Academic literature on the topic 'POSITION CONTROL OF ROBOT'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'POSITION CONTROL OF ROBOT.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "POSITION CONTROL OF ROBOT"

1

Zhang, Liang, Yaguang Zhu, Feifei Zhang, and Shuangjie Zhou. "Position-Posture Control of Multilegged Walking Robot Based on Kinematic Correction." Journal of Robotics 2020 (September 25, 2020): 1–9. http://dx.doi.org/10.1155/2020/8896396.

Full text
Abstract:
Posture-position control is the fundamental technology among multilegged robots as it is hard to get an effective control on rough terrain. These robots need to constantly adjust the position-posture of its body to move stalely and flexibly. However, the actual footholds of the robot constantly changing cause serious errors during the position-posture control process because their foot-ends are basically in nonpoint contact with the ground. Therefore, a position-posture control algorithm for multilegged robots based on kinematic correction is proposed in this paper. Position-posture adjustment is divided into two independent motion processes: robot body position adjustment and posture adjustment. First, for the two separate adjustment processes, the positions of the footholds relative to the body are obtained and their positions relative to the body get through motion synthesis. Then, according to the modified inverse kinematics solution, the joint angles of the robot are worked out. Unlike the traditional complex closed-loop position-posture control of the robot, the algorithm proposed in this paper can achieve the purpose of reducing errors in the position-posture adjustment process of the leg-foot robot through a simple and general kinematic modification. Finally, this method is applied in the motion control of a bionic hexapod robot platform with a hemispherical foot-end. A comparison experiment of linear position-posture change on the flat ground shows that this method can reduce the attitude errors, especially the heading error reduced by 55.46%.
APA, Harvard, Vancouver, ISO, and other styles
2

Pană, Cristina, Cristian Vladu, Daniela Pătraşcu-Pană, et al. "Position control for hybrid infinite-continuous hyper-redundant robot." MATEC Web of Conferences 343 (2021): 08009. http://dx.doi.org/10.1051/matecconf/202134308009.

Full text
Abstract:
This paper presents a new conception and analyzes a hyperredundant continuous robot (continuous style manipulator), drive system, and control strategy. The robot includes ten flexible segments and can be extended to several components as needed. The chosen hyper-redundant robot has a continuous infinite hybrid structure (HHRIC), based on hydraulic control with a rheological element. This system combines the advantage of a joint-level drive with a lightweight construction similar to the base-driven robots. It is suitable for tasks such as wiring in hard-toreach areas (caves, subaccounts, steep areas), transportation of fluids or food to areas affected by natural disasters (people buried under ruins), exploration in difficult areas (speleological research). Generally, the control algorithms for hyper-redundant robots are specific to the robots’ constructive particularities to which they have applied and the environment in which they operate. Experimental results validate the proposal robot design and control strategies in virtual reality. As a result, it is concluded that hyper-redundant robots and immersive technologies should play an essential role soon in automated and teleoperation applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Hwi-Geun, and Hyun-Sik Kim. "Mechanism Development and Position Control of Smart Buoy Robot." Journal of Ocean Engineering and Technology 35, no. 4 (2021): 305–12. http://dx.doi.org/10.26748/ksoe.2021.043.

Full text
Abstract:
There is a gradual increase in the need for energy charging in marine environments because of energy limitations experienced by electric ships and marine robots. Buoys are considered potential energy charging systems, but there are several challenges, which include the need to maintain a fixed position and avoid hazards, dock with ships and robots in order to charge them, be robust to actions by birds, ships, and robots. To solve these problems, this study proposes a smart buoy robot that has multiple thrusters, multiple docking and charging parts, a bird spike, a radar reflector, a light, a camera, and an anchor, and its mechanism is developed. To verify the performance of the smart buoy robot, the position control under disturbance due to wave currents and functional tests such as docking, charging, lighting, and anchoring are performed. Experimental results show that the smart buoy robot can operate under disturbances and is functionally effective. Therefore, the smart buoy robot is suitable as an energy charging system and has potential in realistic applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Su, Liying, Lei Shi, and Yueqing Yu. "Collaborative Assembly Operation between Two Modular Robots Based on the Optical Position Feedback." Journal of Robotics 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/214154.

Full text
Abstract:
This paper studies the cooperation between two master-slave modular robots. A cooperative robot system is set up with two modular robots and a dynamic optical meter-Optotrak. With Optotrak, the positions of the end effectors are measured as the optical position feedback, which is used to adjust the robots' end positions. A tri-layered motion controller is designed for the two cooperative robots. The RMRC control method is adopted to adjust the master robot to the desired position. With the kinematics constraints of the two robots including position and pose, joint velocity, and acceleration constraints, the two robots can cooperate well. A bolt and nut assembly experiment is executed to verify the methods.
APA, Harvard, Vancouver, ISO, and other styles
5

Handayani, A. S., N. L. Husni, A. B. Insani, et al. "Robot Position Control using Android." Journal of Physics: Conference Series 1198, no. 5 (2019): 052002. http://dx.doi.org/10.1088/1742-6596/1198/5/052002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nugraha, Sapta. "Sistem Kendali Navigasi Robot Manual." JTEV (Jurnal Teknik Elektro dan Vokasional) 5, no. 1.1 (2019): 91. http://dx.doi.org/10.24036/jtev.v5i1.1.106153.

Full text
Abstract:
The purpose of this study is to control the robot's navigation manually and determine the coordinate position and movement patterns of the manual robot. This study uses GPS to determine the position of coordinates and patterns of manual robot movements. Manual robot navigation control systems use wireless joysticks and use of omni wheels on manual robot mechanics to maneuver movements in all directions. The control device uses the Serial Peripheral Interface (SPI) communication by utilizing the nRF24L01 communication device on the 2.4 GHz RF band. The results showed that the position and pattern of manual robot navigation movements can be known based on the coordinate points on the route taken. In addition, wireless joysticks can control manual robots to maneuver the movements of manual robots in all directions.
APA, Harvard, Vancouver, ISO, and other styles
7

Kazerooni, H. "Compliance Control and Stability Analysis of Cooperating Robot manipulators." Robotica 7, no. 3 (1989): 191–98. http://dx.doi.org/10.1017/s0263574700006044.

Full text
Abstract:
SUMMARYThe work presented here is the description of the control strategy of two cooperating robots. A two–finger hand is an example of such a System. The control method allows for position control of the contact point by one of the robots while the other robot controls the contact force. The stability analysis of two robot manipulators has been investigated using unstructured models for dynamic behavior of robot manipulators. For the stability of two robots, there must be some initial compliance in either robot. The initial compliance in the robots can be obtained by a non-zero sensitivity function for the tracking controller or a passive compliant element such as an RCC.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Zhaolu, Ning Xu, Xiaoli Zhang, Xiafu Peng, and Yumin Song. "Motion Control Method of Bionic Robot Dog Based on Vision and Navigation Information." Applied Sciences 13, no. 6 (2023): 3664. http://dx.doi.org/10.3390/app13063664.

Full text
Abstract:
With the progress and development of AI technology and industrial automation technology, AI robot dogs are widely used in engineering practice to replace human beings in high-precision and tedious industrial operations. Bionic robots easily produce control errors due to the influence of spatial disturbance factors in the process of pose determination. It is necessary to calibrate robots accurately to improve the positioning control accuracy of bionic robots. Therefore, a robust control algorithm for bionic robots based on binocular vision navigation is proposed. An optical CCD binocular vision dynamic tracking system is used to measure the end position and pose parameters of a bionic robot, and the kinematics model of the controlled object is established. Taking the degree of freedom parameter of the robot’s rotating joint as the control constraint parameter, a hierarchical subdimensional space motion planning model of the robot is established. The binocular vision tracking method is used to realize the adaptive correction of the position and posture of the bionic robot and achieve robust control. The simulation results show that the fitting error of the robot’s end position and pose parameters is low, and the dynamic tracking performance is good when the method is used for the position positioning of control of the bionic robot.
APA, Harvard, Vancouver, ISO, and other styles
9

Massoud, A. T., and H. A. ElMaraghy. "AN IMPEDANCE CONTROL APPROACH FOR FLEXIBLE JOINTS ROBOT MANIPULATORS." Transactions of the Canadian Society for Mechanical Engineering 19, no. 3 (1995): 212–26. http://dx.doi.org/10.1139/tcsme-1995-0010.

Full text
Abstract:
A nonlinear feedback impedance control approach is presented to control the position and/or force of flexible joints robot manipulators interacting with a compliant environment. A feedback linearizable fourth order model of the flexible joint robots interacting with that environment is constructed. In this model, the control input is related directly to the link position vector and its derivatives. A desired target Cartesian impedance is then specified for the end point of the flexible joints robot. A nonlinear feedback control law is derived to linearize the system and to impose the target impedance for the end point of the robot in the Cartesian space. The same controller is used when the robot is free (unconstrained) and when it interacts with an environment. Also, the input to the system, in both unconstrained and constrained motions, is the end point position and its derivatives. When in free motion, the robot will track the desired end-point position, but while in constrained motion, the desired end point position is used to obtain a desired force according to the specified impedance. An experimental two-link flexible joint robot manipulator, constrained by a straight wall, is used to evaluate the impedance control algorithm.
APA, Harvard, Vancouver, ISO, and other styles
10

Song, Zhifeng. "Sliding control method of marine ecological protection robot." Thermal Science 25, no. 6 Part A (2021): 4043–50. http://dx.doi.org/10.2298/tsci2106043s.

Full text
Abstract:
In order to solve the problem of low control accuracy of the marine ecological protection robot in the route planning process during positioning, a new sliding control method is proposed. First, obtain the position information of the marine ecological protection robot, use the dynamic information measurement method to process the dynamic information, and extract the position tracking information. According to the needs of dynamic positioning and target path tracking, combined with the robot sliding control method, the global positioning of the marine ecological protection robot is designed. Experiments show that this method has high positioning accuracy for marine ecological protection robots, small positioning errors, good obstacle avoidance performance and strong dynamic positioning control capabilities.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography