To see the other types of publications on this topic, follow the link: Polytopes.

Books on the topic 'Polytopes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Polytopes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Grünbaum, Branko. Convex Polytopes. Edited by Volker Kaibel, Victor Klee, and Günter M. Ziegler. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0019-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Volker, Kaibel, Klee Victor, and Ziegler Günter M, eds. Convex polytopes. 2nd ed. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arthanari, Tirukkattuppalli Subramanyam. Pedigree Polytopes. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9952-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ziegler, Günter M. Lectures on Polytopes. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4613-8431-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coxeter, H. S. M. Regular complex polytopes. 2nd ed. Cambridge [England]: Cambridge University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cunningham, Gabriel, Mark Mixer, and Egon Schulte, eds. Polytopes and Discrete Geometry. Providence, Rhode Island: American Mathematical Society, 2021. http://dx.doi.org/10.1090/conm/764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kasprzyk, Alexander M., and Benjamin Nill, eds. Interactions with Lattice Polytopes. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98327-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kalai, Gil, and Günter M. Ziegler, eds. Polytopes — Combinatorics and Computation. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8438-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Richter-Gebert, Jürgen. Realization Spaces of Polytopes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0093761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carman, B. J. Matroids and their polytopes. Manchester: UMIST, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Richter-Gebert, Jürgen. Realization spaces of polytopes. Berlin: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kalai, Gil. Polytopes -- Combinatorics and Computation. Basel: Birkhäuser Basel, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bisztriczky, T., P. McMullen, R. Schneider, and A. Ivić Weiss, eds. Polytopes: Abstract, Convex and Computational. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0924-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gubeladze, Joseph, and Winfried Bruns. Polytopes, Rings, and K-Theory. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b105283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hibi, Takayuki. Algebraic combinatorics on convex polytopes. Glebe, NSW, Australia: Carslaw Publications, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bisztriczky, T. Polytopes: Abstract, Convex and Computational. Dordrecht: Springer Netherlands, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Širáň, Jozef, and Robert Jajcay, eds. Symmetries in Graphs, Maps, and Polytopes. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30451-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chang, Peter Chung Yuen. Quantum field theory on regular polytopes. Manchester: University of Manchester, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Goodman, Jacob Eli. Cell decomposition of polytopes by bending. New York: Courant Institute of Mathematical Sciences, New York University, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Prabhu, Nagabhushana. A property of graphs of polytopes. New York: Courant Institute of Mathematical Sciences, New York University, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Meisinger, Günter. Flag numbers and quotients of convex polytopes. Weiden: Schuch, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Deza. Scale-isometric polytopal graphs in hypercubes and cubic lattices: Polytopes in hypercubes and Zn̳. London: Imperial College Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Handelman, David. Positive polynomials, convex integral polytopes, and a random walk problem. Berlin: Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

De Concini, Corrado, and Claudio Procesi. Topics in Hyperplane Arrangements, Polytopes and Box-Splines. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-78963-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Claudio, Procesi, ed. Topics in hyperplane arrangements, polytopes and box-splines. New York: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kruiskamp, Marinus Wilhelmus. Analog design automation using genetic algorithms and polytopes. Eindhoven: Technische Universiteit Eindhoven, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Knuth, Donald Ervin. Axioms and hulls. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Knuth, Donald Ervin. Axioms and hulls. Berlin: Springer, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Handelman, David E. Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chazelle, B. The complexity of cutting complexes. Urbana, Il (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wolfgang, Kühnel. Tight polyhedral submanifolds and tight triangulations. New York: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Coxeter, H. S. M. Regular Polytopes. Dover Publications, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Coxeter, H. S. M. Regular Polytopes. Dover Publications, Incorporated, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Coxeter, H. S. M. Regular Polytopes. Dover Publications, Incorporated, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Grünbaum, Branko, and Günter M. Ziegler. Convex Polytopes. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Doran, B., Egon Schulte, M. Ismail, Peter McMullen, and G. C. Rota. Abstract Regular Polytopes. Cambridge University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lectures on Polytopes. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Schulte, Egon, and Peter McMullen. Abstract Regular Polytopes. Cambridge University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schulte, Egon, and Peter McMullen. Abstract Regular Polytopes. Cambridge University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

McMullen, Peter. Geometric Regular Polytopes. Cambridge University Press, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mcmullen, Peter, and Egon Schulte. Abstract Regular Polytopes. Cambridge University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

McMullen, Peter. Geometric Regular Polytopes. University of Cambridge ESOL Examinations, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Schulte, Egon, and Peter McMullen. Abstract Regular Polytopes. Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ziegler, Günter M. Lectures on Polytopes. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lectures on polytopes. New York: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Abstract Regular Polytopes. Cambridge University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Richter-Gebert, Jürgen. Realization Spaces of Polytopes. Springer London, Limited, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Schulte, Egon, Gabriel Cunningham, and Mark Mixer. Polytopes and Discrete Geometry. American Mathematical Society, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Brondsted, Arne. Introduction to Convex Polytopes. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Polynomial approximation on polytopes. Providence, Rhode Island: American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography