Academic literature on the topic 'Portland cement with limestone'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Portland cement with limestone.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Portland cement with limestone"
Tsivilis, Sotiris, and A. Asprogerakas. "A Study on the Chloride Diffusion into Portland Limestone Cement Concrete." Materials Science Forum 636-637 (January 2010): 1355–61. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.1355.
Full textKropyvnytska, Тetiana, Iryna Нeviuk, Roksolana Stekhna, Oksana Rykhlitska, and Lidiia Deschenko. "EFFECT OF LIMESTONE POWDER ON THE PROPERTIES OF BLENDED РORTLAND CEMENTS." Theory and Building Practice 2021, no. 1 (June 22, 2021): 35–41. http://dx.doi.org/10.23939/jtbp2021.01.035.
Full textMrema, Alex Lyatonga. "Comparison of the Properties of Portland Cement and Portland-Limestone Cement." Tanzania Journal of Engineering and Technology 33, no. 1 (June 30, 2010): 1–8. http://dx.doi.org/10.52339/tjet.v33i1.448.
Full textThomas, Michael, Laurent Barcelo, Bruce Blair, Kevin Cail, Anik Delagrave, and Ken Kazanis. "Lowering the Carbon Footprint of Concrete by Reducing Clinker Content of Cement." Transportation Research Record: Journal of the Transportation Research Board 2290, no. 1 (January 2012): 99–104. http://dx.doi.org/10.3141/2290-13.
Full textSotiriadis, K., E. Nikolopoulou, and Sotiris Tsivilis. "The Effect of Chlorides on the Thaumasite Form of Sulfate Attack in Limestone Cement Concrete." Materials Science Forum 636-637 (January 2010): 1349–54. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.1349.
Full textBassioni, Ghada. "GLOBAL WARMING AND CONSTRUCTION ASPECTS." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 2 (August 3, 2015): 78. http://dx.doi.org/10.17770/etr2009vol2.1013.
Full textSanytsky, Myroslav, Tetiana Kropyvnytska, Taras Kruts, Oleksander Horpynko, and Iryna Geviuk. "Design of Rapid Hardening Quaternary Zeolite-Containing Portland-Composite Cements." Key Engineering Materials 761 (January 2018): 193–96. http://dx.doi.org/10.4028/www.scientific.net/kem.761.193.
Full textBassioni, Ghada. "LIMESTONE - AN INERT MODEL SYSTEM OF CEMENT?" Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (June 23, 2007): 108. http://dx.doi.org/10.17770/etr2007vol1.1713.
Full textGhorab, Hanaa Y., Hossam E. H. Ahmed, Ali S. Shanour, and Hamdy M. A. Wahdan. "The Behavior of Portland Limestone-Calcined Clays Cement at 5°C." Key Engineering Materials 761 (January 2018): 135–43. http://dx.doi.org/10.4028/www.scientific.net/kem.761.135.
Full textFS, Hashem, Eisa E. Hekal, and Abdel M Wahab. "Effect propylene glycol as a quality improvers for Portland and Portland-limestone cements." International Journal of Petrochemical Science & Engineering 4, no. 1 (January 25, 2019): 1–7. http://dx.doi.org/10.15406/ipcse.2019.04.00096.
Full textDissertations / Theses on the topic "Portland cement with limestone"
Elgalhud, Abdurrahman Ahmed T. A. "Durability potential of Portland limestone cement concrete." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7903/.
Full textIgarashi, Hasegawa Lucia. "Carbonation curing and performance of pervious concrete using Portland limestone cement." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104896.
Full textLe béton drainant est un matériau innovant avec plusieurs avantages environnementaux. Des études portant sur les propriétés et la performance du béton drainant au ciment Portland ordinaire (CPO) ont été réalisées internationalement. Le ciment Portland au calcaire (CPC) a fait son arrivée sur le marché canadien récemment et s'avère une option plus écologique que le CPO. Cette thèse explore la possibilité d'utiliser CPC en béton drainant pour obtenir avantages techniques et environnementaux. Une des applications majeures du béton drainant est le pavage. Pour cette raison, c'est important de trouver une façon d'accélérer le processus de durcissement du béton, puisque le temps de construction est l'un des facteurs les plus importants déterminant le coût et l'impact des travaux routiers. Le béton drainant est le matériau idéal à mûrir au carbone de manière faisable. Il est fabriqué sans armature et donc, la réduction du pH du béton résultant du processus de carbonatation n'a aucun impact. De plus, la structure ouverte massive des pores offre une surface plus grande permettant d'optimiser la pénétration de CO₂ au cours du processus de mûrissement. Cette étude a pour but de déterminer l'effet de la carbonatation sur la résistance à jeune âge et la durabilité au gel/dégel du béton drainant fabriqué avec le CPC. Les résultats indiquent que, pour les mêmes conditions, il y a une réduction de la résistance à la compression et une meilleure absorption avec le béton drainant au CPC comparé avec ceux au CPO. L'optimisation du dosage par l'inclusion d'ajouts cimentaires et chimiques, permettrait l'utilisation du CPC pour générer un béton drainant avec des résistances équivalentes au béton drainant au CPO. Le mûrissement au carbone du béton drainant au CPC a augmenté la résistance à la compression à jeune âge, et a maintenu une résistance finale comparable. De plus, le mûrissement au carbone a augmenté la résistance à l'absorption, mais a réduit la résistance aux cycles de gel/dégel en solution saline. Par conséquent, le mûrissement au carbone du béton drainant n'est pas recommandé pour les climats froids.
Hartshorn, Sarah Ann. "Sulphate attack of Portland limestone cements." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301594.
Full textAngadi, Prokshit. "Portland Limestone Cement with Fly Ash: Freeze-Thaw Durability and Microstructure Studies." Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/32057.
Full textAguero, Sixto Humberto. "Process analysis and energy efficiency improvement on Portland limestone cement grinding circuit." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52867.
Full textApplied Science, Faculty of
Mining Engineering, Keevil Institute of
Graduate
Elmakki, Rihab Abdelrahman Mohamed. "The effect of extending four cements with limestone with addition of super-plasticisers on the hydration reaction of SCC cement paste." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2466.
Full textThe addition of certain fillers and additives in conventional concrete is imperative for improving its rheological properties. The effect of additives, namely limestone (LS) and superplasticisers (SP), on the hydration kinetics of self-compacting concrete (SCC) was investigated on cement paste scale. These additives interact mostly with cement paste, since aggregates are considered to be inert materials. An understanding of the effect of these additives on the hydration kinetics of cement paste is paramount to the design of an SCC with excellent properties. Four CEM I 52.5N Portland cements from one supplier but produced at different factories, LS and two types of SP, were used in this research. The hydration kinetics were evaluated by monitoring the elastic modulus growth of the cement pastes. Different coefficients of the self-acceleration kinetics equation – the self-acceleration constant, characteristic time and real time of hydration – were used to establish the effect of different concentrations of SP with and without the optimum concentration of limestone (30%) on the hydration kinetics of cement pastes. As far as can be ascertained, this is the first time the rheokinetic model has been used to describe the initial hydration of SCC paste.
Soyluoglu, Serdar. "Effects Of Separate And Intergrinding On Some Properties Of Portland Composite Cements." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611365/index.pdf.
Full textMatyk, Tomáš. "Studium vlastností betonů s „green cementy“." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226718.
Full textJarolím, Tomáš. "Studium vlivu směsných cementů, zejména vápencových, na vlastnosti čerstvých a zatvrdlých betonů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225683.
Full textVianna, Guilherme Vinicius de Almeida. "Impactos na análise técnica de projetos de lavra de calcário para fabricação de cimento." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3134/tde-27022018-090219/.
Full textThe cement mining project for cement manufacturing has proved to be extremely important in an increasingly competitive market, such as cement manufacturing. In Brazil, within large-scale mining, limestone mining accounts for about 20% of all ore mined. Methodologies that allow a better use of the mineral deposit become of extreme importance to guide long-term projects and require tools for decision making on investment or not in manufacturing projects, and consequently on the feasibility of mining projects. The methodology proposed and applied in an application example will present an overview of the problems faced in limestone mining and will facilitate the decision making on investments with real premises used by cement companies. In addition to the premises, we will present current problems encountered when assessing the opening of limestone quarries for cement manufacturing, with innumerable variables exogenous to the project, such as surrounding communities, archaeological sites, protected caves, and vegetation, among others, besides the internal factors, such as ore grade, the blend of layers, the strip ratio, geotechnical evaluations, and others.
Books on the topic "Portland cement with limestone"
Association, Canadian Standards. Portland cement, masonry cement, blended hydraulic cement. Rexdale, Ont: Canadian Standards Association, 1993.
Find full textMcGhee, Kenneth H. Portland cement concrete resurfacing. Washington, D.C: National Academy Press, 1994.
Find full textFarny, James A. White cement concrete. Skokie, Ill: Portland Cement Association, 2001.
Find full text1962-, Farny James A., Isberner Albert W, and Portland Cement Association, eds. Portland cement plaster/stucco manual. 5th ed. Skokie, Ill: Portland Cement Association, 2003.
Find full textBhatty, Javed I. Innovations in portland cement manufacturing. Skokie, Ill: Portland Cement Association, 2010.
Find full textYrjanson, W. A. Recycling of Portland cement concrete pavements. Washington, D.C: Transportation Research Board, National Research Council, 1989.
Find full textBye, G. C. Portland cement: Composition, production and properties. 2nd ed. London: Thomas Telford, 1999.
Find full textBye, G. C. Portland cement: Composition, production and properties. 2nd ed. London: Thomas Telford, 1999.
Find full textDarter, Michael I. Support under portland cement concrete pavements. Washington, D.C: National Academy Press, 1995.
Find full textSantos, Carina. Field measurement of water-cement ratio for Portland Cement Concrete. Madison, WI: The Unit, 1999.
Find full textBook chapters on the topic "Portland cement with limestone"
Kunther, Wolfgang, Zhuo Dai, and Jørgen Skibsted. "Thermodynamic Modeling of Portland Cement—Metakaolin—Limestone Blends." In RILEM Bookseries, 143–49. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9939-3_18.
Full textNadelman, Elizabeth I., Dylan J. Freas, and Kimberly E. Kurtis. "Nano- and Microstructural Characterization of Portland Limestone Cement Pastes." In Nanotechnology in Construction, 87–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17088-6_10.
Full textGebbard, Lukas, Blandine Feneuil, Marta Palacios, and Nicolas Roussel. "Rheology of Limestone Calcined Clays Cement Pastes. A Comparative Approach with Pure Portland Cement Pastes." In RILEM Bookseries, 595. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9939-3_85.
Full textHossack, A., M. D. A. Thomas, and E. Moffatt. "Field Performance of Portland Limestone Cement Concretes Exposed to Cold-Temperature Sulphate Solutions." In RILEM Bookseries, 3–14. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20331-3_1.
Full textVargas, Juan Francisco Garcés, Marlon Espinosa, Yosvany Diaz Cárdenas, Alina Hereira Diaz, and Jose Fernando Martirena-Hernandez. "Use of Grinding Aids for Grinding Ternary Blends Portland Cement-Calcined Clay-Limestone." In RILEM Bookseries, 11–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22034-1_2.
Full textZelić, J., D. Jozić, and D. Krpan-Lisica. "Synergistic Action of a Ternary System of Portland Cement – Limestone – Silica Fume in Concrete." In Nanotechnology in Construction 3, 425–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00980-8_59.
Full textCura, Dania Betancourt, and Jose Fernando Martirena-Hernandez. "Assessment of Addition of Calcinated Clay-Limestone-Plaster to Ordinary Portland Cement in Brickwork Mortars." In RILEM Bookseries, 211–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22034-1_24.
Full textde Oliveira, Fábio C., Sérgio C. Angulo, Marcos K. Pires, and Pedro C. R. A. Abrão. "Weibull Probabilistic Analyses on Tensile Strength of Limestone Calcined Clay (LC3) and Portland Cement Pastes." In RILEM Bookseries, 417–24. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2806-4_50.
Full textDíaz García, María B., Lyannis Aparicio Ruíz, and Jose Fernando Martirena-Hernandez. "Effect of the Addition of Calcined Clay-Limestone-Gypsum in the Hydration of Portland Cement Pastes." In RILEM Bookseries, 23–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22034-1_3.
Full textPerez, A., A. Favier, F. Martirena, and K. Scrivener. "Influence of the Manufacturing Process on the Performance of Low Clinker, Calcined Clay-Limestone Portland Cement." In RILEM Bookseries, 283–89. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9939-3_35.
Full textConference papers on the topic "Portland cement with limestone"
Bediako, Mark. "Influence of Clay Pozzolana on Some Properties of Portland Limestone Cement." In Construction Research Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413517.158.
Full textEl-Hawary, Moetaz, and Mahmoud Ahmed. "Properties, sustainability and elevated temperature behavior of concrete containing Portland limestone cement." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002223.
Full textElahi, Md Manjur A., and Christopher Shearer. "Improving the sulfate attack resistance of Portland-Limestone cement through sulfate optimization: A calorimetry-based approach." In Fifth International Conference on Sustainable Construction Materials and Technologies. Coventry University and The University of Wisconsin Milwaukee Centre for By-products Utilization, 2019. http://dx.doi.org/10.18552/2019/idscmt5052.
Full textSetina, Janina, Inna Juhnevica, and Janis Baronins. "The effect of ashes on the properties of cement mortar and typical concrete fillers." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.031.
Full textKimura, Ken-Ichi, Akira Hasegawa, Katsumi Hayashi, Mikio Uematsu, Tomohiro Ogata, Takao Tanosaki, Ryoetsu Yoshino, Mituru Sato, Minoru Saito, and Masaharu Kinno. "Development of Low-Activation Design Method for Reduction of Radioactive Waste Below Clearance Level." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48484.
Full textParida, F. C., S. K. Das, A. K. Sharma, P. M. Rao, S. S. Ramesh, P. A. Somayajulu, B. Malarvizhi, and N. Kasinathan. "Sodium Exposure Tests on Limestone Concrete Used as Sacrificial Protection Layer in FBR." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89593.
Full text"Portland Cement Association Manufacturing Technical Committee." In IEEE-IAS/PCA 2004 Cement Industry Technical Conference. IEEE, 2004. http://dx.doi.org/10.1109/citcon.2004.1309827.
Full text"Portland Cement Association Manufacturing Technical Committee." In 2007 IEEE Cement Industry Technical Conference Record. IEEE, 2007. http://dx.doi.org/10.1109/citcon.2007.358977.
Full textTaylor, H. F. W. "Sulfates in Portland clinker and cement." In International RILEM Workshop on Internal Sulfate Attack and Delayed Ettringite Formation. RILEM Publications SARL, 2004. http://dx.doi.org/10.1617/2912143802.001.
Full textDiamond, Sidney. "An unmodel of Portland cement hydration." In 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. RILEM Publications, 2006. http://dx.doi.org/10.1617/2351580028.002.
Full textReports on the topic "Portland cement with limestone"
Barrett, Timothy, Hongfang Sun, and W. Jason Weiss. Performance of Portland Limestone Cements: Cements Designed to Be More Sustainable That Include up to 15% Limestone Addition. Purdue University, December 2013. http://dx.doi.org/10.5703/1288284315335.
Full textSchindler, Anton K., Steve R. Duke, Thomas E. Burch, Edward W. Davis, Ralph H. Zee, David I. Bransby, Carla Hopkins, et al. Alternative Fuel for Portland Cement Processing. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1064407.
Full textCastro, Javier, Robert Spragg, and Phil Kompare. Portland Cement Concrete Pavement Permeability Performance. West Lafayette, Indiana: Purdue University, 2010. http://dx.doi.org/10.5703/1288284314244.
Full textBean, Dennis L., and Tony B. Husbands. Latex Admixtures for Portland Cement Concrete and Mortar. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada638749.
Full textCzarnecki, Lech, Andrzej Garbacz, Pawel Lukowski, and James R. Clifton. Polymer composites for repairing of Portland cement concrete:. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6394.
Full textBentz, Dale P. Low temperature calorimetry studies of hydrating Portland cement pastes. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7267.
Full textBenson, Elizabeth A., S. J. Lee, and W. M. Kriven. Preparation of Portland Cement Components by PVA Solution Polymerization. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada358601.
Full textWagh, A. S., D. Singh, J. Pullockaran, and L. Knox. Capture of green-house carbon dioxide in Portland cement. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10124497.
Full textStutzman, Paul, and Alan Heckert. Certification of standard reference material SRM2687a, Portland cement clinker. Gaithersburg, MD: National Institute of Standards and Technology, March 2019. http://dx.doi.org/10.6028/nist.sp.260-195.
Full textMcConnell, J. W. Jr. Portland cement: A solidification agent for low-level radioactive waste. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/183882.
Full text