Academic literature on the topic 'Population Monte Carlo'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Population Monte Carlo.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Population Monte Carlo"
Cappé, O., A. Guillin, J. M. Marin, and C. P. Robert. "Population Monte Carlo." Journal of Computational and Graphical Statistics 13, no. 4 (December 2004): 907–29. http://dx.doi.org/10.1198/106186004x12803.
Full textIba, Yukito. "Population Monte Carlo algorithms." Transactions of the Japanese Society for Artificial Intelligence 16 (2001): 279–86. http://dx.doi.org/10.1527/tjsai.16.279.
Full textEl-Laham, Yousef, and Monica F. Bugallo. "Stochastic Gradient Population Monte Carlo." IEEE Signal Processing Letters 27 (2020): 46–50. http://dx.doi.org/10.1109/lsp.2019.2954048.
Full textGriffiths, R. C., and S. Tavaré. "Monte Carlo inference methods in population genetics." Mathematical and Computer Modelling 23, no. 8-9 (April 1996): 141–58. http://dx.doi.org/10.1016/0895-7177(96)00046-5.
Full textLee, Jeong Eun, Ross McVinish, and Kerrie Mengersen. "Population Monte Carlo Algorithm in High Dimensions." Methodology and Computing in Applied Probability 13, no. 2 (August 26, 2009): 369–89. http://dx.doi.org/10.1007/s11009-009-9154-2.
Full textMiller, Caleb, Jem N. Corcoran, and Michael D. Schneider. "Rare Events via Cross-Entropy Population Monte Carlo." IEEE Signal Processing Letters 29 (2022): 439–43. http://dx.doi.org/10.1109/lsp.2021.3139572.
Full textGONZÁLEZ-PARRA, GILBERTO, ABRAHAM J. ARENAS, and F. J. SANTONJA. "STOCHASTIC MODELING WITH MONTE CARLO OF OBESITY POPULATION." Journal of Biological Systems 18, no. 01 (March 2010): 93–108. http://dx.doi.org/10.1142/s0218339010003159.
Full textSmith, Matthew, and Themis Matsoukas. "Constant-number Monte Carlo simulation of population balances." Chemical Engineering Science 53, no. 9 (May 1998): 1777–86. http://dx.doi.org/10.1016/s0009-2509(98)00045-1.
Full textLegrady, David, Mate Halasz, Jozsef Kophazi, Balazs Molnar, and Gabor Tolnai. "Population-based variance reduction for dynamic Monte Carlo." Annals of Nuclear Energy 149 (December 2020): 107752. http://dx.doi.org/10.1016/j.anucene.2020.107752.
Full textJasra, A., D. A. Stephens, and C. C. Holmes. "Population-Based Reversible Jump Markov Chain Monte Carlo." Biometrika 94, no. 4 (August 5, 2007): 787–807. http://dx.doi.org/10.1093/biomet/asm069.
Full textDissertations / Theses on the topic "Population Monte Carlo"
Bakra, Eleni. "Aspects of population Markov chain Monte Carlo and reversible jump Markov chain Monte Carlo." Thesis, University of Glasgow, 2009. http://theses.gla.ac.uk/1247/.
Full textAnderson, Eric C. "Monte Carlo methods for inference in population genetic models /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6368.
Full textRousset, Mathias. "Méthodes de "Population Monte-Carlo'' en temps continu est physique numérique." Toulouse 3, 2006. http://www.theses.fr/2006TOU30251.
Full textIn this dissertation, we focus on stochastic numerical methods of Population Monte-Carlo type, in the continuous time setting. These PMC methods resort to the sequential computation of averages of weighted Markovian paths. The practical implementation rely then on the time evolution of the empirical distribution of a system of N interacting walkers. We prove the long time convergence (towards Schrödinger groundstates) of the variance and bias of this method with the expected 1/N rate. Next, we consider the problem of sequential sampling of a continuous flow of Boltzmann measures. For this purpose, starting with any Markovian dynamics, we associate a second dynamics in reversed time whose law (weighted by a computable Feynman-Kac path average) gives out the original dynamics as well as the target Boltzmann measure. Finally, we generalize the latter problem to the case where the dynamics is caused by evolving rigid constraints on the positions of the process. We compute exactly the associated weights, which resorts to the local curvature of the manifold defined by the constraints
Ding, Jie. "Monte Carlo Pedigree Disequilibrium Test with Missing Data and Population Structure." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218475579.
Full textFan, Gailing. "Galaxy radio pulsar population modelling and magellanic clouds radio pulsar survey /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25059294.
Full textLunn, David Jonathan. "The application of Markov chain Monte Carlo techniques to the study of population pharmacokinetics." Thesis, University of Manchester, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488145.
Full textCamacho, Díaz Judit. "Monte Carlo simulations of the population of single and binary white dwarfs of our galaxy." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/145924.
Full text范改玲 and Gailing Fan. "Galaxy radio pulsar population modelling and magellanic clouds radio pulsar survey." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31243058.
Full textLouw, Markus. "A population Monte Carlo approach to estimating parametric bidirectional reflectance distribution functions through Markov random field parameter estimation." Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/5179.
Full textLi, Qianqiu. "Bayesian inference on dynamics of individual and population hepatotoxicity via state space models." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124297874.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 155 p.; also includes graphics (some col.). Includes bibliographical references (p. 147-155). Available online via OhioLINK's ETD Center
Books on the topic "Population Monte Carlo"
Anderson, Gordon. Nonparametric tests for common but unspecified population distributions: A Monte Carlo comparison. Toronto: Dept. of Economics and Institute for Policy Analysis, University of Toronto, 1994.
Find full textLunn, David Jonathan. The application of Markov chain Monte Carlo techniques to the study of population pharmacokinetics. Manchester: University of Manchester, 1995.
Find full textLevin, Ines, and Betsy Sinclair. Causal Inference with Complex Survey Designs. Edited by Lonna Rae Atkeson and R. Michael Alvarez. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190213299.013.4.
Full textBook chapters on the topic "Population Monte Carlo"
Liu, Jun S. "Population-Based Monte Carlo Methods." In Springer Series in Statistics, 225–43. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-76371-2_11.
Full textKotalczyk, Gregor, and Frank Einar Kruis. "Compartmental Population Balances by Means of Monte Carlo Methods." In Dynamic Flowsheet Simulation of Solids Processes, 519–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_15.
Full textKrogel, Jaron T., and David M. Ceperley. "Population Control Bias with Applications to Parallel Diffusion Monte Carlo." In ACS Symposium Series, 13–26. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1094.ch002.
Full textWood, Matt A. "Monte Carlo Simulations of the White Dwarf Population and Luminosity Function." In White Dwarfs, 105–11. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5542-7_17.
Full textGimenez, Olivier, Simon J. Bonner, Ruth King, Richard A. Parker, Stephen P. Brooks, Lara E. Jamieson, Vladimir Grosbois, Byron J. T. Morgan, and Len Thomas. "WinBUGS for Population Ecologists: Bayesian Modeling Using Markov Chain Monte Carlo Methods." In Modeling Demographic Processes In Marked Populations, 883–915. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-78151-8_41.
Full textNagata, Hiroyasu, Kei-ichi Tainaka, Nariyuki Nakagiri, and Jin Yoshimura. "Monte Carlo Simulation in Lattice Ecosystem: Top-Predator Conservation and Population Uncertainty." In Natural Computing, 145–54. Tokyo: Springer Japan, 2009. http://dx.doi.org/10.1007/978-4-431-88981-6_13.
Full textSherri, M., I. Boulkaibet, T. Marwala, and M. I. Friswell. "Bayesian Finite Element Model Updating Using a Population Markov Chain Monte Carlo Algorithm." In Special Topics in Structural Dynamics & Experimental Techniques, Volume 5, 259–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47709-7_24.
Full textZia, R. K. P., and R. J. Astalos. "Statistics of an Age Structured Population with Two Competing Species: Analytic and Monte Carlo Studies." In Springer Proceedings in Physics, 235–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-59406-9_30.
Full textKlinger, Emmanuel, and Jan Hasenauer. "A Scheme for Adaptive Selection of Population Sizes in Approximate Bayesian Computation - Sequential Monte Carlo." In Computational Methods in Systems Biology, 128–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67471-1_8.
Full textGraziani, Rebecca. "Stochastic Population Forecasting: A Bayesian Approach Based on Evaluation by Experts." In Developments in Demographic Forecasting, 21–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42472-5_2.
Full textConference papers on the topic "Population Monte Carlo"
Bugallo, Monica F., Mingyi Hong, and Petar M. Djuric. "Marginalized population Monte Carlo." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4960236.
Full textEl-Laham, Yousef, Petar M. Djuric, and Monica F. Bugallo. "Enhanced Mixture Population Monte Carlo Via Stochastic Optimization and Markov Chain Monte Carlo Sampling." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053410.
Full textSweezy, Jeremy, Steve Nolen, Terry Adams, and Anthony Zukaitis. "A Particle Population Control Method for Dynamic Monte Carlo." In SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, edited by D. Caruge, C. Calvin, C. M. Diop, F. Malvagi, and J. C. Trama. Les Ulis, France: EDP Sciences, 2014. http://dx.doi.org/10.1051/snamc/201403202.
Full textElvira, Victor, Luca Martino, David Luengo, and Monica F. Bugallo. "Population Monte Carlo schemes with reduced path degeneracy." In 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2017. http://dx.doi.org/10.1109/camsap.2017.8313090.
Full textCamacho, Judit, Santiago Torres, and Enrique García-Berro. "Monte Carlo simulations of the Galactic binary population." In Supernovae: lights in the darkness. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.060.0008.
Full textHua, Fei, Xiao-hong Shen, Zhao Chen, Fu-zhou Yang, and Jiang-jian Gu. "Bayesian DOA estimation method using Population Monte Carlo." In 2012 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2012. http://dx.doi.org/10.1109/icspcc.2012.6335671.
Full textChen, Xi, and Enlu Zhou. "Population model-based optimization with sequential Monte Carlo." In 2013 Winter Simulation Conference - (WSC 2013). IEEE, 2013. http://dx.doi.org/10.1109/wsc.2013.6721490.
Full textWang, Xiangrong. "Segmentation Using Population based Markov Chain Monte Carlo." In 2013 9th International Conference on Natural Computation (ICNC). IEEE, 2013. http://dx.doi.org/10.1109/icnc.2013.6817967.
Full textZhu, Dandan, and Kai Jiang. "Population Forecasting Model Based on Monte Carlo Algorithm." In ICCDE 2018: 2018 International Conference on Computing and Data Engineering. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3219788.3219795.
Full textChi, Hongmei, and Peter Beerli. "Poster: Quasi-Monte Carlo method in population genetics parameter estimation." In 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2011. http://dx.doi.org/10.1109/iccabs.2011.5729891.
Full text