To see the other types of publications on this topic, follow the link: Portable Instrumentation.

Journal articles on the topic 'Portable Instrumentation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Portable Instrumentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Suherman, Suherman, Ghilma Milawonso, Kinichi Morita, Hitoshi Mizuguchi, and Yuji Oki. "Statistical Evaluation of Conventional and Portable Instrumentations for Cr(VI) Analysis on Chemistry Laboratory Waste Water." Key Engineering Materials 840 (April 2020): 406–11. http://dx.doi.org/10.4028/www.scientific.net/kem.840.406.

Full text
Abstract:
The development of portable instrumentation for heavy metals analysis was increased rapidly. However, the quality of data from portable methods has so far been questioned when compared to conventional instrumentation. In this research, a comparative study of conventional and portable instrumentations for Cr(VI) analysis on liquid waste water of Chemistry Laboratory at Universitas Gadjah Mada (UGM) was conducted. This research started with validation and statistical evaluation of instrumentation methods which are UV-Visible spectrophotometer, portable spectrophotometer (PiCOEXPLORER) and Induct
APA, Harvard, Vancouver, ISO, and other styles
2

Sharma, Sonika, Luke T. Tolley, H. Dennis Tolley, Alex Plistil, Stanley D. Stearns, and Milton L. Lee. "Hand-portable liquid chromatographic instrumentation." Journal of Chromatography A 1421 (November 2015): 38–47. http://dx.doi.org/10.1016/j.chroma.2015.07.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hubbard-Nelson, B., R. Koch, K. Russell, R. Russell, and D. Sackett. "F46 Advancements in Portable XRF Instrumentation." Powder Diffraction 20, no. 2 (2005): 172. http://dx.doi.org/10.1154/1.1979011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sharma, Sonika, Alex Plistil, Robert S. Simpson, et al. "Instrumentation for hand-portable liquid chromatography." Journal of Chromatography A 1327 (January 2014): 80–89. http://dx.doi.org/10.1016/j.chroma.2013.12.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Masson, Jean-François, and Zheng Ouyang. "Portable instrumentation & point of care technologies." Analytical Methods 8, no. 36 (2016): 6589–90. http://dx.doi.org/10.1039/c6ay90119k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Overton, Edward B., H. P. Dharmasena, Ursula Ehrmann, and Kenneth R. Carney. "Trends and advances in portable analytical instrumentation." Field Analytical Chemistry & Technology 1, no. 2 (1996): 87–92. http://dx.doi.org/10.1002/(sici)1520-6521(1996)1:2<87::aid-fact4>3.0.co;2-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kiviluoma, Risto, and Lauri Salokangas. "Monitoring Wind-Induced Vibrations by Portable Instrumentation." IABSE Symposium Report 84, no. 5 (2001): 64–71. http://dx.doi.org/10.2749/222137801796350473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crocombe, Richard A. "Portable Spectroscopy." Applied Spectroscopy 72, no. 12 (2018): 1701–51. http://dx.doi.org/10.1177/0003702818809719.

Full text
Abstract:
Until very recently, handheld spectrometers were the domain of major analytical and security instrument companies, with turnkey analyzers using spectroscopic techniques from X-ray fluorescence (XRF) for elemental analysis (metals), to Raman, mid-infrared, and near-infrared (NIR) for molecular analysis (mostly organics). However, the past few years have seen rapid changes in this landscape with the introduction of handheld laser-induced breakdown spectroscopy (LIBS), smartphone spectroscopy focusing on medical diagnostics for low-resource areas, commercial engines that a variety of companies ca
APA, Harvard, Vancouver, ISO, and other styles
9

Hu, Handong, Hongbo Chen, and Zhencheng Chen. "Design of portable sleep apnea hypopnea monitor instrumentation." JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT 25, no. 9 (2011): 812–16. http://dx.doi.org/10.3724/sp.j.1187.2011.00812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baki??, Aleksandar, Matt W. Mutka, and Diane T. Rover. "BRISK: a portable and flexible distributed instrumentation system." Software: Practice and Experience 30, no. 12 (2000): 1353–73. http://dx.doi.org/10.1002/1097-024x(200010)30:12<1353::aid-spe335>3.0.co;2-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Meuzelaar, Henk L. C., Jacek P. Dworzanski, Neil S. Arnold, William H. McClennen, and David J. Wager. "Advances in field-portable mobile GC/MS instrumentation." Field Analytical Chemistry & Technology 4, no. 1 (2000): 3–13. http://dx.doi.org/10.1002/(sici)1520-6521(2000)4:1<3::aid-fact2>3.0.co;2-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Van Cleef, Douglas J. "High-fidelity decision making using portable HPGe instrumentation." Journal of Radioanalytical and Nuclear Chemistry 282, no. 3 (2009): 837–40. http://dx.doi.org/10.1007/s10967-009-0140-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Capitán-Vallvey, L. F., L. J. Asensio, J. López-González, M. D. Fernández-Ramos, and A. J. Palma. "Oxygen-sensing film coated photodetectors for portable instrumentation." Analytica Chimica Acta 583, no. 1 (2007): 166–73. http://dx.doi.org/10.1016/j.aca.2006.09.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hsu, Feng-Chang, Chien-Shing Lee, Kuo-Cheng Huang, Po-Jui Chen, Fong-Zhi Chen, and Tai-Shan Liao. "Portable digital microscope apparatus." Review of Scientific Instruments 77, no. 11 (2006): 116106. http://dx.doi.org/10.1063/1.2370873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Liakin, D., D. Seleznev, A. Orlov, et al. "Portable emittance measurement device." Review of Scientific Instruments 81, no. 2 (2010): 02B719. http://dx.doi.org/10.1063/1.3267293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Herrmann, R., A. V. Ofitserov, I. N. Khlyustikov, and V. S. Edel'man. "A Portable Dilution Refrigerator." Instruments and Experimental Techniques 48, no. 5 (2005): 693–702. http://dx.doi.org/10.1007/s10786-005-0126-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

N. P. Thomson and K. J. Shinners. "A Portable Instrumentation System for Measuring Draft and Speed." Applied Engineering in Agriculture 5, no. 2 (1989): 133–37. http://dx.doi.org/10.13031/2013.26491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wu, Xue-cheng, Can Li, Kai-lin Cao, et al. "Instrumentation of rainbow refractometry: portable design and performance testing." Laser Physics 28, no. 8 (2018): 085604. http://dx.doi.org/10.1088/1555-6611/aac361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Arnold, Neil S., Jacek P. Dworzanski, Sue Anne Sheya, William H. McClennen, and Henk L. C. Meuzelaar. "Design considerations in field-portable GC-based hyphenated instrumentation." Field Analytical Chemistry & Technology 4, no. 5 (2000): 219–38. http://dx.doi.org/10.1002/1520-6521(2000)4:5<219::aid-fact2>3.0.co;2-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

McClennen, William H., Henk L. C. Meuzelaar, and Neil S. Arnold. "Field-portable hyphenated instrumentation: The birth of the tricorder?" TrAC Trends in Analytical Chemistry 13, no. 7 (1994): 286–93. http://dx.doi.org/10.1016/0165-9936(94)87066-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zarval'ska, A., Ya Ovsik, and M. V. Ulanovskii. "Portable laser microanalyzer." Measurement Techniques 43, no. 7 (2000): 602–6. http://dx.doi.org/10.1007/bf02503596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Firpo, G., F. Buatier de Mongeot, C. Boragno, and U. Valbusa. "High performance portable vacuum suitcase." Review of Scientific Instruments 76, no. 2 (2005): 026108. http://dx.doi.org/10.1063/1.1834493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mezhov-Deglin, L. P., A. V. Lokhov, V. N. Khlopinskii, and Z. V. Kalmykova. "Portable devices for cryogenic medicine." Instruments and Experimental Techniques 43, no. 5 (2000): 683–86. http://dx.doi.org/10.1007/bf02759083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Meng, Fan Shuo, and Ai Guo Chen. "Design of a Portable Formaldehyde Meter." Advanced Materials Research 706-708 (June 2013): 708–11. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.708.

Full text
Abstract:
This paper describes the design of a portable formaldehyde detector instrumentation which is based on the C8051F021 microcontroller. Using the Dart sensors for detection of formaldehyde and AD8571 precision operational amplifier for signal amplification, this meter will achieve real-time detection of formaldehyde in the air. The instrument's low power consumption, intelligent and portable features are suitable for the rapid detection of formaldehyde in indoor air.
APA, Harvard, Vancouver, ISO, and other styles
25

Xia, Liansheng, Huang Zhang, Jinshui Shi, et al. "A compact, portable pulse forming line." Review of Scientific Instruments 79, no. 8 (2008): 086113. http://dx.doi.org/10.1063/1.2970945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rokitta, Markus, Eberhard Rommel, Ulrich Zimmermann, and Axel Haase. "Portable nuclear magnetic resonance imaging system." Review of Scientific Instruments 71, no. 11 (2000): 4257. http://dx.doi.org/10.1063/1.1318922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wolf Cruz, R. R., A. L. B. Dias, and M. J. C. Bonfim. "20 T portable bipolar magnetic pulser." Review of Scientific Instruments 81, no. 6 (2010): 064705. http://dx.doi.org/10.1063/1.3455811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gusyatinskaya, N. S. "New portable hardness testers." Measurement Techniques 40, no. 7 (1997): 666–68. http://dx.doi.org/10.1007/bf02504184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

PALMA, ALBERTO, and MIGUEL CARVAJAL. "SOME ADVANCES IN DOSE MEASUREMENT WITH MOSFET FOR PORTABLE INSTRUMENTATION." Safety Engineering 2, no. 2 (2012): 69–74. http://dx.doi.org/10.7562/se2012.2.02.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nicolaou, G. "The diurnal monitoring of the air radioactivity using portable instrumentation." Journal of Radioanalytical and Nuclear Chemistry 280, no. 3 (2009): 451–55. http://dx.doi.org/10.1007/s10967-008-7431-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chatzimichail, Stelios, Duncan Casey, and Ali Salehi-Reyhani. "Zero electrical power pump for portable high-performance liquid chromatography." Analyst 144, no. 21 (2019): 6207–13. http://dx.doi.org/10.1039/c9an01302d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Boehler, R., H. G. Musshoff, R. Ditz, G. Aquilanti, and A. Trapananti. "Portable laser-heating stand for synchrotron applications." Review of Scientific Instruments 80, no. 4 (2009): 045103. http://dx.doi.org/10.1063/1.3115183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhihong, Ma, Mao Yuhan, Gong Liang, and Liu Chengliang. "Smartphone-Based Visual Measurement and Portable Instrumentation for Crop Seed Phenotyping." IFAC-PapersOnLine 49, no. 16 (2016): 259–64. http://dx.doi.org/10.1016/j.ifacol.2016.10.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pang, Hongfeng, Xuejun Zhu, Qi Zhang, et al. "A Portable Instrumentation for Real Time Measurement of Geomagnetic Field Element." Sensor Letters 13, no. 3 (2015): 195–98. http://dx.doi.org/10.1166/sl.2015.3417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Young, K. E., J. E. Bleacher, A. D. Rogers, et al. "The Incorporation of Field Portable Instrumentation Into Human Planetary Surface Exploration." Earth and Space Science 5, no. 11 (2018): 697–720. http://dx.doi.org/10.1029/2018ea000378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Martin, Jennifer A., Jae Kwak, Sean W. Harshman, et al. "Field sampling demonstration of portable thermal desorption collection and analysis instrumentation." International Journal of Environmental Analytical Chemistry 96, no. 4 (2016): 299–319. http://dx.doi.org/10.1080/03067319.2016.1160384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rahimi, Faraz, Stelios Chatzimichail, Aliyah Saifuddin, Andrew J. Surman, Simon D. Taylor-Robinson, and Ali Salehi-Reyhani. "A Review of Portable High-Performance Liquid Chromatography: the Future of the Field?" Chromatographia 83, no. 10 (2020): 1165–95. http://dx.doi.org/10.1007/s10337-020-03944-6.

Full text
Abstract:
Abstract There is a growing need for chemical analyses to be performed in the field, at the point of need. Tools and techniques often found in analytical chemistry laboratories are necessary in performing these analyses, yet have, historically, been unable to do so owing to their size, cost and complexity. Technical advances in miniaturisation and liquid chromatography are enabling the translation of these techniques out of the laboratory, and into the field. Here we examine the advances that are enabling portable liquid chromatography (LC). We explore the evolution of portable instrumentation
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Guoying. "Versatile portable fluorometer for time-resolved luminescence analysis." Review of Scientific Instruments 76, no. 6 (2005): 063107. http://dx.doi.org/10.1063/1.1921673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gong, Xiangjun, To Ngai, and Chi Wu. "A portable, stable and precise laser differential refractometer." Review of Scientific Instruments 84, no. 11 (2013): 114103. http://dx.doi.org/10.1063/1.4828350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Monk, S. D., M. J. Joyce, Z. Jarrah, D. King, and M. Oppenheim. "A portable energy-sensitive cosmic neutron detection instrument." Review of Scientific Instruments 79, no. 2 (2008): 023301. http://dx.doi.org/10.1063/1.2835717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Leary, Pauline E., Brooke W. Kammrath, Keith J. Lattman, and Gary L. Beals. "Deploying Portable Gas Chromatography–Mass Spectrometry (GC-MS) to Military Users for the Identification of Toxic Chemical Agents in Theater." Applied Spectroscopy 73, no. 8 (2019): 841–58. http://dx.doi.org/10.1177/0003702819849499.

Full text
Abstract:
The use of portable gas chromatography–mass spectrometry (GC-MS) is an important capability that has been available commercially for almost 25 years. These systems have been used within a variety of different industries, including their extensive use by environmental scientists for the analysis of hazardous air pollutants. Recently, these systems were deployed to conventional military forces for use in theater to detect and identify toxic chemicals including chemical warfare agents (CWAs). The challenges of deploying such complex analytical instruments to these military users are unique. Among
APA, Harvard, Vancouver, ISO, and other styles
42

Vo-Dinh, T., G. D. Griffin, and K. R. Ambrose. "A Portable Fiberoptic Monitor for Fluorimetric Bioassays." Applied Spectroscopy 40, no. 5 (1986): 696–700. http://dx.doi.org/10.1366/0003702864508575.

Full text
Abstract:
A simple and portable fiberoptic instrument for fluorimetric bioassays is described. The instrument is designed to be readily adaptable to commercially available biotesting wells on microplates. The microwells can also be used as interchangeable sensor heads. The utility of the fiberoptic biosensor is illustrated with a model enzyme-linked immunosorbent assay (ELISA) used to measure varying amounts of rabbit immunoglobulin G from 10 pg to 1 μg. The detection method utilizes an enzyme-amplified immunoassay of 4-methylumbelliferone phosphate as the enzyme substrate. The sensitivity of this assay
APA, Harvard, Vancouver, ISO, and other styles
43

Nguyen, Vu Hoa, Oliver Peters, and Uwe Schnakenberg. "One-port portable SAW sensor system." Measurement Science and Technology 29, no. 1 (2017): 015107. http://dx.doi.org/10.1088/1361-6501/aa963f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zabolotskikh, B. I., and S. I. Yuran. "Portable photoplethysmography system for biomedical research." Measurement Techniques 42, no. 4 (1999): 353–56. http://dx.doi.org/10.1007/bf02504396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Moss, C. E., M. W. Brener, C. L. Hollas, and W. L. Myers. "Portable active interrogation system." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 241, no. 1-4 (2005): 793–97. http://dx.doi.org/10.1016/j.nimb.2005.07.134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nolasco Perez, Irene Marivel, Amanda Teixeira Badaró, Sylvio Barbon, Ana Paula AC Barbon, Marise Aparecida Rodrigues Pollonio, and Douglas Fernandes Barbin. "Classification of Chicken Parts Using a Portable Near-Infrared (NIR) Spectrophotometer and Machine Learning." Applied Spectroscopy 72, no. 12 (2018): 1774–80. http://dx.doi.org/10.1177/0003702818788878.

Full text
Abstract:
Identification of different chicken parts using portable equipment could provide useful information for the processing industry and also for authentication purposes. Traditionally, physical–chemical analysis could deal with this task, but some disadvantages arise such as time constraints and requirements of chemicals. Recently, near-infrared (NIR) spectroscopy and machine learning (ML) techniques have been widely used to obtain a rapid, noninvasive, and precise characterization of biological samples. This study aims at classifying chicken parts (breasts, thighs, and drumstick) using portable N
APA, Harvard, Vancouver, ISO, and other styles
47

Munir, M., N. Ahmad, S. Sohail, R. A. Naveed, M. Q. Rafiq, and M. Khalid. "Design and development of a portable gamma radiation monitor." Review of Scientific Instruments 80, no. 7 (2009): 073101. http://dx.doi.org/10.1063/1.3160292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Imashuku, Susumu, Naoto Fuyuno, Kohei Hanasaki, and Jun Kawai. "Note: Portable rare-earth element analyzer using pyroelectric crystal." Review of Scientific Instruments 84, no. 12 (2013): 126105. http://dx.doi.org/10.1063/1.4846635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Brokešová, Johana, and Jiří Málek. "New portable sensor system for rotational seismic motion measurements." Review of Scientific Instruments 81, no. 8 (2010): 084501. http://dx.doi.org/10.1063/1.3463271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lin, Hsien-I., and Y. P. Chiang. "Enhanced data consistency of a portable gait measurement system." Review of Scientific Instruments 84, no. 11 (2013): 114301. http://dx.doi.org/10.1063/1.4827295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!