Books on the topic 'Polytopes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Polytopes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Grünbaum, Branko. Convex Polytopes. Edited by Volker Kaibel, Victor Klee, and Günter M. Ziegler. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9.
Full textVolker, Kaibel, Klee Victor, and Ziegler Günter M, eds. Convex polytopes. 2nd ed. New York: Springer, 2003.
Find full textArthanari, Tirukkattuppalli Subramanyam. Pedigree Polytopes. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9952-9.
Full textZiegler, Günter M. Lectures on Polytopes. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4613-8431-1.
Full textCoxeter, H. S. M. Regular complex polytopes. 2nd ed. Cambridge [England]: Cambridge University Press, 1991.
Find full textCunningham, Gabriel, Mark Mixer, and Egon Schulte, eds. Polytopes and Discrete Geometry. Providence, Rhode Island: American Mathematical Society, 2021. http://dx.doi.org/10.1090/conm/764.
Full textKasprzyk, Alexander M., and Benjamin Nill, eds. Interactions with Lattice Polytopes. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98327-7.
Full textKalai, Gil, and Günter M. Ziegler, eds. Polytopes — Combinatorics and Computation. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8438-9.
Full textRichter-Gebert, Jürgen. Realization Spaces of Polytopes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0093761.
Full textKalai, Gil. Polytopes -- Combinatorics and Computation. Basel: Birkhäuser Basel, 2000.
Find full textBisztriczky, T., P. McMullen, R. Schneider, and A. Ivić Weiss, eds. Polytopes: Abstract, Convex and Computational. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0924-6.
Full textGubeladze, Joseph, and Winfried Bruns. Polytopes, Rings, and K-Theory. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b105283.
Full textHibi, Takayuki. Algebraic combinatorics on convex polytopes. Glebe, NSW, Australia: Carslaw Publications, 1992.
Find full textBisztriczky, T. Polytopes: Abstract, Convex and Computational. Dordrecht: Springer Netherlands, 1994.
Find full textŠiráň, Jozef, and Robert Jajcay, eds. Symmetries in Graphs, Maps, and Polytopes. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30451-9.
Full textChang, Peter Chung Yuen. Quantum field theory on regular polytopes. Manchester: University of Manchester, 1993.
Find full textGoodman, Jacob Eli. Cell decomposition of polytopes by bending. New York: Courant Institute of Mathematical Sciences, New York University, 1988.
Find full textPrabhu, Nagabhushana. A property of graphs of polytopes. New York: Courant Institute of Mathematical Sciences, New York University, 1989.
Find full textMeisinger, Günter. Flag numbers and quotients of convex polytopes. Weiden: Schuch, 1994.
Find full textDeza. Scale-isometric polytopal graphs in hypercubes and cubic lattices: Polytopes in hypercubes and Zn̳. London: Imperial College Press, 2004.
Find full textHandelman, David. Positive polynomials, convex integral polytopes, and a random walk problem. Berlin: Springer-Verlag, 1987.
Find full textDe Concini, Corrado, and Claudio Procesi. Topics in Hyperplane Arrangements, Polytopes and Box-Splines. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-78963-7.
Full textClaudio, Procesi, ed. Topics in hyperplane arrangements, polytopes and box-splines. New York: Springer, 2011.
Find full textKruiskamp, Marinus Wilhelmus. Analog design automation using genetic algorithms and polytopes. Eindhoven: Technische Universiteit Eindhoven, 1996.
Find full textHandelman, David E. Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078909.
Full textChazelle, B. The complexity of cutting complexes. Urbana, Il (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.
Find full textWolfgang, Kühnel. Tight polyhedral submanifolds and tight triangulations. New York: Springer-Verlag, 1995.
Find full textGrünbaum, Branko, and Günter M. Ziegler. Convex Polytopes. Springer London, Limited, 2013.
Find full textDoran, B., Egon Schulte, M. Ismail, Peter McMullen, and G. C. Rota. Abstract Regular Polytopes. Cambridge University Press, 2004.
Find full textSchulte, Egon, and Peter McMullen. Abstract Regular Polytopes. Cambridge University Press, 2002.
Find full textSchulte, Egon, and Peter McMullen. Abstract Regular Polytopes. Cambridge University Press, 2002.
Find full textMcmullen, Peter, and Egon Schulte. Abstract Regular Polytopes. Cambridge University Press, 2002.
Find full textMcMullen, Peter. Geometric Regular Polytopes. University of Cambridge ESOL Examinations, 2020.
Find full textSchulte, Egon, and Peter McMullen. Abstract Regular Polytopes. Cambridge University Press, 2009.
Find full textRichter-Gebert, Jürgen. Realization Spaces of Polytopes. Springer London, Limited, 2006.
Find full textSchulte, Egon, Gabriel Cunningham, and Mark Mixer. Polytopes and Discrete Geometry. American Mathematical Society, 2021.
Find full textBrondsted, Arne. Introduction to Convex Polytopes. Springer London, Limited, 2012.
Find full textPolynomial approximation on polytopes. Providence, Rhode Island: American Mathematical Society, 2014.
Find full text