Dissertations / Theses on the topic 'Polytopes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Polytopes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dinh, Thi Ngoc. "Ordinary polytopes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0026/NQ49553.pdf.
Full textWu, Lei. "Random inscribed polytopes." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3210646.
Full textTitle from first page of PDF file (viewed June 7, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 60-65).
Lundman, Anders. "Classifying Lattice Polytopes." Licentiate thesis, KTH, Matematik (Avd.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134707.
Full textDenna Licentiatuppsats utgörs av två vetenskapliga artiklar inom torisk geometri. I Paper A ger vi en komplett klassificering, upp till isomorfi, av alla 3-dimensionella glatta konvexa gitter polytoper som innehåller högst 16 gitter punkter. Totalt utgörs klassificeringen av 103 olika polytoper. Av dessa 103 polytoper är 99 stycken strikta Cayley polytoper och resterande fyra är inversa stjärnuppdelningar av Cayley polytoper. Från detta resultat härleder vi en klassificering av alla fullständiga inbäddningar av glatta toriska trefalder i PN för N ≤ 15. Återigen får vi 103 sådana inbäddningar. Av dessa är 99 projektiva fiberknippen inbäddade i PN och resterande fyra är uppblåsningar av dito. I Paper B visar vi att en fullstädig glatt torisk imbäddning X ↪ PN som i varje punkt är sådan att, det k:te oskulerande rummet har maximal dimension, men det (k + 1):a oskulerande rummet ej är av maximal dimension, är associerad till en Cayley polytop av grad k. Detta resultat generaliserar en tidigare känd klassificering av David Perkinson. Vidare visar vi att ovanstående antaganden är ekvivalenta med att anta att Seshadrikonstanten är exakt k för varje punkt på X, vilket generaliserar en tidigare klassificering av Atsushi Ito.
QC 20131129
Solhjem, Sara Louise. "Sign Matrix Polytopes." Diss., North Dakota State University, 2018. https://hdl.handle.net/10365/28767.
Full textDobbins, Michael Gene. "Representations of Polytopes." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/141523.
Full textPh.D.
Here we investigate a variety of ways to represent polytopes and related objects. We define a class of posets, which includes all abstract polytopes, giving a unique representative among posets having a particular labeled flag graph and characterize the labeled flag graphs of abstract polytopes. We show that determining the realizability of an abstract polytope is equivalent to solving a low rank matrix completion problem. For any given polytope, we provide a new construction for the known result that there is a combinatorial polytope with a specified ridge that is always projectively equivalent to the given polytope, and we show how this makes a naturally arising subclass of intractable problems tractable. We give necessary and sufficient conditions for realizing a polytope's interval poset, which is the polytopal analog of a poset's Hasse diagram. We then provide a counter example to the general realizablity of a polytope's interval poset.
Temple University--Theses
Christophe, Jean. "Le polytope des sous-espaces d'un espace affin fini." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210798.
Full textDoctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Schwartz, Alexander. "Constructions of cubical polytopes." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970075154.
Full textFinbow, Wendy. "On stability of polytopes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0025/MQ36437.pdf.
Full textChapoton, Frédéric. "Opérades, polytopes et bigèbres." Paris 6, 2000. http://www.theses.fr/2000PA066098.
Full textPhilippe, Eva. "Geometric realizations using regular subdivisions : construction of many polytopes, sweep polytopes, s-permutahedra." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS079.
Full textThis thesis concerns three problems of geometric realizations of combinatorial structures via polytopes and polyhedral subdivisions. A polytope is the convex hull of a finite set of points in a Euclidean space R^d. It is endowed with a combinatorial structure coming from its faces. A subdivision is a collection of polytopes whose faces intersect properly and such that their union is convex. It is regular if it can be obtained by taking the lower faces of a lifting of its vertices in one dimension higher.We first present a new geometric construction of many combinatorially different polytopes of fixed dimension and number of vertices. This construction relies on showing that certain polytopes admit many regular triangulations. It allows us to improve the best known lower bound on the number of combinatorial types of polytopes.We then study the projections of permutahedra, that we call sweep polytopes because they model the possible orderings of a fixed point configuration by hyperplanes that sweep the space in a constant direction. We also introduce and study a combinatorial abstraction of these structures: the sweep oriented matroids, that generalize Goodman and Pollack's theory of allowable sequences to dimensions higher than 2.Finally, we provide geometric realizations of the s-weak order, a combinatorial structure that generalizes the weak order on permutations, parameterized by a vector s with positive integer coordinates. In particular, we answer Ceballos and Pons conjecture that the s-weak order can be realized as the edge-graph of a polytopal complex that is moreover a subdivision of a permutahedron
Manoussakis, Georgios Oreste. "Algorithmes combinatoires et Optimisation." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS517.
Full textWe start by studying the class of $k$-degenerate graphs which are often used to model sparse real-world graphs. We focus one numeration questions for these graphs. That is,we try and provide algorithms which must output, without duplication, all the occurrences of some input subgraph. We investigate the questions of finding all cycles of some givensize and all maximal cliques in the graph. Ourtwo contributions are a worst-case output sizeoptimal algorithm for fixed-size cycleenumeration and an output sensitive algorithmfor maximal clique enumeration for this restricted class of graphs. In a second part weconsider graphs in a distributed manner. Weinvestigate questions related to finding matchings of the network, when no assumptionis made on the initial state of the system. Thesealgorithms are often referred to as selfstabilizing.Our two main contributions are analgorithm returning an approximation of themaximum matching and a new algorithm formaximal matching when communication simulates message passing. Finally, weintroduce and investigate some special families of polytopes, namely primitive zonotopes,which can be described as the Minkowski sumof short primitive vectors. We highlight connections with the largest possible diameter ofthe convex hull of a set of points in dimension d whose coordinates are integers between 0 and k.Our main contributions are new lower bounds for this diameter question as well as descriptions of small instances of these objects
Hooker, Kevin J. "Hypergraphs and integer programming polytopes /." Search for this dissertation online, 2005. http://wwwlib.umi.com/cr/ksu/main.
Full textFiorini, Samuel. "Polyhedral combinatorics of order polytopes." Doctoral thesis, Universite Libre de Bruxelles, 2001. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211629.
Full textKnight, Vincent. "Alternating sign matrices and polytopes." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54880/.
Full textShowers, Patrick J. "Abstract Polytopes from Nested Posets." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1386028871.
Full textMeyer, Marie. "Polytopes Associated to Graph Laplacians." UKnowledge, 2018. https://uknowledge.uky.edu/math_etds/54.
Full textFoschi, Alessandro. "Variétés magnifiques et polytopes moment." Grenoble 1, 1998. http://www.theses.fr/1998GRE10153.
Full textSjöberg, Hannah [Verfasser]. "On Face Vector Sets and on Alcoved Polytopes : Two Studies on Convex Polytopes / Hannah Sjöberg." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1219904775/34.
Full textPaffenholz, Andreas. "Constructions for posets, lattices, and polytopes." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975678299.
Full textMüller, Irene. "Corner cuts and corner cut polytopes." Zurich : [ETH Zurich, Department of Mathematics], 2001. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=26.
Full textPfeifle, Julian. "Extremal constructions for polytopes and spheres." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=96753285X.
Full textQi, Weinan. "On Resampling Schemes for Uniform Polytopes." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36057.
Full textMoustrou, Philippe. "Geometric distance graphs, lattices and polytopes." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0802/document.
Full textA distance graph G(X;D) is a graph whose set of vertices is the set of points X of a metric space (X; d), and whose edges connect the pairs fx; yg such that d(x; y) 2 D. In this thesis, we consider two problems that may be interpreted in terms of distance graphs in Rn. First, we study the famous sphere packing problem, in relation with thedistance graph G(Rn; (0; 2r)) for a given sphere radius r. Recently, Venkatesh improved the best known lower bound for lattice sphere packings by a factor log log n for infinitely many dimensions n. We prove an effective version of this result, in the sense that we exhibit, for the same set of dimensions, finite families of lattices containing a lattice reaching this bound. Our construction uses codes over cyclotomic fields, lifted to lattices via Construction A. We also prove a similar result for families of symplectic lattices. Second, we consider the unit distance graph G associated with a norm k _ k. The number m1 (Rn; k _ k) is defined as the supremum of the densities achieved by independent sets in G. If the unit ball corresponding with k _ k tiles Rn by translation, then it is easy to see that m1 (Rn; k _ k) > 1 2n . C. Bachoc and S. Robins conjectured that the equality always holds. We show that this conjecture is true for n = 2 and for several Voronoï cells of lattices in higher dimensions, by solving packing problems in discrete graphs
Gottcheiner, Alain. "Constructions et taxonomies de polytopes combinatoires." Doctoral thesis, Universite Libre de Bruxelles, 2002. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211469.
Full textKulas, Katja [Verfasser]. "Combinatorics of Tropical Polytopes / Katja Kulas." München : Verlag Dr. Hut, 2013. http://d-nb.info/1037286804/34.
Full textLoiskekoski, Lauri [Verfasser]. "Separators of simple polytopes / Lauri Loiskekoski." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1155420810/34.
Full textPaterson, Harry David. "On the combinatorics of convex polytopes." Thesis, University College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412282.
Full textKasprzyk, A. "Toric Fano varieties and convex polytopes." Thesis, University of Bath, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428355.
Full textMészáros, Karola. "Root polytopes, triangulations, and subdivision algebras." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60199.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 99-100).
In this thesis a geometric way to understand the relations of certain noncommutative quadratic algebras defined by Anatol N. Kirillov is developed. These algebras are closely related to the Fomin-Kirillov algebra, which was introduced in the hopes of unraveling the main outstanding problem of modern Schubert calculus, that of finding a combinatorial interpretation for the structure constants of Schubert polynomials. Using a geometric understanding of the relations of Kirillov's algebras in terms of subdivisions of root polytopes, several conjectures of Kirillov about the reduced forms of monomials in the algebras are proved and generalized. Other than a way of understanding Kirillov's algebras, this polytope approach also yields new results about root polytopes, such as explicit triangulations and formulas for their volumes and Ehrhart polynomials. Using the polytope technique an explicit combinatorial description of the reduced forms of monomials is also given. Inspired by Kirillov's algebras, the relations of which can be interpreted as subdivisions of root polytopes, commutative subdivision algebras are defined, whose relations encode a variety of possible subdivisions, and which provide a systematic way of obtaining subdivisions and triangulations.
by Karola Mészáros.
Ph.D.
Macchia, Marco. "Two level polytopes :geometry and optimization." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/276475.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Ferroni, Rivetti Luis <1993>. "The Ehrhart Theory of Matroid Polytopes." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9945/1/FerroniRivetti_Luis_tesi.pdf.
Full textBrunel, Victor Emmanuel. "Non parametric estimation of convex bodies and convex polytopes." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066146/document.
Full textIn this thesis, we are interested in statistical inference on convex bodies in the Euclidean space $\R^d$. Two models are investigated. The first one consists of the observation of $n$ independent random points, with common uniform distribution on an unknown convex body. The second one is a regression model, with additive subgaussian noise, where the regression function is the indicator function of an unknown convex body. In the first model, our goal is to estimate the unknown support of the common uniform density of the observed points. In the second model, we aim either to estimate the support of the regression function, or to detect whether this support is nonempty, i.e., the regression function is nonzero. In both models, we investigate the cases when the unknown set is a convex polytope, and when we know the number of vertices. If this number is not known, we propose an adaptive method which allows us to obtain a statistical procedure performing asymptotically as well as in the case of perfect knowledge of that number. In addition, this procedure allows misspecification, i.e., provides an estimator of the unknown set, which is optimal in a minimax sense, even if the unknown set is not polytopal, in the contrary to what may have been thought. We prove a universal deviation inequality for the volume of the convex hull of the observations in the first model. We show that this inequality allows one to derive tight bounds on the moments of the missing volume of this convex hull, as well as on the moments of the number of its vertices. In the one-dimensional case, in the second model, we compute the asymptotic minimal size of the unknown set so that it can be detected by some statistical procedure, and we propose a decision rule which allows consistent testing of whether of that set is empty
Taylor, Clifford T. "Deletion-Induced Triangulations." UKnowledge, 2015. http://uknowledge.uky.edu/math_etds/24.
Full textDall, Aaron Matthew. "Matroids : h-vectors, zonotopes, and Lawrence polytopes." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/286280.
Full textEl principal objeto de estudio de la presente tesis son las matroides, que generalizan propiedades de matrices a un contexto más combinatorio. Nos interesaremos principalmente por tres clases particulares: matroides regulares, matroides aritméticas, y matroides internamente perfectas. De estas famílias, las matroides regulares son las mejor estudiadas. En cambio, las matroides aritméticas son estructuras relativamente nuevas que capturan simultáneamente invariantes combinatorias y geométricas de configuraciones racionales de vectores. Introducimos en esta tesis la clase de matroides internamente perfectas, que nos permiten usar la estructura del orden interno de dichas matroides para probar, en este caso y suponiendo la veracidad de una afirmación, la conjetura de Stanley que cualquier h-vector de una matroide es una O-secuencia pura. Esta tesis está estructurada de la siguiente forma. En el Capítulo 1 damos los antecedentes relevantes. En el Capítulo 2 ofrecemos una nueva demostración de una generalización del teorema de Kirchhoff. Después reestructuramos el problema en el mundo de la geometría poliédrica a través de dos zonotopos determinados por una matroide regular, demostrando que los volúmenes de estos zonotopos son iguales, y construyendo una biyección explícita entre ellos (fuera de un conjunto de medida cero). Generalizamos entonces al caso de una matroide con pesos. Concluimos mostrando que nuestra técnica pude ser usada para volver a demostrar el teorema clásico de Kirchhoff, puliendo los detalles cuando las matrices tienen corrango igual a uno. Este capítulo es fruto de trabajo conjunto con Julian Pfeifle. En el Capítulo 3 sacamos provecho de una conexión entre el zonotopo y el politopo de Lawrence generado por una representación íntegra (con coeficientes enteros) de una matroide racional para probar relaciones entre varios polinomios asociados con ellos. Primero demostramos una relación entre el polinomio de Ehrhart del zonotopo y el numerador de la serie de Ehrhart del politopo de Lawrence. Al nivel de matroides aritméticas esta relación nos permite ver el numerador de la serie de Ehrhart del politopo de Lawrence como el análogo, para matroides aritméticas, del usual h-vector de la matroide. Después de demostrar el resultado mencionado, lo usamos para ofrecer una nueva interpretación de los coeficientes de una evaluación particular del polinomio aritmético de Tutte. Finalmente mostramos que el h-vector de la matroide y la serie de Ehrhart del politopo de Lawrence coinciden cuando la representación es unimodular. En el Capítulo 4 consideramos una nueva clase de matroides, cuyo orden interno las vuelve especialmente dispuestas para demostrar la conjetura de Stanley. Esta conjetura dice que para cualquier matroide existe un ideal de orden puro cuya O-secuencia coincide con el h-vector de la matroide. Damos un breve repaso de los resultados conocidos en la Sección 4.1 antes de enfocarnos en las matroides ordenadas y el orden interno en la Sección 4.2, donde también definimos las bases y matroides internamente perfectas. En la Sección 4.3 probamos resultados preliminares sobre bases internamente perfectas culminando en el Teorema 4.11, dónde mostramos que, suponiendo la veracidad de cierta afirmación, cualquier matroide perfecta satisface la conjetura de Stanley. Por otra parte, conjeturamos que esta afirmación, en efecto, es válida para todas las matroides internamente perfectas.
Lopez, Mario A., Shlomo Reisner, and reisner@math haifa ac il. "Linear Time Approximation of 3D Convex Polytopes." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1005.ps.
Full textGonska, Bernd [Verfasser]. "Inscribable polytopes via Delaunay triangulations / Bernd Gonska." Berlin : Freie Universität Berlin, 2013. http://d-nb.info/1031104100/34.
Full textSturgeon, Stephen. "Boij-Söderberg Decompositions, Cellular Resolutions, and Polytopes." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/20.
Full textWacheux, Christophe. "Semi-toric integrable systems and moment polytopes." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00932926.
Full textChan, Clara S. (Clara Sophia). "On shellings and subdivisions of convex polytopes." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13245.
Full textAkhtar, Mohammad Ehtisham. "Mutations of Laurent polynomials and lattice polytopes." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/28115.
Full textBalletti, Gabriele. "Classifications and volume bounds of lattice polytopes." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-139823.
Full textRoyer, Tiago. "Ehrhart theory for real dilates of polytopes." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-31052018-093012/.
Full textA função de Ehrhart L_P(t) de um politopo P é definida como sendo o número de pontos com coordenadas inteiras no politopo dilatado tP. A teoria de Ehrhart clássica lida principalmente com valores inteiros de t; esta dissertação de mestrado foca em como a função de Ehrhart se comporta quando permitimos que o parâmetro t seja um número real arbitrário. São três os resultados principais desta dissertação a respeito deste comportamento. Alguns politopos racionais (como o cubo unitário [0, 1]^d) apenas ganham pontos inteiros quando o parâmetro de dilatação t é um inteiro, de tal forma que computar L_P(t) devolve a mesma contagem de pontos que L_P(t). Eles são chamados de politopos semi-reflexivos. O primeiro resultado desta dissertação é uma caracterização destes politopos em termos de suas descrições como interseção de semi-espaços. O segundo resultado é relacionado ao teorema de Ehrhart. No contexto clássico, o teorema de Ehrhart afirma que L_P(t) será um quasi-polinômio sempre que P for um politopo racional. Sabe-se que este teorema generaliza para parâmetros reais de dilatação; nesta dissertação é apresentada uma nova demonstração deste fato, baseada na caracterização mencionada acima. O terceiro resultado é sobre como a função real de Ehrhart se comporta com respeito à translação neste novo contexto. Sabe-se que a função de Ehrhart clássica é invariante sob translações por vetores com coordenadas inteiras. Por outro lado, a função real de Ehrhart está bem longe de ser invariante: não só existem infinitas funções L_{P + w}(t) distintas, mas também, sob certas condições, esta coleção de funções identifica P unicamente.
Lienkaemper, Caitlin. "Toric Ideals, Polytopes, and Convex Neural Codes." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/106.
Full textHerrmann, Sven. "Splits and tight spans of convex polytopes." München Verl. Dr. Hut, 2009. http://d-nb.info/993259189/04.
Full textHolt, Fredrick Baden. "Linear algebra, polytopes, and the Hirsch conjecture /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/5795.
Full textCodenotti, Giulia [Verfasser]. "Covering properties of lattice polytopes / Giulia Codenotti." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1205735569/34.
Full textMargot, François Margot François. "Composition de polytopes combinatoires : une approche par projection /." [S.l.] : [s.n.], 1994. http://library.epfl.ch/theses/?nr=1209.
Full textPEIXOTO, CAMILLA NERES. "GOSSET POLYTOPES AND THE COXETER GROUPS E(N)." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16433@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Um politopo convexo é semiregular se todas as suas faces forem regulares e o grupo de isometrias agir transitivamente sobre os vértices. A classificação dos politopos semiregulares inclui algumas famílias infinitas, algumas exceções em dimensão baixa e uma família, os politopos de Gosset, que está definida para dimensão entre 3 e 8. Certos grupos de isometrias de R(n) gerados por reflexões são chamados grupos de Coxeter. A classificação dos grupos de Coxeter inclui três famílias infinitas, algumas exceções em dimensão menor ou igual a 4 e os grupos excepcionais E(6), E(7) e E(8). O grupo E(n) é o grupo das isometrias do politopo de Gosset em dimensao n. Nesta dissertação construiremos os grupos de Coxeter En, os politopos de Gosset e indicaremos a relação destes objetos com os reticulados e as álgebras de Lie também conhecidos como E(n).
A convex polytope is semiregular if all its faces are regular and the group of isometries acts transitively over vertices. The classification of semiregular polytopes includes a few infinite families, some low dimensional exceptions and a family, the Gosset polytopes, which is defined for dimension 3 to 8. Certain groups of isometries of R(n) generated by reflections are called Coxeter groups. The classification of finite Coxeter groups includes three infinite families, some exceptions in dimension 4 or lower and the exceptional groups E(6), E(7) and E(8). The group En is the group of isometries of the Gosset polytope in dimension n. In this dissertation we construct the Coxeter groups En, the Gosset polytopes and indicate the relationship of these objects with the lattices and Lie algebras which are also known as E(n).
Gillette, Andrew, and Alexander Rand. "INTERPOLATION ERROR ESTIMATES FOR HARMONIC COORDINATES ON POLYTOPES." EDP SCIENCES S A, 2016. http://hdl.handle.net/10150/621355.
Full textBederoff, Ericksson Jonas. "Graph properties of DAG associahedra and related polytopes." Thesis, KTH, Matematik (Avd.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228406.
Full textEn riktad acyklisk graf kan betraktas som en representant för relationer av betingat oberoende mellan stokastiska variabler. Ett grundläggande problem inom kausal inferens är, givet att vi får data från en sannolikhetsfördelning som uppfyller en mängd relationer av betingat oberoende, att hitta den underliggande graf som representerar dessa relationer. Den giriga SP-algoritmen strävar efter att hitta den underliggande grafen genom att traversera kanter på en polytop kallad DAG-associahedern. Därav spelar kantstrukturen hos DAG-associahedern en stor roll för vår förståelse för den giriga SP-algoritmens komplexitet. I den här uppsatsen studerar vi grafegenskaper hos kantgrafer av DAG-associahedern, relaterade polytoper och deras viktiga delgrafer. Exempel på grafe-genskaper som vi studerar är diameter, radie och center. Våra diameterresultat för DAG-associahedern ger upphov till en ny kausal inferensalgoritm med förbättrade teoretiska på-litlighetsgarantier och komplexitetsbegränsningar jämfört med den giriga SP-algoritmen.