Academic literature on the topic 'Porous materials. Fullerenes. Nanoparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Porous materials. Fullerenes. Nanoparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Porous materials. Fullerenes. Nanoparticles"
Hidalgo, Francisco, and Cecilia Noguez. "Optically active nanoparticles: Fullerenes, carbon nanotubes, and metal nanoparticles." physica status solidi (b) 247, no. 8 (June 10, 2010): 1889–97. http://dx.doi.org/10.1002/pssb.200983923.
Full textShpilevsky, E., O. Penyazkov, S. Filatov, G. Shilagardi, P. Tuvshintur, D. Timur-Bаtor, and D. Ulam-Orgikh. "Modification of Materials by Carbon Nanoparticles." Solid State Phenomena 271 (January 2018): 70–75. http://dx.doi.org/10.4028/www.scientific.net/ssp.271.70.
Full textPikulev, V. B., S. N. Kuznetsov, A. A. Saren, Yu E. Gardin, and V. A. Gurtov. "Singlet oxygen generation in porous silicon with fullerenes." physica status solidi (a) 204, no. 5 (May 2007): 1266–70. http://dx.doi.org/10.1002/pssa.200674305.
Full textSun, Ya-PING, and Jason E. Riggs. "Organic and inorganic optical limiting materials. From fullerenes to nanoparticles." International Reviews in Physical Chemistry 18, no. 1 (January 1999): 43–90. http://dx.doi.org/10.1080/014423599230008.
Full textUgarte, D. "Graphitic Nanoparticles." MRS Bulletin 19, no. 11 (November 1994): 39–42. http://dx.doi.org/10.1557/s0883769400048399.
Full textLim, I.-Im S., Yi Pan, Derrick Mott, Jianying Ouyang, Peter N. Njoki, Jin Luo, Shuiqin Zhou, and Chuan-Jian Zhong. "Assembly of Gold Nanoparticles Mediated by Multifunctional Fullerenes." Langmuir 23, no. 21 (October 2007): 10715–24. http://dx.doi.org/10.1021/la701868b.
Full textMa, Yihan, Xiaoyan Zhang, Yinjia Cheng, Xiaosui Chen, Yong Li, and Aiqing Zhang. "Mussel-inspired preparation of C60 nanoparticles as photo-driven DNA cleavage reagents." New Journal of Chemistry 42, no. 22 (2018): 18102–8. http://dx.doi.org/10.1039/c8nj03970d.
Full textKirumakki, Sharath, Jin Huang, Ayyappan Subbiah, Jiyong Yao, Adam Rowland, Brentley Smith, Atashi Mukherjee, Sandani Samarajeewa, and Abraham Clearfield. "Tin(iv) phosphonates: porous nanoparticles and pillared materials." Journal of Materials Chemistry 19, no. 17 (2009): 2593. http://dx.doi.org/10.1039/b818618a.
Full textFiorito, S., A. Serafino, F. Andreola, A. Togna, and G. Togna. "Toxicity and Biocompatibility of Carbon Nanoparticles." Journal of Nanoscience and Nanotechnology 6, no. 3 (March 1, 2006): 591–99. http://dx.doi.org/10.1166/jnn.2006.125.
Full textFink, D., R. Klett, C. Mathis, J. Vacik, V. Hnatowicz, and L. T. Chadderton. "Precipitation of dissolved alkali salts and fullerenes on surfaces of doped porous matter." Applied Physics A Materials Science & Processing 62, no. 3 (March 1996): 191–95. http://dx.doi.org/10.1007/bf01575080.
Full textDissertations / Theses on the topic "Porous materials. Fullerenes. Nanoparticles"
Wang, Yonggang. "Transport and retention of fullerene-based nanoparticles in water-saturated porous media." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29782.
Full textCommittee Chair: Pennell, Kurt; Committee Member: Hughes, Joseph; Committee Member: Kim, Jaehong; Committee Member: Snyder, Robert; Committee Member: Yiacoumi, Sotira. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Wittee, Lopes Christian. "Characterization of metallic species on porous materials by in situ XAS." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107953.
Full textThe aim of this thesis is to study the clustering and growth of metallic species either confined or supported in porous materials by in situ X-ray absorption spectroscopy. To accomplish this task, palladium and silver species were introduced into porous materials (¿-alumina, activated carbon and zeolites) by wetness impregnation and ion-exchange methods, respectively. Then, the clustering of these metallic species was controlled by activation treatments in different atmospheres (inert, oxidative and reductive) and followed by XAS in a comprehensive way. The principal goal of current work is to demonstrate that both XANES and EXAFS can provide valuable and, at certain point, innovative information during tuning of metallic species (in terms of type and size). Taking advantage of unusual analysis procedures, such as cumulant approach, fitting of imaginary part of Fourier transform and others, it is possible to obtain refined information about the investigated systems. In the introduction section, a compilation of studies in which XAS was used as important technique to characterize metallic species in porous materials is provided. Conscious that people can use such introduction as a basis for more complex studies in the future, the discussion has been tentatively directed toward this goal. The chapter 4 is focused on the study of the influence of palladium precursors and the nature of support on the resultant nanoparticles. The whole activation process, i.e. the transformation precursor --> nanoparticle, was followed in situ by XAS. The analysis pathway was composed by the starting point (as-impregnated), calcination in O2 flow and posterior reduction with H2. The consequence of using distinct metal precursors and supports were discussed in terms of average coordination number obtained from EXAFS data analysis, which was co-supported by laboratory characterization techniques. The chapter 5 is dedicated to the study of silver clustering during and after activation treatments using Ag-containing small-pore zeolites as precursors and nanocontainers. The influence of framework structure and chemical composition of Ag-based materials on formed Ag species at different clustering and metal redispersion conditions (calcination using distinct atmospheres, reduction in H2, redispersion in O2) were studied using either in situ or ex situ characterization methods. After, the catalytic consequences of tuned Ag-containing zeolites in SCO-NH3 are discussed. In this section, the combination of in situ XAS with several laboratory techniques proved to be pivotal to have a full picture of the investigated system. Finally, a list of projects developed in parallel to this thesis is provided at the end of this document.
L'objectiu d'aquesta tesi és estudiar l'agrupació i el creixement d'espècies metàl·liques confinades o suportades en materials porosos mitjançant espectroscòpia d'absorció de raigs X in situ. Per a això, les espècies de pal·ladi i plata s'han introduït en materials porosos (¿-alúmina, carbó activat i zeolites) per mitjà de la impregnació via humida i mètodes d'intercanvi iònic, respectivament. Una vegada preparats els materials, l'agrupament de les espècies metàl·liques s'ha controlat fent ús de tractaments d'activació en diferents atmosferes (inert, oxidant i reductora) s'ha estudiat exhaustivament per XAS. L'objectiu principal del treball és demostrar que tant el XANES com l'EXAFS proporcionen informació rellevant i, en certa manera, innovadora per al control d'espècies metàl·liques (en termes de tipus i grandària d'aquestes espècies). Fent ús de procediments de tractament de dades no molt habituals com l'anàlisi de cumulants, l'ajust de la part imaginària de la transformada de Fourier i altres, és possible obtenir informació detallada sobre els sistemes estudiats. En l'apartat de la introducció, es proporciona una recopilació d'estudis en els quals s'ha utilitzat XAS com a tècnica principal per a caracteritzar les anomenades espècies metàl·liques en materials porosos. Aquesta introducció ha estat redactada per a que puga servir com a punt de partida per a futurs estudis que requereixen la utilització de XAS per a la caracterització de les espècies metàl·liques presents en els catalitzadors. El capítol 4 es centra en l'estudi de la influència dels precursors de pal·ladi i la naturalesa del suport front a les nanopartícules resultants. El procés d'activació, és a dir, la transformació precursor --> nanopartícula, ha sigut estudiat per XAS in situ. L'anàlisi per XAS va comprendre els següents passos: punt de partida (material impregnat), calcinació en flux d'O2 i reducció posterior amb H2. La utilització de diferents precursors i suports metàl·lics ha permès dur a terme una discussió, referent al nombre de coordinació mitjà obtingut a partir de l'anàlisi de dades de la zona EXAFS, que ha estat recolzat per altres tècniques de caracterització. El capítol 5 s'ha dedicat a l'estudi de l'agrupació de plata intercanviada en els catalitzadors durant i després dels tractaments d'activació. S'han utilitzat zeolites de porus xicotet, com la CHA i RHO, intercanviades amb plata. L'estudi de la influència de l'estructura zeolítica i la composició química dels materials enfront dels diferents tractaments d'activació (calcinació utilitzant diferents atmosferes, reducció en presència d'H2, re-dispersió en atmosfera d'O2) es va realitzar fent ús de mètodes de caracterització in situ o ex situ. A continuació, es discuteix la influència d'aquestes espècies metàl·liques formades, utilitzant els diferents mètodes d'activació, per a la reacció d'SCO-NH3. En aquest sentit, s'ha demostrat que la combinació de XAS in situ amb diverses tècniques habituals de laboratori és fonamental per al desenvolupament d'aquest treball. Finalment, es presenta una llista de projectes, en els quals també s'ha treballat paral·lelament, on s'ha utilitzat XAS com a tècnica de caracterització.
Wittee Lopes, C. (2018). Characterization of metallic species on porous materials by in situ XAS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107953
TESIS
Karumuri, Anil Kumar. "Hierarchical Porous Structures Functionalized with Silver Nanoparticles: Adaptation for Antibacterial Applications." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401792088.
Full textVijwani, Hema. "HIGHLY ACTIVE POROUS CATALYSTS FABRICATED BY ATTACHMENT OF PALLADIUM NANOPARTICLES ON HIERARCHICAL CARBON STRUCTURES." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1310438347.
Full textYoung, Allison Patricia. "Using Lattice Engineering and Porous Materials Gating to Control Activity and Stability in Heterogeneous Catalysis." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108207.
Full textHeterogeneous catalysis is a critical field for chemical industry processes, energy applications, and transportation, to name a few. In all avenues, control over the activity and selectivity towards specific products are of extreme importance. Generally, two separate methods can be utilized for controlling the active surface areas; a below and above the surface approach. In this dissertation, both approaches will be addressed, first starting with controlling the active sites from a below approach and moving towards control through sieving and gating effects above the surface. For the first part half, the control of the product selectivity is controlled by finely tuning the atomic structures of nanoparticle catalysts, mainly Au-Pd, Pd-Ni-Pt, and Pd Ni3Pt octahedral and cubic nanoparticle catalysts. Through these shaped core-shell, occasionally referred to as core@shell, particles the shape is maintained in order to expose and study certain crystal facets in order to obtain a more open or closed series of active sites. With the core shell particles, the interior core particle (Au and Pd) is used for the overall shape but also to expansively/compressively strain the outer shell layer. By straining the surface, the surface electronic structure is altered, by raising or lowering the d-band structure, allowing for reactants to adsorb more or less strongly as well as adsorb on different surface sites. For the below the surface projects, the synthesized nanoparticle catalyst are used for electrochemical oxidation reactions, such as ethanol and methanol oxidation, in order to study the effect of the core and shell layers on initial activity, metal migration during cycling, as well as particle stability and activity using different crystal structures. In particular, the use of core shell, alloyed, and intermetallic (ordered alloys) particles are studied in more detail. In the second half of this dissertation, control of the selectivity will be explored from the top down approach; in particular the use of metal organic framework (MOF) will be utilized. MOF, with its inherent size selective properties due to caging effects from the chosen linkers and nodes, is used to coat the surface of catalysts for gas, liquid, and electrochemical catalysis. By using nanoparticle catalyst, the use of MOF, more explicitly the robust zirconium based UiO-66, as a crystalline capping agent is first explored. By incorporating both the nanoparticle and UiO-66 amino functionalized precursors in the synthesis, the nanoparticles are formed first and followed by coating in UiO-66-NH2, where the amino group acts as an anchor, completely coating the particles. The full coating is tested through size selective alkene hydrogenations with the NP surface further tested by liquid phase selective aldehyde hydrogenations; the UiO-66-NH2 pores help to guide the reactant molecule in a particular orientation for the carbonyl to interact rather than the unsaturated C=C bond. This approach is taken for more complex hybrid structures for electrochemical proton exchange membrane fuel cell (PEMFC) conditions. Through the gating effects, the UiO-66 blocks the Pt surface active sites from poisonous sulfonate groups off of the ionomer membrane while simultaneously preventing aggregation and leaching of Pt atoms during electrochemical working conditions
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Kim, Sanghoon. "Designing Stimuli-Responsive Porous Silica Materials using Solid Lipid Nanoparticles (SLN) and Magneto-responsive Surfactants for Delivery of Curcumin." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0132/document.
Full textThis work is to prepare stimuli-responsive porous silica materials based on solid lipid nanoparticles (SLN) and magnetic surfactants. To develop this study, several surfactants systems were used to synthesize silica materials with controlled porosity via protocols described in the literature or developed in the laboratory. Different stimuli-responsive characters were introduced in porous silica materials as a function of system used: solid lipid nanoparticles (SLN) for pH-sensitive and magnetic-sensitive surfactants for magnetic silica materials. First, the materials synthesized with solid lipid nanoparticles (SLN) were used for the delivery of an anti-carcinogenic drug, curcumin. A coating method on silica surface was also used to better control the release of curcumin. Secondly, the responsiveness to the magnetic field was introduced in silica materials using the magnetic surfactants. Their self-assembly properties (i.e. micelles, vesicles) were studied and their applications in the synthesis of magnetic porous silica materials were investigated. Finally, the magnetic solid lipid nanoparticles have been prepared by combining SLN with magnetic surfactants, which have been used for the synthesis of meso-macroporous silica catalyst encapsulating iron oxide nanoparticles
Marszewski, Michal. "Development of highly porous crystalline titania photocatalysts." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1476281107453411.
Full textMay, Masnou Anna. "Insights into nanomaterials: from surfactant systems to meso/macroporous materials and nanoparticles." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/285940.
Full textEls nanomaterials són materials amb propietats morfològiques entre 1 i 100 nm en almenys una direcció. En aquesta tesi s'estudien els materials meso- i meso/macroporosos de sílice, que tenen porus en aquestes dimensions, i nanopartícules, la grandària de les quals es troba també en aquest rang. En una primera fase s'estudien els sistemes tensioactius, com les solucions micel·lars i les emulsions, que s'usen per a la síntesi d’aquests materials. El primer estudi consta de l’anàlisi de les emulsions formades amb cristall líquid a la fase contínua. La microestructura d'aquests sistemes s'estudia amb diversos models reològics. També es comparen amb sistemes amb fase micel·lar en la fase contínua i a diferents concentracions de tensioactiu i fase dispersa. En un segon estudi es determinen les variables de procés que tenen un efecte significatiu sobre les propietats de les emulsions. Com a variables de resposta s'usen la mida de gota i les propietats reològiques. També s'estudia l'escalat en la preparació de les emulsions altament concentrades i es determinen els invariants d’escala. El tercer estudi se centra en la preparació de materials meso i meso/macroporosos. Es sintetitza un material amb mesoporus bimodals i estructura hexagonal ordenada a partir d'una barreja de dos tensioactius, i la síntesi de materials mesoporosos ordenats a partir d'uns tensioactius amb grups amino. També es preparen materials amb macroporus a partir d'emulsions formades amb aquest tensioactiu i, en última instància, es preparen esferes mesoporoses de sílice a partir d'emulsions aigua-en-oli altament concentrades. L'últim estudi se centra en la síntesi de nanopartícules de sílice, en les variables de procés que tenen un efecte directe sobre la mida obtinguda, i en l'aplicació d'aquestes nanopartícules en la coagulació de la sang per controlar hemorràgies internes. S'estudien les propietats de coagulació i es funcionalitzen amb agents que acceleren o disminueixen aquesta activitat. Les tècniques de síntesi i caracterització inclouen reologia, microscòpia òptica, adsorció-desorció de nitrogen, dispersió de raigs X, microscòpia electrònica de transmissió i de rastreig (TEM i SEM) i potencial zeta, entre altres.
DePuccio, Daniel P. "Investigating The Influence Of Gold Nanoparticles On The Photocatalytic And Catalytic Reactivity Of Porous Tungsten Oxide Microparticles." ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/641.
Full textDedecker, Kevin. "Multifunctional Hybrid materials for the capture and detection of volatile organic Compounds : Application to the preservation of cultural heritage objects." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV003.
Full textDuring their storage or their exhibition, the cultural heritage objects undergo physicochemical alteration processes related to their environment and in particular to the action of primary (e.g. sulfur dioxide, nitric oxides), secondary (ozone) pollutants or Volatile Organic Compounds (VOCs). It has been demonstrated that these gases/vapors are involved in hydrolysis and oxidation reactions. Among the most common VOCs encountered in museums, Acetic acid has a significant and recognized role in the deterioration of cultural heritage objects such as photographic films. In order to face this issue, this Ph.D. thesis focused on the design of new porous multifunctional hybrid materials denoted « Metal-Organic Frameworks » (MOFs) for the selective capture of acetic acid in the presence of moisture (40% relative humidity) and at room temperature. The remarkable adsorption properties (sensitivity, selectivity and capacity) and the great versatility of MOFs (hydrophicity/hydrophobicity balance, size/shape of pores,…) were used to preconcentrate selectively the acetic acid in humid conditions. The most performing materials were then prepared as nanoparticles and then used for the elaboration of high optical quality thin films in order to study the coadsorption (acetic acid/water) properties of MOFs by ellipsometry. The incorporation of plasmonic metal nanoparticles was then carried out in order to design a colorimetric sensor. The final objective is to devise a novel type of adsorbent that integrates a high VOC adsorption capacity and selectivity under humid conditions and an easy on-line monitoring of their saturation capacityin order to anticipate its replacement and therefore ensure the preservation of the stored and exhibited objects in museums
Books on the topic "Porous materials. Fullerenes. Nanoparticles"
1943-, Schwarz James A., and Contescu Cristian I. 1948-, eds. Surfaces of nanoparticles and porous materials. New York: Marcel Dekker, 1999.
Find full textSurfaces of Nanoparticles and Porous Materials. New York: Marcel Dekker, Inc., 2003.
Find full textSchirarz, James, and Cristian Contescu, eds. Surfaces of Nanoparticles and Porous Materials. CRC Press, 1999. http://dx.doi.org/10.1201/9780824746681.
Full textBook chapters on the topic "Porous materials. Fullerenes. Nanoparticles"
Okubo, T., and M. Matsukata. "Porous Materials Controlled in Shape." In Morphology Control of Materials and Nanoparticles, 113–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08863-0_5.
Full textRysiakiewicz-Pasek, E., R. Poprawski, A. Ciżman, and A. Sieradzki. "Nanocomposite Materials – Ferroelectric Nanoparticles Incorporated into Porous Matrix." In NATO Science for Peace and Security Series B: Physics and Biophysics, 171–81. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4119-5_16.
Full textCaldas, M. J. "Si Nanoparticles as a Model for Porous Si." In Computer Simulation of Materials at Atomic Level, 641–63. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603107.ch31.
Full textZong, Rui Long, Ji Zhou, Shi Kao Shi, and Long Tu Li. "Synthesis and Optical Properties of Metal Nanoparticles Embedded in Porous Anodic Alumina Oxide." In Materials Science Forum, 4093–96. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.4093.
Full textZahmakiran, Mehmet, and Saim Özkar. "CHAPTER 3. Preparation of Metal Nanoparticles Stabilized by the Framework of Porous Materials." In Green Chemistry Series, 34–66. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735469-00034.
Full textManjooran, Navin J., and Gary R. Pickrell. "A Theoritical and Mathematical Basis Towards Dispersing Nanoparticles and Biological Agents in a Non Polar Solvent for Fabricating Porous Materials." In Advances in Bioceramics and Biocomposites II, Ceramic Engineering and Science Proceedings, Volume 27, Issue 6, 87–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291351.ch8.
Full textSilva, Camila Ramos da, Martin Wallau, Ernesto A. Urquieta-González, Eduardo Prado Baston, and Rita Karolinny Chaves de Lima. "Porous carbons cast from meso- or nonporous silica nanoparticles." In Recent Progress in Mesostructured Materials - Proceedings of the 5th International Mesostructured Materials Symposium (IMMS2006), Shanghai, P.R. China, August 5-7, 2006, 377–80. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)80339-9.
Full text"Hybrid Materials based on Silica Nanostructures for Biomedical Scaffolds (Bone Regeneration) and Drug Delivery." In Materials Research Foundations, 103–20. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901076-4.
Full textLiu, Jiajia, and X. S. Zhao. "Glucose hydrogenation over Ru nanoparticles embedded in templated porous carbon." In Zeolites and related materials: Trends, targets and challenges, Proceedings of the 4th International FEZA Conference, 1315–18. Elsevier, 2008. http://dx.doi.org/10.1016/s0167-2991(08)80131-0.
Full textKoshevoi, Veniamin, Anton Belorus, Ilya Pleshanov, Anton Timchenko, Roman Denisenko, Daniyar Sherimov, and Ekaterina Vodkailo. "Study of Composite Structures Based on a Porous Silicon Matrix and Nanoparticles Ag/Zno Used as Non-Invasive Highly Sensitive Biosensor Devices." In Composite Materials. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.92850.
Full textConference papers on the topic "Porous materials. Fullerenes. Nanoparticles"
Rapoport, L., N. Fleischer, and R. Tenne. "Tribological Applications of WS2 (MOS2) Inorganic Fullerene-Like Nanoparticles as Solid Lubrication." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63173.
Full textOzawa, Masaki. "Spiral carbon nanoparticles." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420164.
Full textKanzow, H., A. Ding, H. Sauer, T. Belz, and R. Schlögl. "Chains of carbon nanoparticles from the interaction of fullerenes with thin metal films." In ELECTRONIC PROPERTIES OF NOVEL MATERIALS--SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES. ASCE, 1999. http://dx.doi.org/10.1063/1.59783.
Full textHartono, Sandy Budi, Lannie Hadisoewignyo, Wenny Irawaty, Luciana Trisna, and Robby Wijaya. "Porous silica nanoparticles as carrier for curcumin delivery." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIALS AND METALLURGICAL ENGINEERING AND TECHNOLOGY (ICOMMET 2017) : Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future. Author(s), 2018. http://dx.doi.org/10.1063/1.5030229.
Full textChebodaeva, V., M. Sedelnikova, S. Gnedenkov, S. Sinebryukhov, V. Egorkin, and Yu Sharkeev. "Characterization of the porous micro-arc coatings containing boehmite nanoparticles." In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083290.
Full textYousif, Ali A., Alwan M. Alwan, and Husam R. Abed. "Optimizing of macro porous silicon morphology for creation of SnO2/CuO nanoparticles." In 2ND INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING & SCIENCE (IConMEAS 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000150.
Full textKondo, Toshiaki, Kazuyuki Nishio, and Hideki Masuda. "Surface-enhanced Raman scattering in three-dimensional ordered Au nanoparticles in anodic porous alumina matrix." In Smart Nano-Micro Materials and Devices, edited by Saulius Juodkazis and Min Gu. SPIE, 2011. http://dx.doi.org/10.1117/12.903240.
Full textKumar, Vipin, P. D. Sahare, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar, and G. S. S. Saini. "Photoluminescence of Cu doped sponge-like porous ZnO nanoparticles synthesized via chemical route." In INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653610.
Full textBaşak, F. K., and E. Kayahan. "Synthesis of nanoparticles by laser ablation from heat-treated porous silicon for biomedical applications." In PROCEEDINGS OF THE 10TH INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS & EXHIBITION. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0058277.
Full textT, Petrov, I. Markova Deneva, Chauvet O, and Denev I. "Synthesis and Study of Porous Carbon Foam/Cu (Cu-Sn) Nanoparticles Composites for Electrode Materials." In 9th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3353-7_266.
Full textReports on the topic "Porous materials. Fullerenes. Nanoparticles"
Author, Not Given. Preparation of monolithic porous carbon materials using controlled functionalization of fullerenes. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/10129817.
Full text