Contents
Academic literature on the topic 'Ponts à dalles orthotropes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ponts à dalles orthotropes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ponts à dalles orthotropes"
Michel, Laurent, and Emmanuel Ferrier. "Comportement mécanique de dalles orthotropes renforcées par matériaux composites." Revue des composites et des matériaux avancés 22, no. 2 (August 31, 2012): 187–217. http://dx.doi.org/10.3166/rcma.22.187-217.
Full textDissertations / Theses on the topic "Ponts à dalles orthotropes"
Martin, Yannick. "Développement d'assemblages de dispositif de retenue pour les ponts à tabliers orthotropes en acier." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/25881.
Full textTraffic barriers in bridge construction are specially designed devices that are carefully selected and connected to the bridge deck to redirect errant vehicles safely into the flow of traffic and prevent them from proceeding down a non-driveable batter. Current North American bridge design standards require that the selected traffic barrier system must be crash-tested at full-scale to ensure a safe design standard. Minimal modifications of already crash-tested and approved traffic barrier system are however allowed if its performance can be demonstrated by an appropriate engineering simulation and analysis. The finite element analysis method is an effective tool to predict the response of traffic barriers under vehicle-induced forces. The present research aims at developing generic connector systems (deck and curb-mounted) that allows the attachment of a standard already-crash-tested post-and-rail barrier to orthotropic steel decks. This research involves both static analysis and dynamic simulation of crash-test using ABAQUS and LS-DYNA. The ability of the attachment system to transfer the impact loads without compromising the structural integrity of the bridge deck or the barrier itself would be examined in detail. Typical assembly were developed with strengthening plates to connect the traffic barriers directly on the orthotropic steel deck and with a module to connect it on a steel curb. Similarities existing between the results of the different analyses show that the static loads specified in Canadian standard CSA S6-06 are appropriate for the modification of the anchorage of traffic barriers to connect them to orthotropic steel decks. Keywords : Traffic barrier, orthotropic steel deck, bridge, connector system, finite element analysis.
N'Diaye, Moustapha. "Modèle d'élément fini pour la solution des planchers-dalles, des dalles champignons et des dalles orthotropes /." [S.l.] : [s.n.], 1992. http://library.epfl.ch/theses/?display=detail&nr=966.
Full textRanc, Guillaume. "Résistance en fatigue des dalles de béton armé fissurées des ponts mixtes." Marne-la-vallée, ENPC, 1999. http://www.theses.fr/1999ENPC9930.
Full textDE, FREITAS MAGALHAES GOMES RIVALLAIN Fernanda. "Influence du revêtement sur le comportement en fatigue des dalles orthotropes : Etude d'une solution en BFUP." Phd thesis, UNIVERSITE PARIS-EST, 2012. http://tel.archives-ouvertes.fr/tel-00868667.
Full textGomes, Fernanda. "Influence du revêtement sur le comportement en fatigue des dalles orthotropes : étude d'une solution en BFUP." Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00806298.
Full textBélanger, Anne. "Conception de dalles de ponts avec armature réduite et béton de fibres d'acier." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/MQ53553.pdf.
Full textBroquet, Claude. "Comportement dynamique des dalles de roulement des ponts en béton sollicités par le trafic routier /." [S.l.] : [s.n.], 1999. http://library.epfl.ch/theses/?nr=1964.
Full textOualha, Mohamed. "Contribution à l'étude des ponts à dalles pleines en béton précontraint renforcé de fibres métalliques." Mémoire, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/6200.
Full textPetitclerc, Samuel, and Samuel Petitclerc. "Comportement dynamique des ponts à platelage d'aluminium extrudé sous l'effet des surcharges routières." Master's thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/38298.
Full textL’aluminium est le matériau tout désigné pour les donneurs d’ouvrage étant à la recherche de matériaux plus durables pour les ponts routiers. Alliant un excellent ratio résistance/poids à une excellente résistance naturelle à la corrosion, son utilisation sous la forme d’un platelage extrudé connecté à des poutres d’acier assure une structure plus légère et requérant beaucoup moins d’entretien que les structures traditionnelles. Toutefois, la légèreté de l’aluminium, qui est un avantage important lors de la conception de la structure sous-jacente ainsi que lors de la construction, peut se révéler être un défi important d’un point de vue dynamique, en raison des fréquences de vibration qu’elle produit. Considérant que le code canadien sur le calcul des ponts routiers prescrit l’utilisation d’un coefficient de majoration dynamique (CMD) pour prendre en compte les effets dynamiques lors de la conception, et que la valeur de ce coefficient est basée sur le comportement dynamique des ponts traditionnels, des interrogations sont soulevées quant à l’applicabilité de ce coefficient pour des ponts à platelage d’aluminium, ayant un comportement dynamique différent. Afin de répondre à ces questions, des modèles dynamiques simplifiés permettant de représenter deux camions canadiens actuels, le CL-625 et le train double B, ont été développés et implémentés dans Abaqus. Par la suite, ces modèles furent utilisés afin de réaliser plusieurs séries d’analyses dynamiques, cherchant à évaluer l’impact sur la réponse du pont de divers paramètres et comparer les résultats obtenus aux valeurs prescrites. Les résultats obtenus dans cette étude, qui se veut le point de départ de l’analyse du comportement dynamique des ponts à platelage d’aluminium, semblent indiquer qu’en dépit d’un comportement dynamique différent, les valeurs de CMD prescrites par le code canadien sont sécuritaires pour des ponts à platelage d’aluminium. Toutefois, de nombreuses autres études seront nécessaires avant d’émettre des recommandations finales.
Aluminium is a material of choice for any highway bridge owners looking for more durable materials. Combining an excellent strength to weight ratio with an excellent corrosion resistance, an extruded aluminium deck connected to steel girders provides a lighter structure and requires less maintenance than the usual materials, such as steel or concrete. However, the aluminium’s lightweight, which is a huge advantage for the foundations design as well as for the construction, can become a concern when the bridge’s dynamic behavior is considered, due to its higher vibration frequencies. Considering that the Canadian Highway Bridge Design Code prescribes the use of a dynamic load allowance (DLA) factor to account for the dynamic effects of the traffic loads on the bridge, and that the values prescribed are based on the dynamic behavior of traditional bridges, some doubts arose about the applicability of this coefficient to aluminium deck bridges, which are expected to have a different dynamic behavior. To validate these speculations, simplified dynamic models were developed to replicate the dynamic behavior of two Canadian trucks, the CL-625 and the train double B. These models were then implemented in Abaqus and used in a series of dynamic analysis investigating the effect on the bridge response of different parameters, both from the truck and the bridge. Results have shown that, despite having a different dynamic behavior, the dynamic amplifications observed on aluminium deck bridges were always lower than the DLA values prescribed by the Canadian code, indicating that, for the situations studied, those values are safe to use. However, further studies will be required before any final conclusions can be made about the applicability of the DLA values in their current state.
Aluminium is a material of choice for any highway bridge owners looking for more durable materials. Combining an excellent strength to weight ratio with an excellent corrosion resistance, an extruded aluminium deck connected to steel girders provides a lighter structure and requires less maintenance than the usual materials, such as steel or concrete. However, the aluminium’s lightweight, which is a huge advantage for the foundations design as well as for the construction, can become a concern when the bridge’s dynamic behavior is considered, due to its higher vibration frequencies. Considering that the Canadian Highway Bridge Design Code prescribes the use of a dynamic load allowance (DLA) factor to account for the dynamic effects of the traffic loads on the bridge, and that the values prescribed are based on the dynamic behavior of traditional bridges, some doubts arose about the applicability of this coefficient to aluminium deck bridges, which are expected to have a different dynamic behavior. To validate these speculations, simplified dynamic models were developed to replicate the dynamic behavior of two Canadian trucks, the CL-625 and the train double B. These models were then implemented in Abaqus and used in a series of dynamic analysis investigating the effect on the bridge response of different parameters, both from the truck and the bridge. Results have shown that, despite having a different dynamic behavior, the dynamic amplifications observed on aluminium deck bridges were always lower than the DLA values prescribed by the Canadian code, indicating that, for the situations studied, those values are safe to use. However, further studies will be required before any final conclusions can be made about the applicability of the DLA values in their current state.
St-Gelais, Catherine. "Comportement structural d'un platelage en aluminium sur poutre en acier : répartition transversale des charges." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33614.
Full textThe use of aluminium decks in bridges has received attention in recent years, as the bridge engineering community discovers the advantages of this material compared with the traditional construction materials such as steel and concrete. Despite the recent introduction of Chapter 17 in the Canadian Highway Bridge Design Code, CAN/CSA S6, which permits engineers to use aluminium for bridge construction, the structural design application still remains a daunting task. Essentially, the code’s specifications for design do not provide concise and detailed methodologies for strength and serviceability verifications. As an example, for the simplified traffic load analysis, it appears that the factors for transverse distribution of traffic loads specified for aluminium bridge decks are based on values specified for wood plank decks, which appears insufficient. Another practical example relates to the determination of the plastic moment required to establish the bending moment capacity for the bridge section. Considering that a bridge deck solution in aluminium consists of a multi-cellular section made from extrusions, the application of the simplified method in determining the effective width of the deck section becomes a non-trivial task. A refined analysis using finite element methods is required to establish these design parameters for an optimized bridge solution in aluminium. In the present study, a finite element analysis is carried out to investigate the transverse distribution of traffic load on aluminium decks made from longitudinal and transverse extrusions, supported by steel girders. A number of bridge models are developed to study the influence of girder spacing and bridge span on the truck load fraction for aluminium decks and for establishing the effective area for the composite aluminium deck with steel girder system. It was determined that the code largely overestimates the values of truck load fractions, up to 25% to 40%. In addition, it was found that the truck load fractions calculated for models with transverse extrusion arrangements were always lower than those calculated for models with longitudinal extrusion. The transverse arrangement is therefore more effective in transferring truck loads to supporting girders. With respect to the effective area, the study showed that these values were lower for longitudinal extrusions than transverse extrusions. Finally, when compared with the values obtained using the simplified method by the code for a concrete deck, the effective areas determined were lower than those obtained from the code.