Journal articles on the topic 'Polyurethan foam production'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Polyurethan foam production.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jeffs, G. M. F., and D. J. Sparrow. "Progress in the Reduction and Elimination of the Use of CFCs in Rigid Polyurethane Foam." Cellular Polymers 9, no. 4 (1990): 253–77. http://dx.doi.org/10.1177/026248939000900401.
Full textLee, Joo Hyung, Seong Hun Kim, and Kyung Wha Oh. "Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties." Polymers 13, no. 4 (2021): 576. http://dx.doi.org/10.3390/polym13040576.
Full textUgarte, Lorena, Tamara Calvo-Correas, Itziar Gonzalez-Gurrutxaga, et al. "Towards Circular Economy: Different Strategies for Polyurethane Waste Recycling and the Obtaining of New Products." Proceedings 2, no. 23 (2018): 1490. http://dx.doi.org/10.3390/proceedings2231490.
Full textPolaczek, Krzysztof, Maria Kurańska, Elżbieta Malewska, Małgorzata Czerwicka-Pach, and Aleksander Prociak. "From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil." Materials 16, no. 18 (2023): 6139. http://dx.doi.org/10.3390/ma16186139.
Full textSullivan, W. F., and A. K. Thomas. "The Use of An All CO2 Blown Foam in Production." Cellular Polymers 11, no. 1 (1992): 18–28. http://dx.doi.org/10.1177/026248939201100102.
Full textDomingos, Idalina J., Ana P. Fernandes, José Ferreira, Luísa Cruz-Lopes, and Bruno M. Esteves. "Polyurethane foams from liquefied Eucalyptus globulus branches." BioResources 14, no. 1 (2018): 31–43. http://dx.doi.org/10.15376/biores.14.1.31-43.
Full textSendijarevic, Ibrahim, Karol W. Pietrzyk, Christi M. Schiffman, Vahid Sendijarevic, Alper Kiziltas, and Debbie Mielewski. "Polyol from spent coffee grounds: Performance in a model pour-in-place rigid polyurethane foam system." Journal of Cellular Plastics 56, no. 6 (2020): 630–45. http://dx.doi.org/10.1177/0021955x20912204.
Full textOmotoyinbo, Joseph Ajibade, Isiaka Oluwole Oladele, Jamiu Mosebolatan Jabar, et al. "Comparative investigation of the influence of kaolin and dolomite on the properties of polyurethane foam." Manufacturing Review 8 (2021): 27. http://dx.doi.org/10.1051/mfreview/2021025.
Full textPaciorek-Sadowska, Joanna, Marcin Borowicz, Marek Isbrandt, Bogusław Czupryński, and Łukasz Apiecionek. "The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites." Polymers 11, no. 9 (2019): 1431. http://dx.doi.org/10.3390/polym11091431.
Full textUdayakumar, Mahitha, Renáta Zsanett Boros, László Farkas, et al. "Composite Carbon Foams as an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application." Materials 14, no. 16 (2021): 4540. http://dx.doi.org/10.3390/ma14164540.
Full textChmiel-Szukiewicz, Elżbieta. "Hardly Flammable Polyurethane Foams with 1,3-Pyrimidine Ring and Boron Atoms." Polymers 13, no. 10 (2021): 1603. http://dx.doi.org/10.3390/polym13101603.
Full textNoureddine, Boumdouha, Safidine Zitouni, Boudiaf Achraf, Chabane Houssém, Duchet-Rumeau Jannick, and Gerard Jean-François. "Development and Characterization of Tailored Polyurethane Foams for Shock Absorption." Applied Sciences 12, no. 4 (2022): 2206. http://dx.doi.org/10.3390/app12042206.
Full textPaciorek-Sadowska, Joanna, Marcin Borowicz, and Marek Isbrandt. "Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams." Polymers 15, no. 17 (2023): 3529. http://dx.doi.org/10.3390/polym15173529.
Full textMargarita Alexandrovna, Goncharova, Korneeva Anastasia Olegovna, Korneev Oleg Olegovich, and Hameed Ghalib Hussain Al-Surraiwy. "Effective polyurethane compositions filled with industrial wastes." International Journal of Engineering & Technology 7, no. 2.13 (2018): 240. http://dx.doi.org/10.14419/ijet.v7i2.13.12671.
Full textÖzveren, Nihan, and M. Özgür Seydibeyoğlu. "The Use of Biodiesel Residues for Heat Insulating Biobased Polyurethane Foams." International Journal of Polymer Science 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/6310198.
Full textAjayi, Arinola Bola, Habeeb Akorede Mustapha, Abiodun Felix Popoola, Tosin Emmanuel Folarin, and Samuel Olabode Afolabi. "Development of a Laboratory-Scale Steam Boiler for Polyurethane (Foam) Waste Recycling Machine." Journal of Advanced Engineering and Computation 7, no. 2 (2023): 133. http://dx.doi.org/10.55579/jaec.202372.409.
Full textКочерженко, А., and A. Kocherzhenko. "OBTAINING FILLED POLYURETHANE FOAM WITH IMPROVED OPERATIONAL PROPERTIES." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 4, no. 4 (2019): 47–52. http://dx.doi.org/10.34031/article_5cb1e65f6791b0.52319300.
Full textGanesan, Kavya, Bethany Guin, Elijah Wilbanks, and James Sternberg. "Synthesis and Characterization of Soy Hull Biochar-Based Flexible Polyurethane Foam Composites." Materials 18, no. 9 (2025): 2006. https://doi.org/10.3390/ma18092006.
Full textKiss, Gabriel, Gerlinde Rusu, Geza Bandur, Iosif Hulka, Daniel Romecki, and Francisc Péter. "Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol." Polymers 13, no. 11 (2021): 1736. http://dx.doi.org/10.3390/polym13111736.
Full textLeszczyńska, Milena, Elżbieta Malewska, Joanna Ryszkowska, et al. "Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams." Materials 14, no. 7 (2021): 1772. http://dx.doi.org/10.3390/ma14071772.
Full textSingh, Vratika, Mahesh N. Gopalasamudram, and Jaya Maitra. "Variable pressure foaming on functionality and structural properties correlation in flexible polyurethane foam." Brazilian Journal of Development 10, no. 1 (2024): 1605–22. http://dx.doi.org/10.34117/bjdv10n1-102.
Full textGrancharov, Georgy, Mariya-Desislava Atanasova, Radostina Kalinova, et al. "Biorenewable Oxypropylated Pentane-1,2,5-triol as a Source for Incorporation in Rigid Polyurethane Foams." Polymers 15, no. 20 (2023): 4148. http://dx.doi.org/10.3390/polym15204148.
Full textKairytė, Agnė, Saulius Vaitkus, and Giedrius Balčiūnas. "THE IMPACT OF CHAIN EXTENDER ON THE PROPERTIES OF POLYURETHANE FOAM BASED ON RAPESEED OIL POLYOL OBTAINED VIA CHEMO–ENZYMATIC ROUTE." Engineering Structures and Technologies 8, no. 3 (2016): 101–7. http://dx.doi.org/10.3846/2029882x.2016.1209726.
Full textKirpluks, Mikelis, Ugis Cabulis, Viesturs Zeltins, Laura Stiebra, and Andris Avots. "Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat." Autex Research Journal 14, no. 4 (2014): 259–69. http://dx.doi.org/10.2478/aut-2014-0026.
Full textPaciorek-Sadowska, Joanna, Marcin Borowicz, Janusz Datta, Łukasz Piszczyk, Paulina Kosmela, and Iwona Zarzyka. "Polyurethane Nanocomposites with Open-Cell Structure Modified with Aluminosilicate Nano-Filler." Materials 17, no. 22 (2024): 5641. http://dx.doi.org/10.3390/ma17225641.
Full textYakushin, Vladimir, Ugis Cabulis, Velta Fridrihsone, Sergey Kravchenko, and Romass Pauliks. "Properties of polyurethane foam with fourth-generation blowing agent." e-Polymers 21, no. 1 (2021): 763–69. http://dx.doi.org/10.1515/epoly-2021-0081.
Full textFedorova, T. P., G. V. Pavlova, and V. A. Zelenin. "Hygienic assessment of working conditions in the manufacture of polyurethane foam products." Kazan medical journal 68, no. 2 (1987): 137–38. http://dx.doi.org/10.17816/kazmj96059.
Full textGu, Xiaohua, Shangwen Zhu, Siwen Liu, and Yan Liu. "Analysis of the Influencing Factors of the Efficient Degradation of Waste Polyurethane and Its Scheme Optimization." Polymers 15, no. 10 (2023): 2337. http://dx.doi.org/10.3390/polym15102337.
Full textBello, Kabirat O., and Ning Yan. "Mechanical and Insulation Performance of Rigid Polyurethane Foam Reinforced with Lignin-Containing Nanocellulose Fibrils." Polymers 16, no. 15 (2024): 2119. http://dx.doi.org/10.3390/polym16152119.
Full textEl Khezraji, Said, Suman Thakur, Mustapha Raihane, et al. "Use of Novel Non-Toxic Bismuth Catalyst for the Preparation of Flexible Polyurethane Foam." Polymers 13, no. 24 (2021): 4460. http://dx.doi.org/10.3390/polym13244460.
Full textMajib, Nur Mawaddah, Sam Sung Ting, Noorulnajwa Diyana Yaacob, Nor Munirah Rohaizad, and Lee Boon Beng. "Effects of different biomass on the properties of Pleurotus Djamor eco-friendly foam." E3S Web of Conferences 437 (2023): 03004. http://dx.doi.org/10.1051/e3sconf/202343703004.
Full textPendle, T. D. "A Review of the Moulded Latex Foam Industry." Cellular Polymers 8, no. 1 (1989): 1–14. http://dx.doi.org/10.1177/026248938900800101.
Full textRosbotham, Dave, Rik De Vos, and Joris Deschaght. "Micro-fine Cellular Technology for the Appliance Industry." Cellular Polymers 11, no. 4 (1992): 288–97. http://dx.doi.org/10.1177/026248939201100403.
Full textZakrzewska, Patrycja, Monika Kuźnia, Beata Zygmunt-Kowalska, Anna Magiera, and Aneta Magdziarz. "Utilization of Sunflower Husk Ash in the Production of Polyurethane Materials." Energies 16, no. 24 (2023): 8080. http://dx.doi.org/10.3390/en16248080.
Full textColvin, B. G. "An Integrated Approach to Foam Development for Automotive Instrument Panels." Cellular Polymers 11, no. 1 (1992): 29–56. http://dx.doi.org/10.1177/026248939201100103.
Full textNJEXTR. "DEVELOPMENT OF BIOBASED FOAM FROM JATROPHA SEED OIL POLYOL: EFFECT OF ISCOYANATE ON SOME PHYSICO-CHEMICAL PROPERTIES OF THE BIOBASED FOAM." Nigerian Journal of Engineering Science and Technology Research 9, no. 2 (2023): 173–81. https://doi.org/10.5281/zenodo.13932871.
Full textOmotoyinbo, J. A., I. O. Oladele, J. M. Jabar, et al. "MICROSTRUCTURAL CHARACTERISATION, RHEOLOGICAL AND WATER ABSORPTION PROPERTIES OF FILLED POLYURETHANE FOAM." FUTA JOURNAL OF ENGINEERING AND ENGINEERING TECHNOLOGY 16, no. 1 (2022): 33–43. http://dx.doi.org/10.51459/futajeet.2022.16.1.359.
Full textGu, Xiaohua, Xiaoyao Wang, Tong Wang, et al. "Analysis of Factors Influencing the Efficiency of Catalysts Used in Waste PU Degradation." Polymers 14, no. 24 (2022): 5450. http://dx.doi.org/10.3390/polym14245450.
Full textVevere, Laima, Sarmīte Janceva, Alexandr Arshanitsa, and Galina Telysheva. "Polyols from Condensed Tannin Enriched Extracts for Rigid Polyurethane Foam Production." Key Engineering Materials 762 (February 2018): 197–202. http://dx.doi.org/10.4028/www.scientific.net/kem.762.197.
Full textKuźnia, Monika, Beata Zygmunt-Kowalska, Artur Szajding, Anna Magiera, Rafał Stanik, and Maik Gude. "Comparative Study on Selected Properties of Modified Polyurethane Foam with Fly Ash." International Journal of Molecular Sciences 23, no. 17 (2022): 9725. http://dx.doi.org/10.3390/ijms23179725.
Full textKirpluks, Mikelis, Ugis Cabulis, Maria Kurańska, and Aleksander Prociak. "Three Different Approaches for Polyol Synthesis from Rapeseed Oil." Key Engineering Materials 559 (June 2013): 69–74. http://dx.doi.org/10.4028/www.scientific.net/kem.559.69.
Full textLin, Zhaojun, Qianqiong Zhao, Ruilan Fan, Xiaoxue Yuan, and Fuli Tian. "Flame retardancy and thermal properties of rigid polyurethane foam conjugated with a phosphorus–nitrogen halogen-free intumescent flame retardant." Journal of Fire Sciences 38, no. 3 (2020): 235–52. http://dx.doi.org/10.1177/0734904119890685.
Full textSari, Imas Ganda, and Naziyah Naziyah. "Analisis Asuhan Keperawatan dengan Intervensi Penggunaan Polyurethane Foam sebagai Balutan Sekunder Pada Fase Proliferasi Pada Pasien Tn. M, Ny. N dan Ny. E dengan Ulkus Dekubitus di Wocare Center Kota Bogor." Jurnal Kreativitas Pengabdian Kepada Masyarakat (PKM) 6, no. 10 (2023): 4349–64. http://dx.doi.org/10.33024/jkpm.v6i10.11400.
Full textIvdre, Aiga, Arnis Abolins, Nikita Volkovs, et al. "Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols." Polymers 15, no. 14 (2023): 3124. http://dx.doi.org/10.3390/polym15143124.
Full textCzupryński, Bogusław, Joanna Liszkowska, and Joanna Paciorek-Sadowska. "Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams." Journal of Chemistry 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/130823.
Full textPaciorek-Sadowska, Joanna, Marcin Borowicz, and Marek Isbrandt. "New Poly(lactide-urethane-isocyanurate) Foams Based on Bio-Polylactide Waste." Polymers 11, no. 3 (2019): 481. http://dx.doi.org/10.3390/polym11030481.
Full textSimioni, F., M. Modesti, and S. A. Rienzi. "Polyol Recovery from Elastomer Polyurethane Waste." Cellular Polymers 6, no. 6 (1987): 27–41. http://dx.doi.org/10.1177/026248938700600603.
Full textSchäfer, Kay, Susann Anders, Stefan Valentin, et al. "Investigation of the specific adhesion between polyurethane foams and thermoplastics to suited material selection in lightweight structures." Journal of Elastomers & Plastics 50, no. 8 (2018): 720–36. http://dx.doi.org/10.1177/0095244318765040.
Full textHurd, R. "Some Actions Taken by Flexible Foam Producers in Europe to Meet the Requirements of Legislation on Health and the Environment." Progress in Rubber and Plastics Technology 8, no. 1 (1992): 49–74. https://doi.org/10.1177/147776069200800104.
Full textZarzyka, Iwona. "The Modification of Polyurethane Foams Using New Boroorganic Polyols (II) Polyurethane Foams from Boron-Modified Hydroxypropyl Urea Derivatives." Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/363260.
Full text