To see the other types of publications on this topic, follow the link: Positive-definite matrices.

Journal articles on the topic 'Positive-definite matrices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Positive-definite matrices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Töllis, Theodore. "On means of positive definite matrices." Czechoslovak Mathematical Journal 37, no. 4 (1987): 628–41. http://dx.doi.org/10.21136/cmj.1987.102190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mostajeran, Cyrus, and Rodolphe Sepulchre. "Ordering positive definite matrices." Information Geometry 1, no. 2 (May 15, 2018): 287–313. http://dx.doi.org/10.1007/s41884-018-0003-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosen, Lon. "Positive Powers of Positive Positive Definite Matrices." Canadian Journal of Mathematics 48, no. 1 (February 1, 1996): 196–209. http://dx.doi.org/10.4153/cjm-1996-009-9.

Full text
Abstract:
AbstractLet C be an n x n positive definite matrix. If C ≥ 0 in the sense that Cij ≥ 0 and if p > n — 2, then Cp ≥ 0. This implies the following "positive minorant property" for the norms ‖A‖p = [tr(A*A)p/2]1/P. Let 2 < p ≠ 4, 6, … . Then 0 ≤ A ≤ B => ‖A‖p ≥ ‖B‖P if and only if n < p/2 + 1.
APA, Harvard, Vancouver, ISO, and other styles
4

Fiedler, Miroslav, and Vlastimil Pták. "A new positive definite geometric mean of two positive definite matrices." Linear Algebra and its Applications 251 (January 1997): 1–20. http://dx.doi.org/10.1016/0024-3795(95)00540-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Markham, Thomas L. "Oppenheim's Inequality for Positive Definite Matrices." American Mathematical Monthly 93, no. 8 (October 1986): 642. http://dx.doi.org/10.2307/2322329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gilbert, George T. "Positive Definite Matrices and Sylvester's Criterion." American Mathematical Monthly 98, no. 1 (January 1991): 44. http://dx.doi.org/10.2307/2324036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cui, Jianlian, Chi-Kwong Li, and Nung-Sing Sze. "Products of positive semi-definite matrices." Linear Algebra and its Applications 528 (September 2017): 17–24. http://dx.doi.org/10.1016/j.laa.2015.09.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ichi Fujii, Jun, and Masatoshi Fujii. "Kolmogorov's complexity for positive definite matrices." Linear Algebra and its Applications 341, no. 1-3 (January 2002): 171–80. http://dx.doi.org/10.1016/s0024-3795(01)00354-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Markham, Thomas L. "Oppenheim's Inequality for Positive Definite Matrices." American Mathematical Monthly 93, no. 8 (October 1986): 642–44. http://dx.doi.org/10.1080/00029890.1986.11971910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gilbert, George T. "Positive Definite Matrices and Sylvester's Criterion." American Mathematical Monthly 98, no. 1 (January 1991): 44–46. http://dx.doi.org/10.1080/00029890.1991.11995702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zaidi, A. "Positive definite combination of symmetric matrices." IEEE Transactions on Signal Processing 53, no. 11 (November 2005): 4412–16. http://dx.doi.org/10.1109/tsp.2005.855077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brualdi, Richard A., Suk-Geun Hwang, and Sung-Soo Pyo. "Vector majorization via positive definite matrices." Linear Algebra and its Applications 257 (May 1997): 105–20. http://dx.doi.org/10.1016/s0024-3795(96)00042-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

朱, 佳政. "Decomposition of Symmetric Positive Definite Matrices." Pure Mathematics 09, no. 04 (2019): 503–13. http://dx.doi.org/10.12677/pm.2019.94067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

ik Choi, Daes. "Determinantal inequalities of positive definite matrices." Mathematical Inequalities & Applications, no. 1 (2016): 167–72. http://dx.doi.org/10.7153/mia-19-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Johnson, Charles R., and Wayne W. Barrett. "Determinantal inequalities for positive definite matrices." Discrete Mathematics 119, no. 1-3 (August 1993): 97–106. http://dx.doi.org/10.1016/0012-365x(93)90119-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Quintana, Yamilet, and José M. Rodríguez. "Measurable diagonalization of positive definite matrices." Journal of Approximation Theory 185 (September 2014): 91–97. http://dx.doi.org/10.1016/j.jat.2014.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Itai, Uri, and Nir Sharon. "Subdivision Schemes for Positive Definite Matrices." Foundations of Computational Mathematics 13, no. 3 (July 20, 2012): 347–69. http://dx.doi.org/10.1007/s10208-012-9131-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Choudhury, Dipa, Roger A. Horn, and Stephen J. Pierce. "Quasi-positive definite operators and matrices." Linear Algebra and its Applications 99 (February 1988): 161–76. http://dx.doi.org/10.1016/0024-3795(88)90130-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Granario, Daryl Q., and Tin-Yau Tam. "Products of positive definite symplectic matrices." Linear Algebra and its Applications 626 (October 2021): 188–203. http://dx.doi.org/10.1016/j.laa.2021.05.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Al-homidan, S., and M. Alshahrani. "Positive Definite Hankel Matrices Using Cholesky Factorization." Computational Methods in Applied Mathematics 9, no. 3 (2009): 221–25. http://dx.doi.org/10.2478/cmam-2009-0013.

Full text
Abstract:
AbstractReal positive definite Hankel matrices arise in many important applications. They have spectral condition numbers which exponentially increase with their orders. We give a structural algorithm for finding positive definite Hankel matrices using the Cholesky factorization, compute it for orders less than or equal to 30, and compare our result with earlier results.
APA, Harvard, Vancouver, ISO, and other styles
21

Wei Wei, Wei Wei, Qiao Ke Wei Wei, Fan Gao Qiao Ke, Rafał Scherer Fan Gao, and Shujia Fan Rafał Scherer. "Sufficient Conditions Analysis of Coverage Algorithm Constructed Positive Definite Tridiagonal Matrices in WSNs." 網際網路技術學刊 22, no. 4 (July 2021): 735–41. http://dx.doi.org/10.53106/160792642021072204002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Niezgoda, Marek. "On $f$-connections of positive definite matrices." Annals of Functional Analysis 5, no. 2 (2014): 147–57. http://dx.doi.org/10.15352/afa/1396833510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Howroyd, Upton, and Wood. "Fractional Hadamard Powers of Positive Definite Matrices." Real Analysis Exchange 15, no. 1 (1989): 21. http://dx.doi.org/10.2307/44151980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dutour Sikirić, Mathieu, Anna Haensch, John Voight, and Wessel P. J. van Woerden. "A canonical form for positive definite matrices." Open Book Series 4, no. 1 (December 29, 2020): 179–95. http://dx.doi.org/10.2140/obs.2020.4.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bourin, Jean-Christophe, and Eun-Young Lee. "Direct sums of positive semi-definite matrices." Linear Algebra and its Applications 463 (December 2014): 273–81. http://dx.doi.org/10.1016/j.laa.2014.09.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Varah, J. M. "Positive definite Hankel matrices of minimal condition." Linear Algebra and its Applications 368 (July 2003): 303–14. http://dx.doi.org/10.1016/s0024-3795(02)00685-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sivalingam, Ravishankar, Daniel Boley, Vassilios Morellas, and Nikolaos Papanikolopoulos. "Tensor Dictionary Learning for Positive Definite Matrices." IEEE Transactions on Image Processing 24, no. 11 (November 2015): 4592–601. http://dx.doi.org/10.1109/tip.2015.2440766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bhatia, Rajendra, and Tanvi Jain. "On symplectic eigenvalues of positive definite matrices." Journal of Mathematical Physics 56, no. 11 (November 2015): 112201. http://dx.doi.org/10.1063/1.4935852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cherian, Anoop, Vassilios Morellas, and Nikolaos Papanikolopoulos. "Bayesian Nonparametric Clustering for Positive Definite Matrices." IEEE Transactions on Pattern Analysis and Machine Intelligence 38, no. 5 (May 1, 2016): 862–74. http://dx.doi.org/10.1109/tpami.2015.2456903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fiedler, Miroslav. "Old and new about positive definite matrices." Linear Algebra and its Applications 484 (November 2015): 496–503. http://dx.doi.org/10.1016/j.laa.2015.07.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rothman, A. J. "Positive definite estimators of large covariance matrices." Biometrika 99, no. 3 (June 18, 2012): 733–40. http://dx.doi.org/10.1093/biomet/ass025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Olkin, I., and S. T. Rachev. "Maximum Submatrix Traces for Positive Definite Matrices." SIAM Journal on Matrix Analysis and Applications 14, no. 2 (April 1993): 390–97. http://dx.doi.org/10.1137/0614027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lee, Hosoo. "Weighted Carlson Mean of Positive Definite Matrices." Kyungpook mathematical journal 53, no. 3 (September 23, 2013): 479–95. http://dx.doi.org/10.5666/kmj.2013.53.3.479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Amodio, P., F. Iavernaro, and D. Trigiante. "Conservative perturbations of positive definite Hamiltonian matrices." Numerical Linear Algebra with Applications 12, no. 2-3 (2005): 117–25. http://dx.doi.org/10.1002/nla.409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sivalingam, Ravishankar, Daniel Boley, Vassilios Morellas, and Nikolaos Papanikolopoulos. "Tensor Sparse Coding for Positive Definite Matrices." IEEE Transactions on Pattern Analysis and Machine Intelligence 36, no. 3 (March 2014): 592–605. http://dx.doi.org/10.1109/tpami.2013.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sra, Suvrit. "Positive definite matrices and the S-divergence." Proceedings of the American Mathematical Society 144, no. 7 (October 22, 2015): 2787–97. http://dx.doi.org/10.1090/proc/12953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lasserre, J. B. "Linear programming with positive semi-definite matrices." Mathematical Problems in Engineering 2, no. 6 (1996): 499–522. http://dx.doi.org/10.1155/s1024123x96000452.

Full text
Abstract:
We consider the general linear programming problem over the cone of positive semi-definite matrices. We first provide a simple sufficient condition for existence of optimal solutions and absence of a duality gap without requiring existence of a strictly feasible solution. We then simply characterize the analogues of the standard concepts of linear programming, i.e., extreme points, basis, reduced cost, degeneracy, pivoting step as well as a Simplex-like algorithm.
APA, Harvard, Vancouver, ISO, and other styles
38

Mathias, Roy. "Spectral Perturbation Bounds for Positive Definite Matrices." SIAM Journal on Matrix Analysis and Applications 18, no. 4 (October 1997): 959–80. http://dx.doi.org/10.1137/s0895479894271081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gselmann, Eszter. "Jordan triple mappings on positive definite matrices." Aequationes mathematicae 89, no. 3 (February 8, 2014): 629–39. http://dx.doi.org/10.1007/s00010-013-0251-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cerdeira, J. Orestes, Isabel Faria, and Paulo Bárcia. "Establishing determinantal inequalities for positive-definite matrices." Discrete Applied Mathematics 63, no. 1 (October 1995): 13–24. http://dx.doi.org/10.1016/0166-218x(94)00027-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fischer, P., and J. D. Stegeman. "Functions operating on positive-definite symmetric matrices." Journal of Mathematical Analysis and Applications 171, no. 2 (December 1992): 461–70. http://dx.doi.org/10.1016/0022-247x(92)90358-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kuznetsov, Yu I. "Connection between positive-definite and Hessenberg matrices." Siberian Mathematical Journal 27, no. 2 (1987): 211–16. http://dx.doi.org/10.1007/bf00969388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lim, Yongdo. "Invariant tolerance relations on positive definite matrices." Linear Algebra and its Applications 619 (June 2021): 1–11. http://dx.doi.org/10.1016/j.laa.2021.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sivakumar, K., Ar Meenakshi, and Projesh Choudhury. "Almost Definite Matrices Revisited." Electronic Journal of Linear Algebra 29 (September 20, 2015): 102–19. http://dx.doi.org/10.13001/1081-3810.2969.

Full text
Abstract:
A real matrix A is called as an almost definite matrix if ⟨x, Ax⟩ = 0 ⇒ Ax = 0. This notion is revisited. Many basic properties of such matrices are established. Several characterizations for a matrix to be an almost definite matrix are presented. Comparisons of certain properties of almost definite matrices with similar properties for positive definite or positive semidefinite matrices are brought to the fore. Interconnections with matrix classes arising in the theory of linear complementarity problems are discussed briefly.
APA, Harvard, Vancouver, ISO, and other styles
45

Filipiak, Katarzyna, Augustyn Markiewicz, Adam Mieldzioc, and Aneta Sawikowska. "On Projection of a Positive Definite Matrix on a Cone of Nonnegative Definite Toeplitz Matrices." Electronic Journal of Linear Algebra 33 (May 16, 2018): 74–82. http://dx.doi.org/10.13001/1081-3810.3750.

Full text
Abstract:
We consider approximation of a given positive definite matrix by nonnegative definite banded Toeplitz matrices. We show that the projection on linear space of Toeplitz matrices does not always preserve nonnegative definiteness. Therefore we characterize a convex cone of nonnegative definite banded Toeplitz matrices which depends on the matrix dimensions, and we show that the condition of positive definiteness given by Parter [{\em Numer. Math. 4}, 293--295, 1962] characterizes the asymptotic cone. In this paper we give methodology and numerical algorithm of the projection basing on the properties of a cone of nonnegative definite Toeplitz matrices. This problem can be applied in statistics, for example in the estimation of unknown covariance structures under the multi-level multivariate models, where positive definiteness is required. We conduct simulation studies to compare statistical properties of the estimators obtained by projection on the cone with a given matrix dimension and on the asymptotic cone.
APA, Harvard, Vancouver, ISO, and other styles
46

Neubauer, M. "An Inequality for Positive Definite Matrices With Applications to Combinatorial Matrices." Linear Algebra and its Applications 267, no. 1-3 (December 1997): 163–74. http://dx.doi.org/10.1016/s0024-3795(97)00006-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Neubauer, Michael G. "An inequality for positive definite matrices with applications to combinatorial matrices." Linear Algebra and its Applications 267 (December 1997): 163–74. http://dx.doi.org/10.1016/s0024-3795(97)80048-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chehab, Jean-Paul, and Marcos Raydan. "Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices." Mathematics 4, no. 3 (July 9, 2016): 46. http://dx.doi.org/10.3390/math4030046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ikramov, Kh D. "On the Symplectic Eigenvalues of Positive Definite Matrices." Moscow University Computational Mathematics and Cybernetics 42, no. 1 (January 2018): 1–4. http://dx.doi.org/10.3103/s0278641918010041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lim, Yongdo. "Factorizations and geometric means of positive definite matrices." Linear Algebra and its Applications 437, no. 9 (November 2012): 2159–72. http://dx.doi.org/10.1016/j.laa.2012.05.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography