tamal K. Dey. "Polytopes in arrangements." In the fifteenth annual symposium. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/304893.304963.
Full textDobkin, D., H. Edelsbrunner, and C. K. Yap. "Probing convex polytopes." In the eighteenth annual ACM symposium. New York, New York, USA: ACM Press, 1986. http://dx.doi.org/10.1145/12130.12174.
Full textBoya, Luis J., Oscar J. Garay, Marisa Fernández, Luis Carlos de Andrés, and Luis Ugarte. "Supersymmetry and Polytopes." In SPECIAL METRICS AND SUPERSYMMETRY: Proceedings of the Workshop on Geometry and Physics: Special Metrics and Supersymmetry. AIP, 2009. http://dx.doi.org/10.1063/1.3089204.
Full textEngström, Alexander, and Florian Kohl. "Lattice polytopes in mathematical physics." In Summer Workshop on Lattice Polytopes. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811200489_0011.
Full textSteinmeyer, Johanna. "On the faces of simple polytopes." In Summer Workshop on Lattice Polytopes. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811200489_0025.
Full textReports on the topic "Polytopes"
Lewis, Daniel, and Andreas Christoforides. Super-Closed Polytopes and Semi-Locally Stable Morphisms with moderation incentives. Web of Open Science, March 2020. http://dx.doi.org/10.37686/emj.v1i1.20.
Full textConforti, Michele, Gwrard Cornuwjols, and Klaus Truemper. From Totally Unimodular to Balanced O, +-1 Matrices: A Family of Integer Polytopes,. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada254552.
Full textLawrence, Jim. Polytope volume computation. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4123.
Full textSavov, Svetoslav, and Ivan Popchev. Stability Tests for Discrete-time Polytopic Systems. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2018. http://dx.doi.org/10.7546/crabs.2018.09.10.
Full textQi, Liqun, and Egon Balas. Linear-Time Separation Algorithms for the Three-Index Assignment Polytope. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada228854.
Full textBalas, Egon, and Shu M. Ng. On the Set Covering Polytope. 2. Lifting the Facets with Coefficients in (0,1,2). Revision. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada196237.
Full textCarr, Bob. Using the Dimension Reduction Technique to Prove that Clique Trees Define Facets for the Asymmetric Traveling Salesman Polytope. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada289397.
Full text