To see the other types of publications on this topic, follow the link: Positive electrode for Li-ion batteries.

Dissertations / Theses on the topic 'Positive electrode for Li-ion batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Positive electrode for Li-ion batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

El, Khalifi Mohammed. "Étude théorique des matériaux d'électrode positive négative pour batteries Li-ion." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20200.

Full text
Abstract:
Ce mémoire est consacré à l'étude théorique des matériaux de cathode pour batteries Li-ion de structure olivine LiMPO4 (M=Mn, Fe, Co, Ni), des phases délithiées MPO4 et des phases mixtes LiFexMn1-xPO4, FexMn1-xPO4 et LiFexCo1-xPO4. La stabilité des phases magnétiques et les paramètres de maille théoriques ont été déterminés par la méthode des pseudopotentiels et comparés aux données expérimentales. Les structures électroniques ont été calculées par une méthode « tout électron » et analysées en termes d'hybridation des orbitales atomiques Ces résultats ont permis d'interpréter les spectres de photoélectrons X et d'absorption des rayons X, en particulier les modifications réversibles associées aux cycles de lithiation/délithiation. Les effets de la polarisation de spin et de la corrélation électronique ont été discutés. Enfin, le calcul des paramètres Mössbauer du 57Fe a montré qu'un accord quantitatif entre les résultats théoriques et les données expérimentales nécessitait la prise en compte de ces deux effets. Ce type de calcul a permis de prédire et d'expliquer que la transformation LiFePO4FePO4 s'accompagnait de la variation du gradient de champ électrique Vzz d'une extrémité à l'autre de l'échelle Mössbauer pour 57Fe<br>This thesis is devoted to the theoretical study of the cathode materials for Li-ion batteries with olivine structure LiMPO4 (M=Mn, Fe, Co, Ni), the delithiated phases MPO4 and the mixed phases LiFexMn1-xPO4, FexMn1-xPO4 and LiFexCo1-xPO4. The magnetic phase stability and lattice parameters were theoretically determined from pseudopotential calculations and the results have been compared with experiments. Electronic structures were obtained from all electron calculations and analyzed in terms of orbital hybridization. The results have been used for the interpretation of X-ray photoemission and X-ray absorption spectra, especially changes due to lithiation/delithiation cycles. Effects of spin polarization and electronic correlation on the electronic structures have been also discussed. It has been shown that ab initio calculations of the 57Fe Mössbauer parameters also require these two effects in order to obtain a quantitative agreement with experiments. Finally, it was found that LiFePO4FePO4 transformation involves a dramatic change of the electric field gradient VZZ from one end to the other of the 57Fe Mössbauer scale
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Meiling. "Elaboration of novel sulfate based positive electrode materials for Li-ion batteries." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066686/document.

Full text
Abstract:
Le besoin croissant de batteries à ions lithium dans notre société exige le développement de matériaux d'électrode positive, avec des exigences spécifiques en termes de densité énergétique, de coût et de durabilité. Dans ce but, nous avons exploré quatre composés à base de sulfate: un fluorosulfate - LiCuSO4F et une famille d'oxysulfates - Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Leur synthèse, structure et performances électrochimiques sont présentées pour la première fois. Étant électrochimiquement inactif, LiCuSO4F présente une structure triplite ordonnée qui est distincte des autres fluorosulfates. L'activité électrochimique des composés oxysulfate a été explorée face au lithium. Plus spécifiquement, Fe2O(SO4)2 délivre une capacité réversible d'environ 125 mA∙h/g à 3.0 V par rapport à Li+/Li0; Li2VO(SO4)2 et Li2Cu2O(SO4)2 présentent respectivement les potentiels les plus élevés de 4.7 V vs. Li+/Li0 parmi les composés à base de V et de Cu. Enfin, la phase Li2Cu2O(SO4)2 révèle la possibilité d'une activité électrochimique anionique dans une électrode positive polyanionique. Leurs propriétés physiques, telles que les conductivités ioniques et les propriétés magnétiques, sont également rapportées. Dans l'ensemble, les oxysulfates sont intéressants à étudier en tant qu'électrodes positives polyanioniques pour les batteries à ions lithium<br>The increasing demand of our society for Li-ion batteries calls for the development of positive electrode materials, with specific requirements in terms of energy density, cost, and sustainability. In such a context, we explored four sulfate based compounds: a fluorosulfate – LiCuSO4F, and a family of oxysulfates – Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Herein their synthesis, structure, and electrochemical performances are presented for the first time. Being electrochemically inactive, LiCuSO4F displays an ordered triplite structure which is distinct from other fluorosulfates. The electrochemical activity of the oxysulfate compounds was explored towards lithium. Specifically, Fe2O(SO4)2 delivers a sustained reversible capacity of about 125 mA∙h/g at 3.0 V vs. Li+/Li0; Li2VO(SO4)2 and Li2Cu2O(SO4)2 respectively exhibit the highest potential of 4.7 V vs. Li+/Li0 among V- and Cu- based compounds. Last but not least, the Li2Cu2O(SO4)2 phase reveals the possibility of anionic electrochemical activity in a polyanionic positive electrode. Their physical properties, such as ionic conductivities and magnetic properties are also reported. Overall, this makes oxysulfates interesting to study as polyanionic positive electrodes for Li-ion batteries
APA, Harvard, Vancouver, ISO, and other styles
3

Blidberg, Andreas. "Iron Based Materials for Positive Electrodes in Li-ion Batteries : Electrode Dynamics, Electronic Changes, Structural Transformations." Doctoral thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-317014.

Full text
Abstract:
Li-ion battery technology is currently the most efficient form of electrochemical energy storage. The commercialization of Li-ion batteries in the early 1990’s revolutionized the portable electronics market, but further improvements are necessary for applications in electric vehicles and load levelling of the electric grid. In this thesis, three new iron based electrode materials for positive electrodes in Li-ion batteries were investigated. Utilizing the redox activity of iron is beneficial over other transition metals due to its abundance in the Earth’s crust. The condensed phosphate Li2FeP2O7 together with two different LiFeSO4F crystal structures that were studied herein each have their own advantageous, challenges, and scientific questions, and the combined insights gained from the different materials expand the current understanding of Li-ion battery electrodes. The surface reaction kinetics of all three compounds was evaluated by coating them with a conductive polymer layer consisting of poly(3,4-ethylenedioxythiophene), PEDOT. Both LiFeSO4F polymorphs showed reduced polarization and increased charge storage capacity upon PEDOT coating, showing the importance of controlling the surface kinetics for this class of compounds. In contrast, the electrochemical performance of PEDOT coated Li2FeP2O7 was at best unchanged. The differences highlight that different rate limiting steps prevail for different Li-ion insertion materials. In addition to the electrochemical properties of the new iron based energy storage materials, also their underlying material properties were investigated. For tavorite LiFeSO4F, different reaction pathways were identified by in operando XRD evaluation during charge and discharge. Furthermore, ligand involvement in the redox process was evaluated, and although most of the charge compensation was centered on the iron sites, the sulfate group also played a role in the oxidation of tavorite LiFeSO4F. In triplite LiFeSO4F and Li2FeP2O7, a redistribution of lithium and iron atoms was observed in the crystal structure during electrochemical cycling. For Li2FeP2O7, and increased randomization of metal ions occurred, which is similar to what has been reported for other iron phosphates and silicates. In contrast, triplite LiFeSO4F showed an increased ordering of lithium and iron atoms. An electrochemically induced ordering has previously not been reported upon electrochemical cycling for iron based Li-ion insertion materials, and was beneficial for the charge storage capacity of the material.
APA, Harvard, Vancouver, ISO, and other styles
4

Boivin, Édouard. "Crystal chemistry of vanadium phosphates as positive electrode materials for Li-ion and Na-ion batteries." Thesis, Amiens, 2017. http://www.theses.fr/2017AMIE0032/document.

Full text
Abstract:
Ce travail de thèse a pour but d'explorer de nouveaux matériaux de type structural Tavorite et de revisiter certains déjà bien connus. Dans un premier temps, les synthèses de compositions ciblées ont été réalisées selon des procédures variées (voies tout solide, hydrothermale, céramique assistée par sol-gel, broyage mécanique) afin de stabiliser d'éventuelles phases métastables et d'ajuster la microstructure impactant fortement les performances électrochimiques de tels matériaux polyanioniques. Ces matériaux ont ensuite été décrits en profondeur, dans leurs états originaux, depuis leurs structures moyennes, grâce aux techniques de diffraction (diffraction des rayons X sur poudres ou sur monocristaux et diffraction des neutrons) jusqu'aux environnements locaux, en utilisant des techniques de spectroscopie (résonance magnétique nucléaire à l'état solide, absorption des rayons X, infra-rouge et Raman). Par la suite, les diagrammes de phases et les processus d'oxydoréduction impliqués pendant l'activité électrochimique des matériaux ont été étudiés grâce à des techniques operando (diffraction et absorption des rayons X). La compréhension des mécanismes impliqués pendant le cyclage permet de mettre en évidence les raisons de leurs limitations électrochimiques : La synthèse de nouveaux matériaux (composition, structure, microstructure) peut maintenant être développée afin de contrepasser ces limitations et de tendre vers de meilleures performances<br>This PhD work aims at exploring new Tavorite-type materials and at revisiting some of the well-known ones. The syntheses of targeted compositions were firstly performed using various ways (all solid state, hydrothermal, sol-gel assisted ceramic, ball milling) in order to stabilize eventual metastable phases and tune the microstructure impacting strongly the electrochemical performances of such polyanionic compounds. The materials were then described in-depth, at the pristine state, from their average long range structures, thanks to diffraction techniques (powder X-rays, single crystal X-rays and neutrons diffraction), to their local environments, using spectroscopy techniques (solid state Nuclear Magnetic Resonance, X-rays Absorption Spectroscopy, Infra-Red and/or Raman). Thereafter, the phase diagrams and the redox processes involved during electrochemical operation of the materials were investigated thanks to operando techniques (SXRPD and XAS). The in-depth understanding of the mechanisms involved during cycling allows to highlight the reasons of their electrochemical limitations: the synthesis of new materials (composition, structure and microstructure) can now be developed to overcome these limitations and tend toward better performance
APA, Harvard, Vancouver, ISO, and other styles
5

Dupré, Nicolas. "Etude du phosphate de vanadyle comme matériau d'électrode de batteries Li-ion." Paris 6, 2001. http://www.theses.fr/2001PA066420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Van, Staen Guilherme. "Electrodes positives à base de cuivre pour accumulateurs Li-ion." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066165/document.

Full text
Abstract:
Les accumulateurs Li-ion sont des systèmes de stockage électrochimique de l’énergie composés de deux électrodes, dans lesquelles les ions Li+ vont venir s’insérer réversiblement lors des cycles de charge et de décharge. Afin d’intégrer le domaine des véhicules électriques, leur densité d’énergie doit être augmentée pour apporter l’autonomie demandée. Ceci peut être réalisé en augmentant la d.d.p. entre les deux électrodes. Nous visons ici la synthèse de nouveaux matériaux polyanioniques d’électrode positive dans lesquels le lithium pourrait venir s’insérer à haut potentiel en faisant intervenir le couple Cu3+/Cu2+ (5,3 V vs Li+/Li). Parmi les phosphates de cuivre synthétisés, Li2CuP2O7 présente une oxydation non réversible à haut potentiel (&gt; 5 V). Sa synthèse à basse température permet d’exacerber les réactions, en raison de la faible taille des particules obtenues ainsi que de la présence de carbone conducteur à leur surface, mais la phase s’avère instable à haut potentiel.En ce qui concerne les composés de type sulfate, une nouvelle phase Li4Cu4O2(SO4)4 est isolée, montrant une insertion réversible du lithium à une valeur moyenne de 4,7 V. Cependant, la capacité de ce matériau est très faible (15 mAh.g-1) et plusieurs substitutions chimiques avec du fluor, du magnésium ou du sodium sont étudiées dans le but d’augmenter la mobilité du lithium<br>Li-ion batteries (LIBs) are energy storing electrochemical devices composed of two electrodes, in which Li+ ions are reversibly inserted during charge and discharge cycles. Their use in electric vehicles relies on the increase of their energy density, to provide enough autonomy. This can be reached by increasing the cell d.d.p. We thus aim the synthesis of new positive electrode polyanionic materials, in which lithium could be inserted at high potential, using the Cu3+/Cu2+ couple’s activity (5,3 V vs Li+/Li). Among the synthesized copper phosphates, Li2CuP2O7 presents a non-reversible oxidation at high potential (&gt;5 V). Its low temperature synthesis intensifies the reaction, due to the smaller particle size achieved as well as the presence of a conductive carbon coating, but the phase is instable at high potential. Concerning sulfate-type compounds, a new phase Li4Cu4O2(SO4)4 is isolated, showing a reversible lithium insertion at an average value of 4.7 V. Nevertheless, its capacity is very low (15 mAh.g-1) and various chemical substitutions with fluorine, magnesium or sodium are attempted to increase lithium’s mobility
APA, Harvard, Vancouver, ISO, and other styles
7

Jankulár, Tomáš. "Příprava a charakterizace elektrodových materiálů z elementární síry pro Li-ion akumulátory." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220240.

Full text
Abstract:
This thesis deals with the preparation and characterization of electrode materials for Li-ion batteries based on elemental sulfur. The theoretical part is focused on the characteristics of Li-ion batteries, electrochemical reactions, the process of electrochemical lithiation of sulfur and solubility properties of intermediate polysulfides. The practical part of the thesis deals with the preparation of cathode materials for Li-ion cells with an active substance in the form of elemental sulfur. The prepared electrodes were investigated using cyclic voltammetry and galvanostatic cycling. Physical characterization by SEM and XRD was provided.
APA, Harvard, Vancouver, ISO, and other styles
8

Koga, Hideyuki. "Étude de Li riche en oxydes lamellaires comme matériaux d'électrode positive pour des batteries lithium-ion." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00923812.

Full text
Abstract:
Les mécanismes mis en jeu lors du cyclage de batteries au Lithium Li//Li1.20Mn0.54Co0.13Ni0.13O2 ont été étudiés avec l'objectif de déterminer l'origine des capacités très élevées délivrées par les oxydes lamellaires " (1-x)LiMO2.xLi2MnO3 ". La caractérisation par diffraction des RX et des neutrons montre que la structure est maintenue et l'existence de fluctuations de composition qui peuvent être assimilées à l'existence de deux phases de compositions voisines. Les résultats des tests électrochimiques et les analyses menées au cours du cyclage en spectroscopie d'absorption des rayons X ont suggéré la participation de l'oxygène aux processus redox. Celle-ci a été confirmée par la préparation et la caractérisation de matériaux désintercalés et réintercalés chimiquement en lithium. Les analyses en microscopie électronique à transmission (HAADF-STEM) et en nanodiffraction, montrent qu'une densification associée à un dégagement d'oxygène a lieu à la périphérie des particules
APA, Harvard, Vancouver, ISO, and other styles
9

Lemoine, Kévin. "Nouveaux matériaux fluorés d'électrodes positives à cations 3d mixtes pour batteries à ions lithium : Elaboration, caractérisation structurale et propriétés électrochimiques." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1030.

Full text
Abstract:
Ce travail concerne l’application d'une stratégie de synthèse en deux étapes pour préparer de nouveaux matériaux fluorés à base de fer dans l’objectif de les tester en tant que composé actif d’électrodes positives pour batteries à ions lithium : élaboration d’un précurseur suivie d’un traitement thermique adéquat. L’étude porte dans un premier temps sur les fluorures hydratés 3D à valence mixte de fer, Fe2F5(H2O)2 de structure weberite inverse et Fe3F8(H2O)2. Par traitement thermique sous air, deux hydroxyfluorures sont stabilisés, FeF2.5(OH)0.5 de structure pyrochlore et FeF2.66(OH)0.34 de structure HTB respectivement. L’étude de leur comportement électrochimique montre d’excellentes capacités ≈ 170 mAh.g-1 (2-4 V). Afin d’étudier l'impact de la nature des cations 3d sur les performances, les hydrates équivalents à cations mixtes, M2+Fe3+F5(H2O)2 (M = Mn, Ni) et M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu ; M3+ = V, Fe), ont été synthétisés en milieu solvothermal dans une seconde partie. Des intermédiaires amorphes oxyfluorés apparaissent lors de la dégradation thermique sous air avec en particulier CuFe2F6O, obtenu à partir de CuFe2F8(H2O)2, qui présente une capacité remarquable de 310 mAh.g-1 (2-4 V). Enfin, des fluorures d’ammonium à cations mixtes NH4M2+Fe3+F6 (M = Mn, Co, Ni, Cu), obtenus par mécanosynthèse et la voie solvothermale, ont conduit aux premiers fluorures à cations mixtes trivalents M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) de structure pyrochlore par oxydation topotactique sous fluor moléculaire F2 en température<br>This work presents an innovative synthetic strategy to develop new fluorinated iron-based materials as positive electrodes for Li-ion batteries. This two-step elaboration method consists in the preparation of fluorinated precursors followed by an appropriate thermal treatment. The study initially focuses on tridimensional mixed valence iron fluorides, Fe2F5(H2O)2 with the inverse weberitestructural type and Fe3F8(H2O)2. The calcination under air leads to the formation of two new hydroxyfluorides, FeF2.5(OH)0.5 and FeF2.66(OH)0.34 with pyrochlore and HTB structural types respectively which present excellent electrochemical capacities ≈ 170 mAh.g-1 (2-4 V). In a second part, the 3d-cation effect on oxyfluorides performances is evaluated from equivalent mixed metal cation hydrates, M2+Fe3+F5(H2O)2 (M = Mn, Ni) and M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu, M3+ = V, Fe), synthesized solvothermally. Their thermal degradation under air reveals amorphous oxyfluorinated intermediates and among them, CuFe2F6O, obtained from CuFe2F8(H2O)2, with an remarkable capacity of 310 mAh.g-1 (2-4 V). In the last part, mixed ammonium fluorides (NH4)M2+Fe3+F6 (M = Mn, Co, Ni, Cu) are synthesized using mechanochemical and solvothermal routes. Their thermal topotactic oxidation under molecular fluorine F2 leads to the first trivalent mixed-cation fluorides M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) with pyrochlore typestructure
APA, Harvard, Vancouver, ISO, and other styles
10

Ateba, Mba Jean-Marcel. "Nouveaux fluorophosphates de métaux de transition utilisés comme matériaux d'électrode positive pour batteries li-ion." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14862/document.

Full text
Abstract:
Nos efforts se sont portés sur des fluorophosphates de structure TAVORITE de formule LiMPO4F (M = V, Fe, Ti) et LiVPO4O qui, comparés à d’autres familles structurales de phosphates tels que Li3M2(PO4)3 (NASICON) ou LiFePO4(OH) (Tavorite) possèdent d’excellentes densités d’énergie théorique comme matériaux d’électrodes dans des accumulateurs au Li. Des méthodes de synthèse reproductibles, par voie céramique en tubes scellés et/ou ionothermale (synthèse à basse température), ont été mises au point dans ce travail. Les matériaux ainsi préparés ont été caractérisés en détail par magnétométrie, par RMN et surtout par diffraction des rayons X et des neutrons. Les structures cristallines ont ainsi pu être déterminées ainsi que les mécanismes d’insertion/extraction du Li+, via de nombreuses études par diffraction X insitu lors de la charge/décharge des accumulateurs<br>This work focused on TAVORITE-based fluorophosphates LiMPO4F (M = V, Fe, Ti) and LiVPO4O which, when compared with other phosphate structural families such as Li3V2(PO4)3 (NASICON) or LiFePO4(OH) (Tavorite), possess superior energy density as electrode materials for Li batteries. Reproducible synthesis procedures were developed through “classical” ceramic routes in sealed containers and/or low temperature ionothermal reaction. The obtained materials were characterized by magnetometry, solid state NMR and heavily by X-Ray and Neutron diffraction. The crystal structures of all the materials were determined, as well as the mechanisms of Li+ insertion/extraction through insitu X-Ray diffraction during electrochemical charge/discharge of the batteries
APA, Harvard, Vancouver, ISO, and other styles
11

Gao, Shuang. "INVESTIGATION OF TRANSITION-METAL IONS IN THE NICKEL-RICH LAYERED POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES." UKnowledge, 2019. https://uknowledge.uky.edu/cme_etds/100.

Full text
Abstract:
Layered lithium transition-metal oxides (LMOs) are used as the positive electrode material in rechargeable lithium-ion batteries. Because transition metals undergo redox reactions when lithium ions intercalate in and disintercalate from the lattice, the selection and composition of transition metals largely influence the electrochemical performance of LMOs. Recently, a Ni-rich compound, LiNi0.8Co0.1Mn0.1O2 (NCM811), has drawn much attention. It is expected to replace its state-of-the-art cousins, LiCoO2 (LCO) and LiNi1/3Co1/3Mn1/3O2 (NCM111), because of its higher capacity, lower cost, and reduced toxicity. However, the excess Ni, as a transition-metal element in NCM811, can cause structural and cycling instability. Starting from NCM811, I modified the composition of transition metals by two approaches: 1) introducing cobalt deficiency and 2) substituting Ni, Co, and Mn with Zr. Their influences on the phase, structure, cycling performance, rate capability, and ionic transport were investigated by a variety of characterization techniques. I found that cobalt non-stoichiometry can suppress Ni2+/Li+ cation mixing, but simultaneously promotes the formation of oxygen vacancies, leading to rapid capacity fade and inferior rate capability compared to pristine NCM811. On the other hand, Zr can reside on and expand the lattice of NCM811, and form Li-rich lithium zirconates on their surfaces. In particular, 1% Zr substitution can increase the stability of NCM811 and facilitate Li-ion transport, resulting in enhanced cycling durability and high-rate performance. My studies help improve the understanding of the effects of transition metals on the degradation of the Ni-rich layered positive electrode material and provide modification strategies to enhance its performance and durability for Li-ion battery applications.
APA, Harvard, Vancouver, ISO, and other styles
12

Reynaud, Marine. "Elaboration de nouveaux matériaux à base de sulfates pour l'électrode positive des batteries à ions Li et Na." Phd thesis, Université de Picardie Jules Verne, 2013. http://tel.archives-ouvertes.fr/tel-01018912.

Full text
Abstract:
Les prochaines générations de batteries à ions lithium et sodium seront basées sur le développement de nouveaux matériaux d'électrode positive durables, peu chers et sûrs. Dans ce but, nous avons exploré le monde des minéraux à la recherche de structures présentant les pré-requis pour l'insertion et la désinsertion d'ions alcalins. Nous avons alors entrepris l'étude de sulfates bimétalliques dérivés du minéral bloedite, ayant pour formule générale AxM(SO4)2*nH2O (A = Li, Na, M = métal de transition 3d, et n = 0, 4). Ces systèmes présentent une cristallochimie riche, montrant des transitions structurales en fonction de la température ainsi qu'avec le départ des molécules d'eau. Les nouvelles structures ont été déterminées en combinant les techniques de diffraction des rayons X, neutrons et électrons. Nous avons également montré que les composés à base de lithium LixM(SO4)2 présentent des propriétés antiferromagnétiques intéressantes, du fait notamment de leurs structures particulières qui permettent seulement des interactions de super-super-échange. Enfin et surtout, nous avons, parmi les composés isolés, identifié trois sulfates à base de fer, à savoir Na2Fe(SO4)2*4H2O, Na2Fe(SO4)2 et Li2Fe(SO4)2, qui présentent des propriétés électrochimiques intéressantes face au lithium et au sodium. Avec un potentiel de 3,83 V vs. Li+/Li0, la nouvelle phase marinite Li2Fe(SO4)2 affiche le plus haut potentiel jamais observé pour le couple redox FeIII+/FeII+ dans un composé inorganique à base de fer et dépourvu de fluor, et est en fait seulement dépassé par celui de la forme triplite de LiFeSO4F.
APA, Harvard, Vancouver, ISO, and other styles
13

Lacassagne, Elodie. "Études des phénomènes de mouillabilité et des cinétiques d’imprégnation des électrodes positives par l’électrolyte : application aux batteries Lithium-Ion." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10140/document.

Full text
Abstract:
Le contact entre l'électrode et l'électrolyte est primordial pour le bon fonctionnement d'une batterie Lithium-Ion. L'imprégnation de l'électrode positive par un électrolyte liquide a toujours été considérée comme totale, cependant les phénomènes ne sont pas exactement connus. Ainsi, ces travaux s'intéressent à l'influence de la composition de l'électrode positive (matière active et agent conducteur) sur cette imprégnation. Après une première étude des propriétés conductrices, électrochimiques et morphologiques d'électrodes présentant des formulations plus ou moins éloignées des formulations industrielles, une méthode utilisant l'équation de Washburn a été développée afin d'étudier l'imprégnation des pores modélisés par un ensemble de tubes capillaires. L'utilisation de l'hexadecane, considéré comme un liquide parfaitement mouillant, a permis de déterminer la taille effective des pores indépendamment de l'électrolyte, et celle-ci a pu être comparée à des résultats obtenus grâce à la méthode de thermoporosimétrie. Puis, les régimes de Washburn obtenus lors de la diffusion de l'électrolyte ont mis en évidence les cinétiques d'ascension. Par la suite, la méthode de Washburn a été utilisée afin de caractériser les propriétés d'imprégnation d'électrodes élaborées avec un nouveau liant et selon un procédé innovant s'affranchissant de l'utilisation de solvant. L'utilisation d'un additif permettant la création de porosité d'une part, et la réticulation du liant d'autre part permettent d'obtenir une imprégnation de l'électrolyte comparable à celle observée pour les électrodes fabriquées par voie solvant<br>The contact between the electrode and the electrolyte is essential for a Lithium-Ion battery functioning. The impregnation of a positive electrode by the electrolyte has always been considered as total; however the phenomena are not exactly known. Thus, in this work, the influence of the positive electrode composition (active material, conductive agent and binder) on the impregnation has been investigated. After a first study focusing on the conductive, electrochemical and morphological properties of the electrodes, with different types of formulation, a method using Washburn equation has been developed in order to study the impregnation of the electrode’s pores, which were modeled as capillary tubes. With the use of hexadecane, considered as a perfectly wetting liquid, the effective pore size has been determined and then compared to the results given by the thermoporosimetry method. Then, the kinetics of ascension have been identified with the Washburn regimes obtained with the diffusion of the electrolyte in the cathodes. Afterwards, Washburn method has been used in order to characterize the impregnation properties of electrodes elaborated with an innovative process without solvent. Thanks to the use of an additive allowing the creation of porosity in one hand and the reticulation of the binder in the other hand, an impregnation of these new electrode by the electrolyte has been considered as comparable to the one observed for the cathodes made with solvent
APA, Harvard, Vancouver, ISO, and other styles
14

Martin, Andréa Joris Quentin. "Nano-sized Transition Metal Fluorides as Positive Electrode Materials for Alkali-Ion Batteries." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21619.

Full text
Abstract:
Übergangsmetallfluoridverbindungen sind sehr vielversprechende Kandidaten für die nächste Generation von Kathoden für Alkaliionenbatterien. Dennoch verhindern einige Nachteile dieser Materialklasse ihre Anwendung in Energiespeichermedien. Metallfluoride haben eine stark isolierende Wirkung, außerdem bewirken die Mechanismen beim Lade-/Entladevorgang, große Volumenänderungen und somit eine drastische Reorganisation des Materials, welche nur geringfügig umkehrbar ist. Um diese Nachteile zu reduzieren, werden in dieser Arbeit innovative Syntheserouten für die Umwandlung von Metallfluoridverbindungen sowie deren Anwendung in Alkaliionenbatterien vorgestellt. Im ersten Teil werden MFx Verbindungen (M = Co, Fe; x = 2 oder 3) untersucht. Diese Materialien zeigen eine hohe Ausgangskapazität aber nur bei sehr geringen C-Raten und zudem sehr geringe Zyklisierbarkeiten. Ex-situ-XRD und -TEM zeigen, dass die geringe Umkehrbarkeit der Prozesse hauptsächlich aus der Umwandlungsreaktion während des Be-/Entladens resultieren. Im zweiten Teil werden sowohl die Synthesen als auch die elektrochemischen Eigenschaften von Perowskiten aus Übergangsmetallfluoriden vorgestellt. NaFeF3 zeigt hierbei exzellente Leistungen und Reversibilitäten. Die Untersuchung der Mechansimen durch ex-situ und operando XRD während der Be- und Entladeprozesse hinsichtlich verschiedener Alkalisysteme zeigt, dass das kristalline Netzwerk über den Zyklus erhalten bleibt. Dies führt zur hohen Reversibilität und hohen Leistung selbst bei hohen C-Raten. Der Erhalt der Kristallstruktur wird durch elektrochemische Stabilisierung der kubischen Konformation von FeF3 ermöglicht, welche normalerweise erst bei hohen Temperaturen (400 °C) beobachtet wird und durch geringere Reorganisationen innerhalb des Kristallgerüsts erklärt werden kann. Ähnliche elektrochemische Eigenschaften können für KFeF3 und NH4FeF3 beobachtet werden, wobei erstmalig von Ammoniumionen als Ladungsträger in Alkaliionensystemen berichtet wird.<br>Metal fluoride compounds appear as very appealing candidates for the next generation of alkali-ion battery cathodes. However, many drawbacks prevent this family of compounds to be applicable to storage systems. Metal fluorides demonstrate a high insulating character, and the mechanisms involved during the discharge/charge processes atom engender large volume changes and a drastic reorganization of the material, which induces poor reversibility. In order to answer these problematics, the present thesis reports the elaboration of innovative synthesis routes for transition metal fluoride compounds and the application of these fluoride materials in alkali-ion battery systems. In a first part, MFx compounds (M = Co, Fe; x = 2 or 3) are studied. Those compounds exhibit high initial capacity but very poor cyclability and low C-rate capabilities. Ex-situ X-ray diffraction and transmission electron microscopy demonstrate that the low reversibility of the processes is mainly due to the conversion reaction occurring during their discharge/charge. In the second part, the syntheses of transition metal fluoride perovskites are reported, as well as their electrochemical properties. NaFeF3 demonstrates excellent performances and reversibility. The study of the mechanisms occurring during its charge/discharge processes towards different alkali systems by ex-situ and operando X-ray diffraction reveals that its crystalline framework is maintained along the cycles, resulting in high reversibility and excellent C-rate performance. This retention of the crystal framework is possible by an electrochemical stabilization of a cubic conformation of FeF3, which is usually only observable at high temperature (400 °C), and can be explained by lower reorganizations within the crystal framework. Similar electrochemical properties could be observed for KFeF3 and NH4FeF3, where ammonium ions are reported for the first time as a charge carrier in alkali-ion systems.
APA, Harvard, Vancouver, ISO, and other styles
15

Nose, Masafumi. "Studies on Sodium-containing Transition Metal Phosphates for Sodium-ion Batteries." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jokar, Ali. "An inverse method for estimating the electrochemical and the thermophysical parameters of lithium-ion batteries with different positive electrode materials." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11799.

Full text
Abstract:
La sécurité de plusieurs systèmes électriques est fortement dépendante de la fiabilité de leur bloc-batterie à base de piles aux ions lithium (Li-ion). Par conséquent, ces batteries doivent être suivis et contrôlés par un système de gestion des batteries (BMS). Le BMS interagit avec toutes les composantes du bloc-batterie de façon à maintenir leur intégrité. La principale composante d’un BMS est un modèle représentant le comportement des piles Liion et capable de prédire ses différents points d’opération. Dans les industries de l’électronique et de l’automobile, le BMS repose habituellement sur des modèles empiriques simples. Ceux-ci ne sont cependant pas capables de prédire les paramètres de la batterie lorsqu’elle vieillit. De plus, ils ne sont applicables que pour des piles spécifiques. D’un autre côté, les modèles électrochimiques sont plus sophistiqués et plus précis puisqu’ils sont basés sur la résolution des équations de transport et de cinétique électrochimique. Ils peuvent être utilisés pour simuler les caractéristiques et les réactions à l’intérieur des piles aux ions lithium. Pour résoudre les équations des modèles électrochimiques, il faut connaître les différents paramètres électrochimiques et thermo-physiques de la pile. Les variables les plus significatives des piles Li-ion peuvent être divisées en 3 catégories : les paramètres géométriques, ceux définissant les matériaux et les paramètres d’opération. Les paramètres géométriques et de matériaux peuvent être facilement obtenus à partir de mesures directes ou à partir des spécifications du manufacturier. Par contre, les paramètres d’opération ne sont pas faciles à identifier. De plus, certains d’entre eux peuvent dépendre de la technique de mesure utilisée et de l’âge. Finalement, la mesure de certains paramètres requiert le démantèlement de la pile, une procédure risquée et destructive. Plusieurs recherches ont été réalisées afin d’identifier les paramètres opérationnels des piles aux ions lithium. Toutefois, la plupart de ces études ont porté sur l’estimation d’un nombre limité de paramètres et se sont attardées sur un seul type de matériau pour l’électrode positive utilisé dans la fabrication des piles Li-ion. De plus, le couplage qui existe entre les paramètres électrochimiques et thermo-physiques est complètement ignoré. Le but principal de cette thèse est de développer une méthode générale pour identifier simultanément différents paramètres électrochimiques et thermo-physiques et de prédire la performance des piles Li-ion à base de différents matériaux d’électrodes positives. Pour atteindre ce but, une méthode inverse efficace a été introduite. Des modèles directs représentatifs des piles Li-ion à base de différents matériaux d’électrodes positives ont également été développés. Un modèle rapide et précis simulant la performance de piles Li-ion avec des électrodes positives à base de LiMn2O4 ou de LiCoO2 est présenté. Également, deux modèles ont été développés pour prédire la performance des piles Li-ion avec une électrode positive de LiFePO4. Le premier, appelé modèle mosaïque modifié (MM), est basé sur une approche macroscopique alors que le deuxième, appelé le modèle mésoscopique, est plutôt basé sur une approche microscopique. Des études d’estimation de paramètres ont été conduites en utilisant les modèles développés et des données expérimentales fournies par Hydro-Québec. Tous les paramètres électrochimiques et thermo-physiques des piles Li-ions ont été simultanément identifiés et appliqués à la prédiction de la performance des piles. Finalement, une technique en temps réel reposant sur des réseaux de neurones est introduite dans la méthode d’estimation des paramètres intrinsèques au piles Li-ion.<br>Abstract : The safety of many electrical systems is strongly dependent on the reliable operation of their lithium-ion (Li-ion) battery packs. As a result, the battery packs must be monitored by a battery management system (BMS). The BMS interacts with all the components of the system so as to maintain the integrity of the batteries. The main part of a BMS is a Li-ion battery model that simulates and predicts its different operating points. In the electronics and in the automobile industries, the BMS usually rests on simple empirical models. They are however unable to predict the battery parameters as it ages. Furthermore, they are only applicable to a specific cell. Electrochemical-based models are, on the other hand, more sophisticated and more precise. These models are based on chemical/electrochemical kinetics and transport equations. They may be used to simulate the Li-ion battery characteristics and reactions. In order to run the electrochemical-based mathematical models, it is imperative to know the different electrochemical and thermophysical parameters of the battery. The significant variables of the Li-ion battery can be classified into three groups: geometric, material and operational parameters. The geometric and material parameters can be easily obtained from direct measurements or from the datasheets provided by the manufacturer. The operational properties are, on the other hand, not easily available. Furthermore, some of them may vary according to the measurement techniques or the battery age. Sometimes, the measurement of these parameters requires the dismantling of the battery itself, which is a risky and destructive procedure. Many investigations have been conducted to identify the operational parameters of Li-ion batteries. However, most of these studies focused on the estimation of limited parameters, or considered only one type of the positive electrode materials used in Li-ion batteries. Moreover, the coupling of the thermophysical parameters to the electrochemical variables is ignored in all of them. The main goal of this thesis is to develop a general method to simultaneously identify different electrochemical and thermophysical parameters and to predict the performance of Li-ion batteries with different positive electrode materials. To achieve this goal, an effective inverse method is introduced. Also, direct models representative of Li-ion batteries are developed, applicable for all of the positive electrode materials. A fast and accurate model is presented for simulating the performance of the Li-ion batteries with the LiMn2O4 and LiCoO2 positive electrodes. Moreover, two macro- and micro-based models are developed for predicting the performance of Li-ion battery with the LiFePO4 positive electrode, namely the Modified Mosaic (MM) and the mesoscopic-based models. The parameter estimation studies are then implemented by means of the developed direct models and experimental data provided by Hydro-Québec. All electrochemical and thermophysical parameters of the Li-ion batteries are simultaneously identified and applied for the prediction of the battery performance. Finally, a real-time technique resting on neural networks is used for the estimation of the Li-ion batteries intrinsic parameters.
APA, Harvard, Vancouver, ISO, and other styles
17

Castro, Laurent. "Matériaux d’électrode positive à base de phosphates pour accumulateurs Li-ion et phénomènes aux interfaces : apport de la spectroscopie photoélectronique à rayonnement X (XPS)." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3046/document.

Full text
Abstract:
Ce travail de thèse est centré sur l’étude de matériaux LiMPO4 (M=Fe, Mn, Co) et de leur évolution en cyclage (processus rédox et interfaces électrode / électrolyte) dans des accumulateurs Li-ion. Il a été mené essentiellement sur la base d’analyses en spectroscopie photoélectronique à rayonnement X (XPS) couplées à des tests électrochimiques. Une oxydation de surface du phosphate LiFePO4 a été mise en évidence lors d’une exposition à l’air de ce matériau avec la formation d’impuretés de surface type Fe2O3. Au plan structure électronique, l’analyse des bandes de valence des matériaux LiMPO4 (M=Fe, Mn, Co) a notamment permis, pour LiFePO4, la visualisation de l’électron spin down du niveau Fe 3d amenant la première preuve expérimentale de la configuration électronique particulière (3d↑)5(3d↓)1 de Fe2+dans ce matériau. Ce travail a également contribué à mieux comprendre l’influence de la température de fonctionnement ainsi que de la nature de l’électrode négative sur les mécanismes de vieillissement des accumulateurs Li-ion. Pour les accumulateurs LiFePO4 // Graphite, la comparaison d’interfaces solide/électrolyte distribuées spatialement a montré que le vieillissement se caractérisant par la perte de lithium actif pouvait être mis en parallèle avec une hétérogénéité de fonctionnement de l’électrode positive. Enfin, l’extension des travaux aux matériaux prometteurs d’électrode positive Li(FeMn)PO4 a révélé que le potentiel de travail de fin de charge plus élevé pour le phosphate mixte, comparativement à LiFePO4, résultait dans une réactivité accrue vis-à-vis de l’électrolyte dont les conséquences ont été analysées<br>This thesis is focused on the study of LiMPO4 (M = Fe, Mn, Co) materials and on their evolution upon cycling (redox process end electrodes / electrolyte interfaces) in lithium ion cells. It is based on X-Ray Photoelectron Spectroscopy (XPS) analyses coupled with electrochemical tests. During air exposure, a surface oxidation of phosphate LiFePO4 was observed that lead to the formation of surface impurities such as Fe2O3. Concerning electronic structure, the analysis of LiMPO4 (M=Fe, Mn, Co) materials valence spectra allowed for LiFePO4 the visualization of spin down Fe 3d electron which is the first experimental proof of the particular electronic configuration (3d↑)5(3d↓)1 of Fe2+ in this material. This work also allowed a better understanding of the effect of the working temperature as well as the nature of the negative electrode on Li-ion cells ageing mechanisms. For LiFePO4 // Graphite cell, the comparison of spatially distributed solid/electrolyte interfaces showed that ageing mechanisms, characterized by a loss of active lithium, could be associated with a heterogeneity of working of the positive electrode. In addition, the extension of these studies on new promising Li(FeMn)PO4 materials for positive electrode showed that higher working potential of mixed phosphate material compared to LiFePO4 material leads to a higher electrolyte reactivity which consequences were analysed
APA, Harvard, Vancouver, ISO, and other styles
18

Duffiet, Marie. "Compréhension des mécanismes structuraux limitant les performances de LiCoO2 à haut potentiel dans des batteries Li-ion et optimisations des matériaux par dopage Al." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0083.

Full text
Abstract:
L’oxyde lamellaire LiCoO2 (LCO) est un des matériaux d’électrode positive les plus communément utilisés dans les batteries Li-ion commerciales. Les efforts fournis pour contrôler la morphologie des particules de LCO ont grandement contribué à améliorer la compacité des électrodes, augmentant de fait la densité d’énergie des batteries. Celle-ci pourrait être encore améliorée grâce à l’augmentation du potentiel limite haut atteint lors de la charge de la batterie.Dans une première partie de ce manuscrit, plusieurs séries de poudres de LCO ont été synthétisées en effectuant un contrôle poussé de la taille des particules et de la stoechiométrie en Li (1.00 ≤ Li/Co ≤ 1.04) dans l’optique de caractériser leurs propriétés électrochimiques. Une étude par diffraction des rayons X (DRX) in situ a permis de suivre les changements structuraux observés lors de la désintercalation des ions Li dans deux matériaux LCO chargés à 5.2 V: les transitions de phase observées dans le cas de LCO dit « stoechiométrique » (Li/Co = 1.00) s’avèrent être plus nombreuses que précédemment reporté dans la littérature scientifique. La formation des phases H1 3 et O1 est confirmée, avec l’apparition supplémentaire d’une structure hybride entre ces deux phases. L’existence de défauts dans le matériau surlithié n’empêche pas la formation des phases H1 3 et O1, mais retarde leur apparition et modifie leurs paramètres structuraux.Dans une deuxième partie, le dopage aluminium à 4%at de ces poudres est envisagé. Plusieurs matériaux LiCo0.96Al0.04O2 (LCA) à stoechiométrie Li/(Co+Al) variable ont été synthétisés par voie solide afin d’obtenir un dopage le plus homogène possible. La caractérisation fine de ces matériaux par DRX et spectroscopie RMN du solide des noyaux 7Li, 27Al, 59Co permettent de démontrer qu’une répartition d’aluminium homogène est possible au sein de LiCo0.96Al0.04O2 grâce à une préparation en deux étapes : formation d’un LCA surlithié (Li/(Co+Al) &gt; 1.00) suivi d’un réajustement de la stoichiométrie en Li (Li/(Co+Al) = 1.00)<br>Lithium cobalt oxide (LCO) is widely used as positive electrode material for Li-ion batteries. In order to achieve higher energy density, significant improvement of LCO’s packing density has been recently done by controlling the particles morphology and electrode processing. However, the upper charge cutoff voltage of LCO has barely changed, and would be a way to further enhance the energy density.In this PhD, we focus first in a careful preparation of different LCO samples with an accurate control of the Li stoichiometry (1.00 ≤ Li/Co ≤ 1.04) and particles size to characterize their electrochemical properties. For some selected samples, we study the phase transition mechanisms involved at high voltage during Li de intercalation using in situ synchrotron X-ray diffraction (SXRD): more phase transitions than previously reported have been evidenced for the stoichiometric LCO (Li/Co = 1.00) charged up to 5.2 V. In particular, while the formation of the H1 3 and O1 phases is confirmed, intermediate intergrowth structures are also stabilized. The existence of defects in overlithiated LCO (Li/Co &gt; 1.00) does not hinder, but delay the formation of the high voltage of H1 3 and O1 phases, although structurally modified.In a second part, we focus on the material optimization though 4% Al-doping using a solid state route. Several compounds were prepared using various Li/(Al+Co) stoichiometries, with different particles sizes. Our efforts were dedicated to accurately characterize the Al doping homogeneity in the samples that affects the electrochemical properties. Using SXRD and 7Li, 27Al and 59Co MAS NMR as complementary tools, we show that homogeneous Al-doping in stoichiometric LCO can be achieved using Li-excess in a first step of the synthesis followed by a stoichiometry readjustment to Li/(Co+Al) = 1.00
APA, Harvard, Vancouver, ISO, and other styles
19

Inamoto, Jun-ichi, and Junichi Inamoto. "Electrochemical Characterization of Surface-State of Positive Thin-Film Electrodes in Lithium-Ion Batteries." Kyoto University, 2017. http://hdl.handle.net/2433/226784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hwang, Jinkwang. "A Study on Enhanced Electrode Performance of Li and Na Secondary Batteries by Ionic Liquid Electrolytes." Kyoto University, 2019. http://hdl.handle.net/2433/245327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Masoumi, Maryam [Verfasser], and Seifert H. [Akademischer Betreuer] J. "Thermochemical and electrochemical investigations of Li(Ni,Mn,Co)O$_2}$ (NMC) as positive electrode material for lithium-ion batteries / Maryam Masoumi ; Betreuer: H. J. Seifert." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1223027961/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Martin, Andréa Joris Quentin [Verfasser]. "Nano-sized Transition Metal Fluorides as Positive Electrode Materials for Alkali-Ion Batteries / Andréa Joris Quentin Martin." Berlin : Humboldt-Universität zu Berlin, 2020. http://d-nb.info/1220690406/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Foltová, Anežka. "Vliv tlaku použitého při výrobě elektrod na jejich výsledné vlastnosti." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-319628.

Full text
Abstract:
The aim of this work is to describe final properties of the electrodes based on the amount of pressure used during its production. In the theoretical part of this work, secondary electrochemical accumulators are described, with the focus on Li-ion accumulators. In the main part of this work, the production of Li-ion accumulators, with usage of different pressures during its production is described. In the final part of this work, the examination of these created cells for the classification of the optimal production pressure is described.
APA, Harvard, Vancouver, ISO, and other styles
24

Pajot, Ségolène. "Synthèse et caractérisation d’oxydes lamellaires riches en lithium et en manganèse obtenus sous la forme de gradients de concentration pour les batteries Li-ion." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0277/document.

Full text
Abstract:
Ce travail présente la mise en oeuvre d’un protocole de synthèse de gradients deconcentration dans les oxydes lamellaires riches en Li et en Mn. Le but a été dedévelopper la formation d’oxydes lamellaires riches en Li et Mn au coeur des agrégatssphériques du matériau actif et, en se rapprochant de la surface, d’enrichir lacomposition de l’oxyde lamellaire en Co et en Ni, afin de combiner une forte densitéd’énergie (apportée par le coeur du gradient) et une excellente stabilité thermique etstructurale (apportée par la surface du gradient). La synthèse a été réalisée en deuxétapes, une co-précipitation pour former un carbonate de métaux de transition suivied’une calcination à haute température pour obtenir le matériau actif lithié. L’influencede différents paramètres (pH, débit d’injection, taille du réacteur, composition, …) surla nature du carbonate à gradient de concentration ainsi formé a été étudiée. De lamême façon, le contrôle du ratio Li/M (ici M = Ni, Co, Mn), de la température et de ladurée de calcination s’est révélé important pour parvenir à maintenir le gradient deconcentration dans le matériau lithié. Le ratio Li/M est également déterminant pourcontrôler la nature des matériaux obtenus (lamellaire - spinelle ou lamellaire –lamellaire). Des caractérisations extrêmement pointues, et complexes à mettre enoeuvre, ont été menées afin d’obtenir des informations pertinentes sur la distributiondes phases au sein des agrégats (composition et structure), de la surface au coeur dugradient : différentes techniques de microscopie (EPMA, MEB-EDX et FIB-STEM) ontainsi été largement utilisées. Les matériaux les plus intéressants ont été étudiés enbatteries Lithium-ion avec une électrode de graphite à la négative, les performancesélectrochimiques et la stabilité thermique à l’état chargé de la batterie sont largementdiscutées par rapport à l’état de l’art et notamment au matériau de coeur riche en Li eten Mn<br>This work describes in details the implementation of the synthesis protocol for theformation of Li- and Mn-rich layered oxides with concentration-gradients. The purposewas to develop the synthesis of Li- and Mn-rich layered oxides in the bulk of sphericalaggregates of active material and, moving to the surface, to enrich the layered oxides’composition with Co and Ni, in order to combine a high energy density (provided bythe bulk) and an excellent thermal and structural stability (provided by the surface).The synthesis was performed in two steps, a coprecipitation to form a transition metalcarbonate followed by a calcination at high temperature to obtain the lithiated activematerial. The influence of several parameters (pH, feeding rate, size of the reactor,composition …) on the nature of the carbonates formed with concentration-gradientswas studied. Similarly, the control of the Li/M ratio (with M = Ni, Co, Mn) and of thetemperature and duration of calcination was revealed to be important to maintain theconcentration-gradient in the lithiated materials. The Li/M ratio is also the keyparameter to control the nature of the materials obtained (layered - spinel or layered -layered). Advanced characterizations, complex to be implemented, were performed inorder to obtain in-depth information on the distribution of phases within the aggregates(composition and structure), from the bulk to the surface: complementary microscopytechniques (EPMA, SEM-EDS and FIB-STEM) were widely used. The most interestingmaterials were studied in Lithium-ion batteries with graphite at the negative electrode,their electrochemical performance and the thermal stability in the charged state of thebattery were compared to the state of art, and particularly to the bulk Li and Mn-richlayered oxide
APA, Harvard, Vancouver, ISO, and other styles
25

Mortemard, de boisse Benoit. "Etudes structurales et électrochimiques des matériaux NaxMn1-yFeyO2 et NaNiO2 en tant qu’électrode positive de batteries Na-ion." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0370/document.

Full text
Abstract:
Ce travail présente les études électrochimiques et structurales menées sur deux systèmes : P2/O3-NaxMn1-yFeyO2 et O’3-NaxNiO2 utilisés en tant que matériaux d’électrode positive pour batteries Na-ion.Concernant le système P2/O3-NaxMn1-yFeyO2, l’étude par diffraction des rayons X menée in situ pendantla charge de batteries a montré de nombreuses transitions structurales. Que leur structure soit de type P2ou O3, les matériaux présentent une phase distordue pour les taux d’intercalation (x) les plus élevés etune phase très peu ordonnée pour les taux d’intercalation les moins élevés. Entre ces deux étatsd’intercalation, les phases de type P2 présentent moins de transitions que les phases de type O3. Celaentraine de meilleures propriétés électrochimiques pour les phases de type P2 (meilleure capacité endécharge, meilleure rétention de capacité…). Les spectroscopies d’absorption des rayons X et Mössbauerdu 57Fe ont montré que les couples redox Mn4+/Mn3+ et Fe4+/Fe3+ sont impliqués lors du cyclage, à bas ethaut potentiel, respectivement.Concernant O’3-NaNiO2, la diffraction des rayons-X menée in situ pendant la charge de batteriesO’3-NaNiO2//Na a montré de nombreuses transitions structurales O’3 ↔ P’3 résultant du glissement desfeuillets MO2. Ces transitions s’accompagnent de mises en ordre Na+ - lacunes dans le matériau. La tailledes grains a montré avoir un intérêt majeur puisqu’elle influe sur le nombre de phases présentessimultanément dans le matériau. Lorsque la batterie est déchargée, la phase limitante Na≈0.8NiO2 estobservée et empêche le retour à O’3-NaNiO2<br>This work concerns the electrochemical and structural studies carried out on two systems used aspositive electrode materials for Na-ion batteries: P2/O3-NaxMn1-yFeyO2 and O’3-NaxNiO2. Concerning theP2/O3-NaxMn1-yFeyO2 systems, in situ X-ray diffraction carried out during the charge of the batteriesshowed that both materials undergo several structural transitions. Both the P2 and O3 phases show adistorted phase for the higher intercalation rates (x) and a poorly ordered phase for the lower ones.Between these two states, P2-based materials exhibit less structural transitions than the O3-based ones.This is correlated to the better electrochemical properties the P2-based materials exhibit (better dischargecapacity, better capacity retention…). X-ray absorption and 57Fe Mössbauer spectroscopies showed thatthe Mn4+/Mn3+ and Fe4+/Fe3+ redox couples are active upon cycling, respectively at low and high voltage.Concerning O’3-NaNiO2, in situ X-ray diffraction carried out during the charge of O’3-NaNiO2//Nabatteries showed several structural transition between O’3 and P’3 structures, resulting from slab glidings.These transitions are accompanied by Na+ - vacancies ordering within the “NaO6” slabs. Upon discharge,the material does not come back to its initial state and, instead, the Na≈0.8NiO2 phase represents themaximum intercalated state. The occurrence of this limiting phase prevents O’3-NaNiO2 to be consideredas an interesting material for real Na-ion applications
APA, Harvard, Vancouver, ISO, and other styles
26

Nejedlý, Libor. "Elektrody pro lithno-iontové baterie na bázi kobaltitanu lithného." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-218937.

Full text
Abstract:
This master´s thesis deals with electrodes for lithium-ions batteries based on LiCoO2. The first part of the project is devoted to the characteristics of Li-ion batteries, electrochemical reactions and characteristics of electrode materials. The next part describes an experiment that deals with the effects of NA doping on performance of layered materials for lithium secondary batteries. The materials were measured by cyclic voltammetry, impedance spectroscopy and galvanostatic cycling.
APA, Harvard, Vancouver, ISO, and other styles
27

Gaulupeau, Bertrand. "Apport de la spectrométrie de masse en temps réel à l’étude de la dégradation thermique d’électrolytes de batteries lithium-ion au contact de matériaux d’électrode positive." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0120.

Full text
Abstract:
L’utilisation des batteries lithium-ion est dorénavant une technologie de choix pour le secteur automobile notamment pour son utilisation dans les véhicules hybrides et électriques, du fait d’une importante densité d’énergie disponible ainsi que d’une forte densité de puissance nécessaire à la traction d’un véhicule. Cependant, à cause de l’importante énergie embarquée, la sécurité de tels dispositifs doit être renforcée. Il a été rapporté qu’en conditions abusives de température, l’effet cumulé de la dégradation d’un électrolyte utilisant le sel LiPF6 et l’effet catalytique de matériaux d’électrode positive mène à la formation d’espèces organo-fluorées telles que le 2-fluoroéthanol. Ce projet de thèse vise alors à approfondir la compréhension du rôle des matériaux d’électrode positive vis-à-vis de la dégradation d’électrolyte à base de LiPF6, notamment en étudiant la nature des gaz produits en conditions abusives de température. Pour mener à bien ce projet, un dispositif permettant une analyse in situ des gaz formés a été développé. Le rôle de l’eau sur la formation des espèces organo-fluorées fait également l’objet d’une attention toute particulière. L’influence de plusieurs matériaux d’électrode positive sur la nature des produits de dégradation de l’électrolyte a pu être mise en évidence. Ce travail a ainsi permis d’évaluer l’influence de différents paramètres sur la dégradation thermique de l’électrolyte en vue de prédire le choix des différents constituants d’une batterie lithium-ion<br>The use of lithium-ion batteries is now a technology of choice for the automotive sector especially for its use in hybrid and electric vehicles, due to a high density of energy available as well as a high power density necessary to the traction of a vehicle. However, due to the high on-board energy, the safety of such devices must be enhanced. It has been reported that under abusive thermal conditions the cumulative effect of degradation of a LiPF6-based electrolyte and the catalytic effect of positive electrode materials leads to the formation of fluoro-organic species such as 2-fluoroethanol. This thesis aims to deepen the understanding of the role of positive electrode materials towards the degradation of LiPF6-based electrolyte, in particular by studying the nature of the gases produced under abusive thermal conditions. To carry out this project, a device allowing an in situ analysis of the formed gases has been developed. The role of water on the formation of fluoro-organic species is also the subject of a particular attention. The influence of several positive electrode materials on the nature of the degradation products of the electrolyte has been demonstrated. This work allowed to evaluate the influence of different parameters on the thermal degradation of the electrolyte in order to predict the choice of the various constituents of a lithium-ion battery
APA, Harvard, Vancouver, ISO, and other styles
28

Cadiou, François. "Étude de l'impact de la microstructure sur les propriétés effectives électriques des batteries lithium-ion." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI108.

Full text
Abstract:
Cette étude porte sur la compréhension du lien existant entre l’architecture microstructurelle et les propriétés effectives de conductivité dans les électrodes des batteries Li-ion. Les batteries Li-ion sont très intéressantes pour des domaines tels que le transport électrique. En effet, elles présentent une grande densité d’énergie et de puissance ce qui en fait de bons substituts pour les moteurs thermiques. Cependant, même si elles sont maintenant assez largement utilisées dans beaucoup de domaines, il y a toujours besoin d’en optimiser les performances. Ceci passe par une meilleure compréhension de l’impact de la microstructure sur les propriétés effectives pour réduire l’écart entre théorie et pratique. L’attention est portée ici sur les électrodes positives des batteries lithium-ion. Les caractéristiques tridimensionnelles telles que la percolation des phases, leur tortuosité ou encore leurs dimensions caractéristiques ont un fort impact sur les propriétés à l'échelle macroscopique. Leur étude nécessite l’utilisation de techniques d’imagerie 3D comme la tomographie aux rayons X et la tomographie sériée par faisceau d’ions focalisés et MEB (FIB/SEM) pour obtenir des données quantitatives et en interpréter les propriétés de transport de charge. Ces volumes sont alors traités (segmentation et analyses morphologiques) et utilisés comme base pour des simulations numériques. La méthode FFT (Fast Fourrier Transform) avec opérateur de Green « discret » est choisie. Ces simulations permettent, soit de remonter aux propriétés de conduction électrique des phases, à partir de la mesure de la conductivité de l’électrode, par méthode inverse, soit de prédire la conductivité effective de l’électrode, en utilisant des propriétés mesurées expérimentalement sur les phases prises séparément. Les microstructures 3D numériques peuvent également être altérées afin de prédire l’impact, sur ses propriétés effectives, de changements de composition dans la formulation de l’électrode. De nouveaux outils consacrés à la meilleure compréhension de la relation entre microstructure, propriétés effectives et performance des batteries lithium-ion sont développés<br>Li-ion batteries are interesting for applications such as electric vehicles. They have indeed a high energy and power density, which makes them good substitutes for internal combustion engines. However, even if they are now quite widely used in many fields, there is still a need to optimize their performance. This requires a better understanding of the impact of the electrodes microstructure on their effective properties to narrow the gap between ideal and practical performance. Three-dimensional characteristics such as the carbon additive percolation or the tortuosity of the porosity have a strong impact on the electrode charge transport properties and power performance. The use of 3D imaging techniques such as X-ray tomography and serial focused ion beam and SEM tomography (FIB/SEM) is very powerful to quantify the electrode microstructures and interpret their charge transport properties. Furthermore, by processing the reconstructed volumes, one can use them as a basis for numerical simulations. We have chosen the FFT (Fast Fourrier Transform) method with "discrete" Green operator for numerical computations. These simulations can either be used to back calculate the phase (active material or conducting additive/binder) conduction properties from macroscopic electrical measurements by inverse method, or to predict the electrode effective conductivity from the phase conductivities. The 3D numerical microstructures obtained can also be modified in order to predict the influence of compositional changes in the electrode formulation on its properties. This study sets new tools to understand better the relationships between microstructure, effective electrical properties and the performance of Li-ion battery composite electrodes
APA, Harvard, Vancouver, ISO, and other styles
29

Krištof, Petr. "Kladné elektrody pro lithno-iontové akumulátory na bázi LiCoO2." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220138.

Full text
Abstract:
This diploma thesis deals with materials used by production ofcathodes of Lithium-ion batteries. Primary this thesis deals with LiCoO2material and its subsidizing of alkali metals. The first part deals with the charakteristic of Lithium-ion batteries, used materials, possibilities of doping and charging. The practical part concentrates on production of active substance of cathode and doping this substance by sodium and potassium. The methods of evaluation were used galvanostaticcycling and x-ray analysis (XRD).
APA, Harvard, Vancouver, ISO, and other styles
30

Oltean, Alina. "Organic Negative Electrode Materials For Li-ion and Na-ion Batteries." Licentiate thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Li, Jun-Tao. "Investigation of electrode/Electrolyte interfacial reactions for Li Ion batteries." Paris 6, 2010. http://www.theses.fr/2010PA066301.

Full text
Abstract:
Les performances et la sécurité des batteries Li-ions dépendent fortement de la structure et des processus se produisant aux interfaces entre électrodes et électrolyte non aqueux. En comparaison des efforts dédiés à la synthèse et aux performances de nouveaux matériaux d’électrode, les processus interfaciaux se produisant sur ces matériaux doit être étudiés de façon approfondie. L’objet de ce mémoire a été de développer l’application des techniques analytiques FTIRS, EQCM, XPS et ToF-SIMS à l’étude des réactions interfaciales sur des anodes en couche mince de Sn, d’alliage Sn-Co, de graphite et de Cr2O3.
APA, Harvard, Vancouver, ISO, and other styles
32

Loaiza, Rodriguez Laura Cristina. "New negative electrode materials for Li-, Na- and K-ion batteries." Thesis, Amiens, 2019. http://www.theses.fr/2019AMIE0059.

Full text
Abstract:
De nos jours, les batteries jouent un rôle clé dans presque toutes les technologies qui entourent le genre humain. Afin de répondre à la demande croissante, la conception d'appareils plus efficaces avec une densité d'énergie et une durée de vie plus élevées est cruciale. Dans ce contexte, le silicium et le germanium apparaissent comme des candidats prometteurs pour les matériaux d'électrodes en raison de leurs capacités théoriques élevées. Bien avant une mise en œuvre de ces matériaux au niveau industriel, plusieurs défis doivent être relevés. Les capacités élevées délivrées se font au détriment d'une expansion volumique lors de l'insertion des ions lithium par exemple. Ces changements de volume dans les particules de Si et de Ge entraînent la pulvérisation des particules, le détachement du collecteur de courant, la formation excessive et incontrôlée de la couche de SEI et une chute de la capacité. Différentes stratégies ont été rapportées dans la littérature pour surmonter les défis susmentionnés. Dans ce travail, deux approches ont été considérées, d'une part l'étude des alliages Si1-xGex et d'autre part l'étude de composés lamellaires. Dans le premier cas, la formation de la solution solide Si1-xGex améliore la rétention de capacité et la conductivité électronique. Dans le second, les matériaux lamellaires Siloxene et germanane, dérivés des phases de Zintl CaSi2 et CaGe2, amortissent les changements de volume et améliorent la cinétique du système. Une étude fondamentale des mécanismes électrochimiques a été réalisée pour comprendre les processus mis en jeu dans ces deux approches<br>Nowadays, the batteries play a key role in almost all of the technologies that surround human kind. In order to satisfy the increasing demand, the design of more efficient devices with higher energy density and cycle life is crucial. In this context, silicon and germanium appear as promising candidates for electrode materials due to their high theoretical capacities. Although, prior to the implementation of these materials at an industrial level, several challenges must be addressed. The high delivered capacities come at the expense of a volume expansion and contraction upon alkali insertion and deinsertion. These volume changes in the Si and Ge particles, lead to particle pulverization, detachment from the current collector, excessive and uncontrolled formation of SEI layer and eventual capacity fade. Different strategies have been reported in the literature to overcome the aforementioned challenges. In this work, two approaches are considered, the study of the Si1-xGex alloys and the use of a layered morphology. In the first one, the formation of the Si1-xGex solid solution improves the capacity retention and the electronic conductivity. In the second one, the layered Siloxene and germanane, derived from the CaSi2 and CaGe2 Zintl phases buffers the volume changes and improves the kinetics of the system. On the other hand, the fundamental study of their electrochemical mechanism is crucial to understand the reasons behind an improvement and a failure. Thus, in this work we have studied the electrochemical lithiation mechanism of the Si- and Ge- based materials in an attempt to identify the different phases that are formed during cycling
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Chunhui. "Advanced Electrode Materials by Electrostatic Spray Deposition for Li-ion Batteries." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2532.

Full text
Abstract:
Recent development in portable electronics and electric vehicles have increased the demand for high performance lithium ion batteries. However, it is still challenging to produce high energy and high power lithium ion batteries. The major objective of this research is to fabricate advanced electrode materials with enhanced power density and energy density. Porous Li4Ti5O12 (LTO) and its nanocomposites (with Si and reduced graphene oxide (rGO)) synthesized by electrostatic spray deposition (ESD) technique were mainly studied and promising electrochemical performance was achieved. In chapter 3, porous LTO thin film electrode was synthesized by ESD to solve the low energy density and low power density issues by providing good ionic and electronic conductivities. Electrochemical test results showed that it had a large specific capacity of 357 mAh g-1 at 0.15 A g-1, which was even higher than its theoretical capacity. It also exhibited very high rate capability of 98 mAh g-1 at 6 A g-1. The improved electrochemical performance was due to the advantage of ESD generated porous structures. In order to further enhance the power density of LTO, ESD derived LTO/rGO composite electrodes were studied in chapter 4. In chapter 5, high energy density component Si was introduced viii into LTO composite. The synergistic effect between commercial LTO and Si powder was studied. Then, ESD derived LTO/Si/rGO composite was prepared and evaluated. At 0.15 A g-1, a stable capacity of 624 mAh g-1 was observed, which was much higher than the capacities of LTO and LTO/rGO electrodes. In addition, effect of activation process on electrochemical performance of carbon nanofibers (ACNFs) and feasibility of ion intercalation into 2D MMT montmorillonite clay (MMT) were studied and discussed in chapter 6. In summary, we have successfully synthesized various LTO based electrodes by ESD. Both high energy and high power density were achieved as compared to commercial LTO electrode. Through electrochemical characterization and charge storage distribution analysis, origins of the high rate capability were proposed. This work demonstrates ESD as a powerful tool for fabricating high performance porous structures and nanocomposite electrode materials.
APA, Harvard, Vancouver, ISO, and other styles
34

Gao, Yifan. "Chemo-mechanics of alloy-based electrode materials for Li-ion batteries." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49027.

Full text
Abstract:
Lithium alloys with metallic or semi-metallic elements are attractive candidate materials for the next-generation rechargeable Li-ion battery anodes, thanks to their large specific and volumetric capacities. The key challenge, however, has been the large volume changes, and the associated stress buildup and failure during cycling. The chemo-mechanics of alloy-based electrode materials entail interactions among diffusion, chemical reactions, plastic flow, and material property evolutions. In this study, a continuum theory of two-way coupling between diffusion and deformation is formulated and numerically implemented. Analyses based on this framework reveal three major conclusions. First, the stress-to-diffusion coupling in Li/Si is much stronger than what has been known in other electrode materials. Practically, since the beneficial effect of stress-enhanced diffusion is more pronounced at intermediate or higher concentrations, lower charging rates should be used during the initial stages of charging. Second, when plastic deformation and lithiation-induced softening take place, the effect of stress-enhanced diffusion is neutralized. Because the mechanical driving forces tend to retard diffusion when constraints are strong, even in terms of operational charging rate alone, Li/Si nano-particles are superior to Li/Si thin films or bulk materials. Third, the diffusion of the host atoms can lead to significant stress relaxation even when the stress levels are below the yield threshold of the material, a beneficial effect that can be leveraged to reduce stresses because the host diffusivity in Li/Si can be non-negligible at higher Li concentrations. A theory of coupled chemo-mechanical fracture driving forces is formulated in order to capture the effect of deformation-diffusion coupling and lithiation-induced softening on fracture. It is shown that under tensile loading, Li accumulates in front of crack tips, leading to an anti-shielding effect on the energy release rate. For a pre-cracked Li/Si thin-film electrode, it is found that the driving force for fracture is significantly lower when the electrode is operated at higher Li concentrations -- a result of more effective stress relaxation via global yielding. The results indicate that operation at higher concentrations is an effective means to minimize failure of thin-film Li/Si alloy electrodes.
APA, Harvard, Vancouver, ISO, and other styles
35

Bianchini, Matteo. "In situ diffraction studies of electrode materials for Li-ion and Na-ion batteries." Thesis, Amiens, 2015. http://www.theses.fr/2015AMIE0022/document.

Full text
Abstract:
Ce travail vise à étudier les matériaux d'électrodes pour batteries Li-ion et Na-ion lors qu’ils fonctionnent à l'intérieur des batteries. Afin de comprendre l'évolution structurelle des matériaux alors que les ions Li+ ou Na+ sont insérés/extraits de leur cadre, on utilise principalement la diffraction, exploitant neutrons, rayons X et le rayonnement synchrotron (SR). Nous avons adopté une approche combinée des mesures ex situ, in situ et operando. Au début, nous avons conçu une cellule électrochimique pour mesures in situ de diffraction de neutrons sur poudre (NPD), avec un alliage en (Ti,Zr) "transparent aux neutrons"; cette cellule s'est ajoutée à l’ensemble de nos outils pour effectuer des études de type operando. Nous avons démontré leur faisabilité en utilisant LiFePO4, montrant de bonnes performances électrochimiques et des données NPD de haute qualité pour affinements structurales Rietveld. Ensuite, nous avons réalisé des études des spinelles Li1+xMn2-xO4 (x=0,0.05,0.10) et LiNi0.4Mn1.6O4: pendant le cyclage, nous avons rapporté des évolutions structurelles, des diagrammes de phases et paramètres subtils tels que le comportement du Li, ou les facteurs de température. L’utilisation complémentaire du SR a clarifié la nature de la phase ordonnée Li0.5Mn2O4. Nos études combinées ont concernées d’autres matériaux d'électrodes prometteurs: LiVPO4O et Na3V2(PO4)2F3. Les 2 révèle des comportements complexes pendant la (de)intercalation du Li+/Na+. Les données de haute qualité ont permis des analyses quantitatives, dévoilant la structure d'un grand nombre des phases ordonnées et menant à la compréhension du comportement des cations dans ces matériaux<br>This work aims at studying electrode materials for Li-ion and Na-ion batteries as they function inside batteries. Diffraction is the mainly used technique, exploiting neutrons, X-Rays and synchrotron radiation (SR), to obtain insights on the structural evolution of such materials as Li+ or Na+ are inserted/extracted from their framework. We adopted a combined approach of ex situ, in situ and operando measurements to extract a maximum of information from our studies. At first, we designed an electrochemical cell for in situ neutron powder diffraction (NPD) measurements, featuring a “neutron-transparent” (Ti,Zr) alloy; this cell, joined to others previously developed in our group, gave us a complete set of tools to perform our studies. We demonstrated the feasibility of operando NPD using LiFePO4, showing good electrochemical performances and high-quality NPD patterns for Rietveld structural refinements. Then we carried out detailed studies of spinels Li1+xMn2-xO4 (x = 0, 0.05, 0.10) and LiNi0.4Mn1.6O4: we reported phase diagrams, structural evolutions and subtle parameters as lithium's behavior inside the spinel framework, or thermal displacement parameters, directly upon cycling. Complementary use of SR shed light on other features, as the nature of the ordered phase Li0.5Mn2O4. Our combined studies concerned other promising electrode materials: LiVPO4O and Na3V2(PO¬4)2F3. Both revealed complex behaviors upon Li+/Na+
APA, Harvard, Vancouver, ISO, and other styles
36

Wood, Stephen. "Computer modelling studies of new electrode materials for rechargeable batteries." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687357.

Full text
Abstract:
Developing a sustainable energy infrastructure for the 21st century requires the large scale development of renewable energy resources. Fully exploiting these inherently intermittent supplies will require advanced energy storage technologies, with rechargeable Li-ion and Na-ion batteries considered highly promising for both vehicle electrification and grid storage applications. However, the performance required of battery materials has not been achieved, and significant improvements are needed. Modern computational techniques allow the elucidation of structure-property relationships at the atomic level and are valuable tools in providing fundamental insights into novel materials. Therefore, in this thesis a combination of atomistic simulation and ab initio density functional theory (DFT) techniques have been used to study a number of potential battery cathode materials. Firstly, Na2FePO4F and NaFePO4 are interesting materials that have been reported recently as attractive positive electrodes for Na-ion batteries. Here, we report their Na-ion conduction behaviour and intrinsic defect properties using atomistic simulation methods. Na+ ion conduction in Na2FePO4F is predicted to be two-dimensional (2D) in the interlayer plane. Na ion migration in NaFePO4 is restricted to the [010] direction along a curved trajectory, leading to quasi-1D Na+ diffusion. Furthermore, Na/Fe antisite defects are predicted to have a lower formation energy in NaFePO4 than Na2FePO4F. The higher probability of tunnel occupation with a relatively immobile Fe2+ cation - along with a greater volume change on redox cycling - contributes to the poor electrochemical performance of NaFePO4. Secondly, work on the Na2FePO4F system is extended to include investigation of the surface structures and energetics. The equilibrium morphology is found to be essentially octagonal, compressed slightly along the [010] direction, and is dominated by the (010), (021), (122) and (110) surfaces. The calculated growth morphology is a more ``rod-like'' nanoparticle, with the (021), (023), (110) and (112) planes predominant. The (010) surface lies parallel to the Na layers in the ac plane and is unlikely to facilitate Na+ intercalation. As such, its prominence in the equilibrium morphology, and absence from the growth morphology, suggests nanoparticles synthesised in a kinetically limited regime should provide higher rate performance than those synthesised in close to equilibrium conditions. Surface redox potentials for Na2FePO4F derived using DFT vary between 2.76 - 3.37 V, in comparison to a calculated bulk cell voltage of 2.91 V. Most significantly, the lowest energy potentials are found for the (130) and (001) planes suggesting that upon charging Na+ will first be extracted from these surfaces, and inserted lastly upon discharging. Thirdly, the mixed phosphates Na4M3(PO4)2P2O7 (M=Fe, Mn, Co, Ni) are explored as a fascinating new class of materials reported to be attractive Na-ion cathodes, displaying low volume changes upon cycling indicative of long lifetime operation. Key issues surrounding intrinsic defects, Na-ion migration mechanisms and voltage trends have been investigated through a combination of atomistic energy minimisation, molecular dynamics and DFT simulations. The MD results suggest Na+ diffusion extends across a 3D network of migration pathways with an activation barrier of 0.20-0.24 eV, and diffusion coefficients (DNa) of 10-10-10-11 cm2s-1 at 325 K, suggesting high rate capability. The cell voltage trends, explored using DFT methods, indicate that doping the Fe-based cathode with Ni can significantly increase the voltage, and hence energy density. Finally, DFT simulations of K+-stabilised α-MnO2 have been combined with aberration corrected-STEM techniques to study the surface energetics, particle morphologies and growth mechanism. α-K0.25MnO2 grown through a hydrothermal synthesis method is found to produce primary nanowires with preferential growth along the [001] direction. Primary nanowires attach through a shared (110) interface to form larger secondary nanowires. This is in agreement with DFT simulations with the {100}, {110} and {211} surfaces displaying the lowest surface energies. The ranking of surface energies is driven by Mn coordination environments and surface relaxation. The calculated equilibrium morphology of α-K0.25MnO2 is consistent with the observed primary nanowires from high resolution electron microscopy images.
APA, Harvard, Vancouver, ISO, and other styles
37

Berti, Nicola. "MgH2-TiH2 hydrides as negative electrodesof Li-ion batteries." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1029/document.

Full text
Abstract:
Les batteries lithium-ion sont aujourd’hui très utilisées pour alimenter l’électronique portable telle que les ordinateurs, les smartphones et les caméras. Cependant, de nouvelles applications telles que les véhicules électriques et les systèmes stationnaires de stockage d'énergie nécessitent des batteries à performances améliorées. En particulier, de nouveaux matériaux d'électrode avec des densités d'énergie plus élevées sont requis. Les hydrures de MgH2 et TiH2 et leurs mélanges possèdent de très fortes capacités électrochimiques (&gt;1 Ah/g). Ils ont été étudiés comme matériaux d’électrode négative dans les batteries Li-ion. La réaction de conversion de ces hydrures avec du lithium et les changements structuraux induits ont été étudiés en détails pour mieux comprendre les mécanismes réactionnels et leur réversibilité. Les propriétés électrochimiques de couches minces de MgH2 et des poudres composites de MgH2+TiH2 ont été étudiées en utilisant à la fois des électrolytes organiques liquides et un électrolyte solide LiBH4. La capacité réversible et la tenue au cyclage dépendent fortement du rapport molaire entre les deux hydrures et des conditions de cyclage. Le transport de masse et la densité d’interfaces à l'intérieur de l'électrode sont identifiés comme les principaux facteurs affectant la réversibilité de la réaction de conversion<br>Today, lithium-ion batteries are widely used as power supplies in portable electronics such as laptops, smartphones and cameras. However, new applications such as full electric vehicles and energy storage stationary systems require enhanced battery performances. In particular, novel electrode materials with higher energy density are needed.MgH2 and TiH2 hydrides and mixtures of them have high electrochemical capacity (&gt; 1 Ah/g). They have been studied as negative electrode materials in Li-ion batteries. The conversion reaction of lithium with these hydrides and the related microstructural changes have been deeply investigated to gain a better understanding of reaction mechanisms and their reversibility. The electrochemical properties of MgH2 thin films and MgH2+TiH2 composite powders have been evaluated using both liquid organic and solid (LiBH4) electrolytes. Reversible capacity and cycle-life are found to strongly depend on both molar ratio between the hydrides and cycling conditions. Mass transport and density of interfaces within the electrode are identified as the main factors affecting the reversibility of the conversion reaction
APA, Harvard, Vancouver, ISO, and other styles
38

Palmer, Michael. "High voltage positive electrodes for high energy lithium-ion batteries." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/398001/.

Full text
Abstract:
Lithium-ion high voltage cathode materials are discussed within this thesis, with LiCoPO4 as a composite electrode evaluated for use as the active compound within lithium half-cells. A comprehensive literature review on lithium containing cathode materials with a focus on high voltage materials is provided. The majority of the materials within this work were synthesised using solvothermal techniques, which were characterised through XRD and SEM. Composite type electrodes were prepared through mainly using PTFE as the binder material, and different electrolytes were also investigated. Composite electrodes were electrochemically evulated with competitive capacites obtained compared to the literature. The performance of the LiCoPO4 composite electrodes was found to be significantly different and attributed to the use of different synthesis solvents and heating conditions used for synthesis. The rate performance and electrochemical cycling was found to depend highly on the surface area and particle size of the composite electrode. XANES and in-situ XRD was performed at Diamond Light Source (UK synchrotron), where the LiCoPO4 charge profile was fully characterised. It was found that LiCoPO4 undergoes transient lattice parameter changes during charging, and that phase recovery during any relaxations was observed.
APA, Harvard, Vancouver, ISO, and other styles
39

Dridi, Zrelli Yosra. "Électrochimie et spectroscopie Raman de matériaux d'électrode positive pour batteries Li-ion." Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00807008.

Full text
Abstract:
Dans ce travail de thèse, la microspectrométrie Raman a été mise à profit pour décrire les changements structuraux induits par la réaction électrochimique d'insertion/désinsertion des ions lithium dans des composés de structure lamellaire LiCoO2 et cubique LiMn2O4 et LiNi0.4Mn1.6O4, utilisés comme électrodes positives dans les batteries Li-ion. L'étude du composé d'électrode LiCoO2 pendant le processus de charge permet de mettre en évidence une région biphasée où la phase initiale coexiste avec une nouvelle phase hexagonale caractérisée par une expansion du paramètre inter-feuillets de l'ordre de 3% et un affaiblissement de la liaison Co-O dans le plan des feuillets. Dans le cas de LiMn2O4, une nouvelle attribution du spectre Raman a pu être proposée. Pendant la charge à 4V, un mécanisme à trois phases (phase initiale LiMn2O4, phase intermédiaire, phase pauvre en lithium) est décrit par spectroscopie Raman alors que la diffraction des RX ne permet pas d'observer la phase intermédiaire dans nos conditions de mesure. L'étude de l'insertion électrochimique du lithium dans LiMn2O4 (région 3V), a permis de montrer pour la première fois par spectroscopie Raman la formation progressive d'une phase tétragonale de composition Li2Mn2O4 qui coexiste avec la phase cubique initiale et qui est pure en fin de décharge. La réversibilité de cette transition structurale a également été démontrée. Dans le cas du composé substitué au nickel, LiNi0.4Mn1.6O4, une attribution complète du spectre Raman est proposée pour la première fois. L'étude par diffraction des RX du matériau en fonction de l'état de charge et de décharge met en évidence une conservation de la structure cubique avec des variations modérées de paramètres de maille. Le spectre Raman présente quant à lui des variations très significatives qui rendent compte de la présence dans des proportions différentes des espèces redox impliquées dans le fonctionnement électrochimique (Mn4+, Mn3+, Ni2+, Ni3+, Ni4+). Une analyse spectrale par décompositions de bandes permet d'identifier et de quantifier les proportions relatives des différents couples redox du nickel. Une réversibilité complète de la signature Raman est observée en décharge. Une application concrète et originale de la spectroscopie Raman a consisté à étudier le mécanisme d'autodécharge qui est observé pour le matériau LiNi0.4Mn1.6O4 complètement chargé. L'évolution des spectres Raman permet de mettre en évidence une réduction rapide et quantitative des ions Ni4+ pendant les premières heures de séjour dans l'électrolyte, puis un processus plus lent de réduction des ions Ni3+. Enfin, pour la première fois également, l'insertion du lithium dans le composé LiNi0.4Mn1.6O4 a été explorée par microspectrométrie Raman et a permis notamment d'identifier l'empreinte Raman de la phase la plus réduite de symétrie tétragonale Li2Ni0.4Mn1.6O4. L'originalité de ce travail a été d'apporter un grand nombre de données Raman expérimentales sur des matériaux d'électrode performants fonctionnant à 4V. De nouvelles attributions ont pu être proposées pour les composés initiaux, et des données vibrationnelles inédites ont été fournies sur les composés formés en charge et en décharge. Dans certains cas, ces données ont permis, sur la base d'une analyse détaillée des spectres Raman par décompositions de bandes, de proposer un raisonnement quantitatif sur l'existence de phases ou d'espèces redox en mélange. Il conviendrait bien sûr de corroborer ces nouvelles données et attributions par des calculs théoriques ab initio capables de simuler les fréquences et les intensités des modes vibrationnels dans les structures hôtes et lithiées
APA, Harvard, Vancouver, ISO, and other styles
40

Dridi, Zrelli Yosra. "Électrochimie et spectroscopie Raman de matériaux d’électrode positive pour batteries Li-ion." Thesis, Paris Est, 2012. http://www.theses.fr/2012PEST1126/document.

Full text
Abstract:
Dans ce travail de thèse, la microspectrométrie Raman a été mise à profit pour décrire les changements structuraux induits par la réaction électrochimique d'insertion/désinsertion des ions lithium dans des composés de structure lamellaire LiCoO2 et cubique LiMn2O4 et LiNi0.4Mn1.6O4, utilisés comme électrodes positives dans les batteries Li-ion. L'étude du composé d'électrode LiCoO2 pendant le processus de charge permet de mettre en évidence une région biphasée où la phase initiale coexiste avec une nouvelle phase hexagonale caractérisée par une expansion du paramètre inter-feuillets de l'ordre de 3% et un affaiblissement de la liaison Co-O dans le plan des feuillets. Dans le cas de LiMn2O4, une nouvelle attribution du spectre Raman a pu être proposée. Pendant la charge à 4V, un mécanisme à trois phases (phase initiale LiMn2O4, phase intermédiaire, phase pauvre en lithium) est décrit par spectroscopie Raman alors que la diffraction des RX ne permet pas d'observer la phase intermédiaire dans nos conditions de mesure. L'étude de l'insertion électrochimique du lithium dans LiMn2O4 (région 3V), a permis de montrer pour la première fois par spectroscopie Raman la formation progressive d'une phase tétragonale de composition Li2Mn2O4 qui coexiste avec la phase cubique initiale et qui est pure en fin de décharge. La réversibilité de cette transition structurale a également été démontrée. Dans le cas du composé substitué au nickel, LiNi0.4Mn1.6O4, une attribution complète du spectre Raman est proposée pour la première fois. L'étude par diffraction des RX du matériau en fonction de l'état de charge et de décharge met en évidence une conservation de la structure cubique avec des variations modérées de paramètres de maille. Le spectre Raman présente quant à lui des variations très significatives qui rendent compte de la présence dans des proportions différentes des espèces redox impliquées dans le fonctionnement électrochimique (Mn4+, Mn3+, Ni2+, Ni3+, Ni4+). Une analyse spectrale par décompositions de bandes permet d'identifier et de quantifier les proportions relatives des différents couples redox du nickel. Une réversibilité complète de la signature Raman est observée en décharge. Une application concrète et originale de la spectroscopie Raman a consisté à étudier le mécanisme d'autodécharge qui est observé pour le matériau LiNi0.4Mn1.6O4 complètement chargé. L'évolution des spectres Raman permet de mettre en évidence une réduction rapide et quantitative des ions Ni4+ pendant les premières heures de séjour dans l'électrolyte, puis un processus plus lent de réduction des ions Ni3+. Enfin, pour la première fois également, l'insertion du lithium dans le composé LiNi0.4Mn1.6O4 a été explorée par microspectrométrie Raman et a permis notamment d'identifier l'empreinte Raman de la phase la plus réduite de symétrie tétragonale Li2Ni0.4Mn1.6O4. L'originalité de ce travail a été d'apporter un grand nombre de données Raman expérimentales sur des matériaux d'électrode performants fonctionnant à 4V. De nouvelles attributions ont pu être proposées pour les composés initiaux, et des données vibrationnelles inédites ont été fournies sur les composés formés en charge et en décharge. Dans certains cas, ces données ont permis, sur la base d'une analyse détaillée des spectres Raman par décompositions de bandes, de proposer un raisonnement quantitatif sur l'existence de phases ou d'espèces redox en mélange. Il conviendrait bien sûr de corroborer ces nouvelles données et attributions par des calculs théoriques ab initio capables de simuler les fréquences et les intensités des modes vibrationnels dans les structures hôtes et lithiées<br>In this work, we show the relevance of Raman spectroscopy as a useful technique to investigate the local changes induced by the electrochemical reaction of intercalation/deintercalation of lithium in positive electrode materials for rechargeable lithium ion batteries.Raman investigations concern three types of high voltage cathode materials (4-5Volts) which are layered LiCoO2 and cubic LiMn2O4 and LiNi0.4Mn1.6O4.During electrochemical deintercalation of LiCoO2, we show the existence of a two phase region where the initial hexagonal phase coexist with a second hexagonal phase with a 3% expansion of the lattice parameter indicating a weakening of the Co-O bond in the Li1-xCoO2 material.On the other hand, a new assignment of LiMn2O4 Raman spectrum was proposed. During the charge in the 4V region, a three region phase (initial LiMn2O4 phase, intermediary phase and poor lithium phase) was described using Raman spectroscopy. RX measurements can not detect this intermediary phase. Lithiated phase Raman signature shows a specific local order: Fd3m for extreme phases and F43m for partially lithiated phase. A rich Raman band spectrum is attributed to this later phase in coherence with literature calculations. Structural changes reversibility is demonstrated. Identification of this intermediary phase as a major component of a cycled electrode, underline the incomplete reduction and explain the important loss of capacity observed during cycling. Raman study of LiMn2O4 electrochemical insertion in the 3V region, has demonstrated for the first time a progressive formation of tetragonal Li2Mn2O4 phase, which is in coexistence with initial cubic phase and is pure at the end of discharge. Structural transition reversibility was also demonstrated.In the case of LiNi0.4Mn1.6O4, the assignment of the Raman spectrum of LiNi0.4Mn1.6O4 is provided for the first time. DRX study in function of the state of charge and discharge, exhibit cubic structure conservation with moderate lattice parameters variations. The Raman spectrum of the spinel oxide exhibits drastic spectral changes during Li extraction. These changes have been directly related to the Mn and Ni oxidation states in the cathode material under operation. It comes out that electrochemical reactions of LiNi0.4Mn1.6O4 are reversible and based on three redox couples of Mn3+/Mn4+, Ni2+/Ni3+, and Ni3+/Ni4+. An original and concrete Raman spectroscopy application is the study of self discharge mechanism of completely charged LiNi0.4Mn1.6O4. Raman spectra evolution exhibits a quantitative Ni4+ reduction during the first hours, and then a slower Ni3+ reduction process. Finally, LiNi0.4Mn1.6O4 lithium insertion has been explored for the first time using Raman spectroscopy, and a tetragonal Li2Ni0.4Mn1.6O4 phase has been identified.The originality of this work is the important number of experimental Raman data of 4V electrode materials. New assignment of initial compound has been proposed and original vibrationnal data of compound during charge/discharge has been presented. These Raman data has permitted to propose a quantitative explanation which must be completed with ab initio calculations to simulate vibrationnal modes frequencies/ intensities
APA, Harvard, Vancouver, ISO, and other styles
41

McGrogan, Frank Patrick IV. "Electrochemomechanical fatigue and fracture in electrode and electrolyte materials for Li-Ion batteries." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120187.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.<br>This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Cataloged student-submitted from PDF version of thesis.<br>Includes bibliographical references (pages 179-199).<br>In Li-ion batteries (LIBs), electrochemically driven dimensional changes in the electrodes lead to mechanical stress buildup during operation. Electrochemomechanical fatigue refers to both mechanical degradation (fracture) and the associated chemical degradation that is exacerbated by fracture as a result of this stress, accumulated during repeated electrochemical cycling. Such fracture can have serious consequences for the performance of LIBs over time in terms of capacity loss, growth of electrochemical impedance, and in all-solid-state batteries (ASSBs) even failure via short-circuiting. To better understand and predict mechanisms for electrochemically-induced fracture, we measured elastic, plastic, and fracture properties of electrode and solid electrolyte materials, focusing especially on sulfide electrolytes for ASSBs. We found that these electrolytes are extremely brittle and therefore vulnerable to fracture-assisted internal electrical shorting, an issue that currently limits commercialization of ASSBs. We built on these results with finite element modeling of electrolyte fracture in ASSBs, thus finding a strong dependence of fracture conditions on both electrolyte fracture toughness and plastic behavior of lithium metal. Using these results, we constructed electrochemomechanical failure maps to establish how microstructure, processing, and mechanical properties influence electrolyte fracture. We also studied how electrochemically induced fracture in turn affects battery performance, particularly for electrode materials. We implemented controlled fracture events in Li[subscript X]Mn₂O₄ cells employing liquid electrolytes and lithium anodes, and used acoustic emissions monitoring to confirm the timing of the fractures. We then used electrochemical impedance spectroscopy based on a distribution of relaxation times analysis method to isolate the fracture-based mechanisms leading to impedance growth, thereby observing sudden increases in electronic contact resistance concurrent with crack formation within the active particles. We also observed an increased rate of capacity fade following each fracture event, consistent with increased exposure of electrode surfaces to liquid electrolyte that promotes active material dissolution. Thus, within this thesis, we address complementary aspects of electrochemomechanical fatigue: how electrochemical changes promote fracture in electrodes and solid electrolytes, and how this fracture in turn affects electrochemical performance of LIB devices.<br>by Frank Patrick McGrogan IV.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
42

Clark, Steve. "The synthesis and characterisation of high performance electrode materials for Li-ion batteries." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:ab129eb3-55e9-4998-80df-e07fa15f0de3.

Full text
Abstract:
With the worlds demand for electricity constantly growing, energy storage technologies, and lithium-ion batteries in particular, are becoming increasingly important. One of the most significant issues concerning Li-ion batteries is that of safety. Graphite is the most commonly used anode material, however, due to its very low operating voltage vs Li<sup>+</sup>/Li<sup>0</sup>, reactive lithium can plate on the electrode surface, this is especially an issue for large batteries for use in electric vehicles. It would be useful to have an anode that operates at a higher voltage than graphite, but not at such a high voltage as to limit the overall potential of the cell. To this end the focus of this thesis is the development of an anode material that operate at 1 V vs Li<sup>+</sup>/Li<sup>0</sup>. The lithium metal sulphides have previously demonstrated that they reversibly intercalate lithium at &Tilde; 1 V, but the reported performance is poor. Here LiVS2 is reinvestigated and optimised to display significantly improved electrochemical properties. At a rate of 100 mAg-1 a reversible capacity of over 200 mAhg<sup>-1</sup> is achieved compared to less than 150 mAhg-1 previously reported, capacity retention is also considerably enhanced. LiVS2 deintercalates Li+ at the high voltage of 1.3 V, therefore attention is turned to LiV<sub>0.5</sub>Ti<sub>0.5</sub>S<sub>2</sub> which intercalates Li<sup>+</sup> at 0.9 V and deintercalation occurs at 0.9 V. The performance of LiV<sub>0.5</sub>Ti<sub>0.5</sub>S<sub>2</sub> is optimised and the electrochemical process by which LiV<sub>0.5</sub>Ti<sub>0.5</sub>S<sub>2</sub> operates is fully investigated. LiV<sub>0.5</sub>Ti<sub>0.5</sub>S<sub>2</sub> displays a low irreversible capacity loss, low polarisation, good rate capabilities and good capacity retention. As LiV<sub>0.5</sub>Ti<sub>0.5</sub>S<sub>2</sub> operates at &Tilde; 1 V higher than graphite it is important to match it with a high voltage cathode so the overall potential of the cell is not significantly reduced. The lithium rich mixed metal oxides have been the focus of much research over the last 15 years and here they are investigated using a resorcinol-formaldehyde gel synthesis. 0.5Li<sub>2</sub>MnO<sub>3</sub>:0.5LiNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub> and 0.6Li<sub>2</sub>MnO<sub>3</sub>:0.4Li(Ni<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>)O<sub>2</sub> are both successfully synthesised and demonstrate excellent electrochemical performance. The specific capacities and capacity retention of both materials at a rate of 150 mAg<sup>-1</sup> are excellent and better than virtually all previously reported materials of this type. Neutron diffraction was carried out on both materials to monitor structural changes on cycling. Finally, LiV<sub>0.5</sub>Ti<sub>0.5</sub>S<sub>2</sub> and the lithium-rich mixed metal oxides are combined in full 'rocking- chair' lithium-ion cells to successfully show that both materials can be used in practical lithium-ion batteries.
APA, Harvard, Vancouver, ISO, and other styles
43

Meng, Wei. "The effect of temperature on phase transformation mechanisms in electrodes for Li-ion batteries." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271192.

Full text
Abstract:
The effect of elevated temperatures on the phase transformation mechanisms in electrodes for lithium-ion batteries (LIBs) is an important but – to date – only less studied subject in battery research. In real-life applications, LIBs usually function at non-ambient conditions and especially increased temperatures give rise to safety concerns. This thesis focuses to gain deeper insights into the phase transformations at high temperatures (HTs) by tackling both the challenging hardware development of a HT in situ synchrotron X-ray diffraction (XRD) battery testing system as well as its application to study two important cathode materials: LiFePO4 and V6O13. This allows unprecedented insights into the structural changes and its influence on electrochemical performance at variable temperatures (VTs). LiFePO4 was investigated for various battery cycling rates and temperatures. Electrochemical cycling of LiFePO4 in the newly designed in situ XRD setup proved that the in situ XRD cells work from low to high cycling rates between 25 to 150oC. The current induced non-equilibrium solid solution metastable LiFePO4 phase, present at room temperature during high rate cycling, was found to be less pronounced at temperatures above 125oC. This is possibly due to faster Li-ion diffusion at HT, leading to faster phase separations in the solid solution phases. In a next step, V6O13, a promising cathode material for HT applications, especially for oil field applications, was tested using the in situ HT XRD setup. The material exhibits a very high capacity with a complex voltage profile. The underlying asymmetric discharge and charge phase transition mechanisms, which include a six-step discharge and five-step charge process, are unravelled by in situ XRD. The LixV6O13 unit cell expands sequentially in c, b, and a directions during discharge and reversibly contracts back during charge. The process is associated with a change of occupied lithium sites as well as charge ordering in LixV6O13. Density functional theory (DFT) calculations and nuclear magnetic resonance spectroscopy gave further insight into the electronic structures and preferred Li positions in the different structures formed upon cycling, particularly at high lithium contents. At HT, V6O13 exhibits an even greater capacity, as well as a more symmetric discharge and charge profile. Combining the results from the HT in situ XRD study and the DFT calculation, the most Li puckered phase was found to be able to open further along the b axis, with a new Li site getting (partially) occupied. The new Li site corresponds to more Li intercalation into the LixV6O13 structure and, therefore, more electrode charge storage capacity. The more symmetric discharge and charge process was attributed to the disappearance of phase 2 (present at room temperature for 1.7 < x ≤ 2.1 in LixV6O13) at HT.
APA, Harvard, Vancouver, ISO, and other styles
44

Jeschull, Fabian. "Functional Binders at the Interface of Negative and Positive Electrodes in Lithium Batteries." Licentiate thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267557.

Full text
Abstract:
In this thesis, electrode binders as vital components in the fabrication of composite electrodes for lithium-ion (LIB) and lithium-sulfur batteries (LiSB) have been investigated. Poly(vinylidene difluoride) (PVdF) was studied as binder for sulfur-carbon positive electrodes by a combination of galvanostatic cycling and nitrogen absorption. Poor binder swelling in the electrolyte and pore blocking in the porous carbon were identified as origins of low discharge capacity, rendering PVdF-based binders an unsuitable choice for LiSBs. More promising candidates are blends of poly(ethylene oxide) (PEO) and poly(N-vinylpyrrolidone) (PVP). It was found that these polymers interact with soluble lithium polysulfide intermediates generated during the cell reaction. They can increase the discharge capacity, while simultaneously improving the capacity retention and reducing the self-discharge of the LiSB. In conclusion, these binders improve the local electrolyte environment at the electrode interface. Graphite electrodes for LIBs are rendered considerably more stable in ‘aggressive’ electrolytes (a propylene carbonate rich formulation and an ether-based electrolyte) with the poorly swellable binders poly(sodium acrylate) (PAA-Na) and carboxymethyl cellulose sodium salt (CMC-Na). The higher interfacial impedance seen for the conventional PVdF binder suggests a protective polymer layer on the particles. By reducing the binder content, it was found that PAA-Na has a stronger affinity towards electrode components with high surface areas, which is attributed to a flexible polymer backbone and a higher density of functional groups. Lastly, a graphite electrode was combined with a sulfur electrode to yield a balanced graphite-sulfur cell. Due to a more stable electrode-electrolyte interface the self-discharge of this cell could be reduced and the cycle life was extended significantly. This example demonstrates the possible benefits of replacing the lithium metal negative electrode with an alternative electrode material.
APA, Harvard, Vancouver, ISO, and other styles
45

Stjerndahl, Mårten. "Stability Phenomena in Novel Electrode Materials for Lithium-ion Batteries." Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8214.

Full text
Abstract:
<p>Li-ion batteries are not only a technology for the future, they are indeed already the technology of choice for today’s mobile phones, laptops and cordless power tools. Their ability to provide high energy densities inexpensively and in a way which conforms to modern environmental standards is constantly opening up new markets for these batteries. To be able to maintain this trend, it is imperative that all issues which relate safety to performance be studied in the greatest detail. The surface chemistry of the electrode-electrolyte interfaces is intrinsically crucial to Li-ion battery performance and safety. Unfortunately, the reactions occurring at these interfaces are still poorly understood. The aim of this thesis is therefore to increase our understanding of the surface chemistries and stability phenomena at the electrode-electrolyte interfaces for three novel Li-ion battery electrode materials.</p><p>Photoelectron spectroscopy has been used to study the surface chemistry of the anode material AlSb and the cathode materials LiFePO<sub>4</sub> and Li<sub>2</sub>FeSiO<sub>4</sub>. The cathode materials were both carbon-coated to improve inter-particle contact. The surface chemistry of these electrodes has been investigated in relation to their electrochemical performance and X-ray diffraction obtained structural results. Surface film formation and degradation reactions are also discussed.</p><p>For AlSb, it has been shown that most of the surface layer deposition occurs between 0.50 and 0.01 V <i>vs.</i> Li°/Li<sup>+</sup> and that cycling performance improves when the lower cut-off potential of 0.50 V is used instead of 0.01 V. For both LiFePO<sub>4</sub> and Li<sub>2</sub>FeSiO<sub>4</sub>, the surface layer has been found to be very thin and does not provide complete surface coverage. Li<sub>2</sub>CO<sub>3</sub> was also found on the surface of Li<sub>2</sub>FeSiO<sub>4</sub> on exposure to air; this was found to disappear from the surface in a PC-based electrolyte. These results combine to give the promise of good long-term cycling with increased performance and safety for all three electrode materials studied.</p>
APA, Harvard, Vancouver, ISO, and other styles
46

Escamilla, Perez Angel Manuel. "Non-hydrolytic sol-gel synthesis of TiO₂-based electrode materials for Li-ion batteries." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT181/document.

Full text
Abstract:
Le procédé sol-gel non-hydrolytique (SGNH) offre une alternative intéressante au procédés sol-gel classiques. Notamment, la « voie éther », impliquant la réaction de précurseurs chlorures ou oxychlorures avec avec un éther comme donneur d’oxygène, est une méthode simple et efficace pour la préparation d’oxydes et d’oxydes mixtes mésoporeux. Les batteries Li-ion sont omniprésentes aussi bien dans des applications portables que pour des véhicules électriques ou hybrides. Cependant, les performances des électrodes commerciales sont insuffisantes pour des applications haute puissance. TiO2 est un candidat prometteur pour remplacer les anodes de graphitie dans les batteries Li-ion, mais sa conductivité électronique doit être améliorée. L’objectif de ce travail de thèse est d’utiliser les avantages du procédé SGNH pour préparer des matériaux d’électrodes à base de TiO2. Deux approches ont été explorées, mettant en jeu la voie éther en l’absence de tout solvant ou additif. Premièrement, des oxydes mésoporeux à structure hiérarchique, TiO2 et TiO2-V2O5, ont été synthétisés par calcination des xérogels. Deuxièmement, des nanocomposites mésoporeux constitués de nanoparticules de TiO2 recouvertes d’un film de carbone ont été obtenus par pyrolyse sous atmosphère d’argon, l’éther jouant le rôle de donneur d’oxygène et aussi, pour la première fois, de source de carbone. Les matériaux ont été caractérisés par physisorption d’azote, microscopie électronique, DRX, spectroscopie Raman, ATG ainsi que par RMN 13C CPMAS pour les nanocomposites. Les performances en insertion-désinsertion du lithium ont été étudiées par cyclage galvanostatique à différentes densités de courant<br>Non-hydrolytic sol-gel (NHSG) provides useful alternatives to conventional sol-gel routes. In particular, the ether route based on the reaction of chloride or oxychloride precursors with ether oxygen donors is a well-established method for the preparation of mesoporous oxides and mixed-oxides. Li-ion batteries are ubiquitous in the field of electrochemical energy storage, from mobile devices to electric and hybrid vehicles. However, commercial electrode materials do not fulfill all the requirements needed for high-power applications. TiO2 is as a promising material to replace graphite anodes in high-power Li-ion batteries, despite its poor electronic conductivity, which must be improved. In this context, the objective of this PhD thesis is the conception of different TiO2-based electrode materials benefitting from NHSG advantages. Two different approaches were developed, using the ether route in the absence of any solvent or additive. First, hierarchical mesoporous oxides, TiO2 and TiO2-V2O5, were synthesized by calcination of xerogels in air. Secondly, mesoporous nanocomposites built of carbon-coated TiO2 nanoparticles were obtained by pyrolysis under argon of the xerogels; in this case, the ether is used for the first time as both as an oxygen donor and a carbon source. The texture and the structure of the resulting materials were characterized by N2 physisorption, electron microscopy, XRD, and Raman spectroscopy. TiO2/C samples were further analyzed by TGA and 13C CPMAS-NMR. Galvanostatic cycling at different current rates was performed to determine the electrochemical performances in lithium insertion-deinsertion
APA, Harvard, Vancouver, ISO, and other styles
47

Arayamparambil, Jeethu Jiju. "Metal carbodiimides and cyanamides, a new family of electrode materials for Li-ion batteries." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS066.

Full text
Abstract:
Les batteries Li-ion constituent actuellement la technologie de choix pour tous les équipements portables, les moyens de transports électriques et le stockage stationnaire des énergies renouvelables. Actuellement, le graphite est incontestablement le matériau d'anode le plus utilisé pour les batteries Li-ion en raison de ses excellentes propriétés telles que sa durabilité, son abondance et son faible coût. Cependant, sa faible densité d'énergie est son talon d'Achille. En plus, le graphite présente certains problèmes de sécurité, en particulier à des puissances élevées. En conséquence, d’autres matériaux sûrs, économiques, à haute densité énergétique et à longue durée de vie, font l’objet d’importants travaux de recherche notamment des candidats comme le silicium et l’étain. Depuis 2015, la possibilité d'utiliser des carbodiimides de métaux de a été rapportée, et certains d'entre eux ont montré des performances électrochimiques prometteuses en tant que matériaux anodiques pour les batteries aux ions Li et Na. Comme tous les matériaux d'électrode à base de métaux divalents, les carbodiimides souffrent d'une capacité irréversible initiale et d'un potentiel de fonctionnement élevés, mais présentent une meilleure tenue en cyclage. L'application de carbodiimides de métaux de transition dans le domaine du stockage (et de la conversion) de l'énergie en est encore à ses débuts malgré les progrès réalisés en terme d'évaluation électrochimique. Il reste encore beaucoup à faire pour établir les mécanismes réactionnels qui régissent les performances prometteuses observées. Outre les carbodiimides de métaux de transition, il reste encore de nombreux carbodiimides inorganiques à explorer. Par conséquent, les principaux objectifs de cette thèse sont (i) d’évaluer la possibilité d’application de nouveaux carbodiimides comme matériaux d’électrode pour les batteries Li-ion et (ii) d’établir les mécanismes réactionnels électrochimique de ces matériaux au moyen de techniques de caractérisation operando avancées couplées à des calculs DFT. En ce qui concerne les performances électrochimiques, Cr2(NCN)3 s'est révélé être le meilleur matériau d'anode, avec une capacité spécifique stable de plus de 600 mAh.g-1 sur plus de 900 cycles à un régime de 2C. CoNCN et FeNCN ont également d’excellentes propriétés électrochimiques, car ils peuvent maintenir une capacité spécifique supérieure à 500 mAh.g-1 pendant plus de 100 cycles à un régime de 2C. Des performances plus modestes ont été observées pour PbNCN, Ag2NCN et ZnNCN car les capacités pratiques sont bien inférieures aux capacités théoriques. Ces phases montrent également une chute de la capacité sur les premiers 20 cycles. Ces trois catégories de performances sont bien corrélées avec les trois mécanismes différents réactionnels établis pour toutes les phases étudiées. Jusqu'à présent, trois types de mécanismes réactionnels ont été identifiés, à savoir (i) un processus combinant une étape d’intercalation suivie d’une étape de conversion dans le cas de Cr2(NCN)3, (ii) une réaction de conversion pure dans le cas de CoNCN et enfin (iii) un mécanisme combiné de conversion et d’alliage dans le cas des composés Pb, Zn et Ag. Il convient de noter que, quelle que soit le mécanisme réactionnel, tous les matériaux d'anode carbodiimide sont confrontés à la limitation d'une faible efficacité coulombique au cours des premiers cycles. Pour surmonter cet obstacle, il faut déployer plus d'efforts pour clarifier la nature et le rôle de la SEI dans la performance globale de cette famille de matériaux. Bien que les résultats prometteurs présentés dans ce travail ne répondent probablement pas aux normes requises pour intégrer les carbodiimides dans des applications commerciales, ils ont au moins le mérite de montrer la richesse de la chimie des carbodiimides et de stimuler davantage de travaux de recherche sur cette famille de matériaux inorganiques moléculaires relativement jeune<br>Li-ion batteries are currently the most common choice for all portable electronic devices but also for hybrid electric vehicles and renewable energy sectors. At present, graphite is routinely employed as the anode material for Li-ion-batteries due to its excellent attributes such as long cycle life, abundance, and relatively cost effective. However, the disadvantages of graphitic anode include low energy density and safety concerns. As a consequence, alternative cost effective anode materials with high energy density and long cycle life have been widely explored. Among this transition metal based compounds are an exciting and reasonable alternative for graphite owing to their high specific capacity. Compounds with the formula MX where M is a divalent metal and X = O, S, PO4, and CO3 have been reported to be electrochemically active at average voltages around 1 volts. In spite of their high theoretical specific capacities, high irreversible capacity in the first lithiation and the weak cycling life prevent the practical use of these materials. Since 2015, the possibility of using transition metal carbodiimides (MNCN, with M = Fe, Mn, Co, Cu, Zn, Ni) have been reported, and some of them have shown promising electrochemical performance as anode materials for both Li and Na ion batteries. Like all divalent metal based electrode materials, carbodiimides have been found to suffer from high initial irreversible capacity and high operating voltage, however they show a better cycle life. The application of transition metal carbodiimides in the field of energy storage (and conversion) is still in its early stages and despite progress in electrochemical evaluation much remains to be done in order to establish the reaction mechanisms that govern the reported promising performances. Besides the transition metal carbodiimides there are still many other inorganic cyanamides and carbodiimides materials to explore. Therefore the main targets of this PhD work are (i) to assess the properties of new carbodiimides/cyanamides as electrode materials for LiBs and (ii) to establish their electrochemical reaction mechanisms via advanced operando techniques and DFT calculations. Concerning the electrochemical performance, Cr2(NCN)3 turned out to be by the far the best carbodiimide anode material with stable specific capacity of more than 600 mAh.g-1 for more than 900 cycles at 2C rate. CoNCN and FeNCN have also shown excellent electrochemical properties since they can sustain a specific capacity higher than 500 mAh.g-1 for more than 100 cycles at 2C rate. Poor performance was observed for PbNCN, Ag2NCN and ZnNCN since the practical capacities are well below the theoretical ones. These phase show also fast capacity fading during the first 20 cycles. These three performance categories correlate well with the three different reaction mechanisms established for the investigated phases. Up to now, three types of reaction mechanism have been identified including (i) Combined intercalation and conversion processes in the case of Cr2(NCN)3 as evidenced by both theoretical and experimental methods, (ii) pure conversion reaction in the case of CoNCN and finally (iii) a combined conversion and alloying mechanism in the case of Pb, Zn and Ag compounds. It is worth noting that whatever the reaction pathway, all the carbodiimide/cyanamide anode materials face the limitation of a significantly low coulombic efficiency during the first cycles. To overcome this obstacle, much effort is needed to clarify the nature and the role of SEI in the overall performance of this family of materials. The promising results reported in this work do not probably yet meet the standards needed to take carbodiimides/cyanamides into the practical applications, but they clearly evidence the rich possibilities offered by this young family of molecular inorganic materials
APA, Harvard, Vancouver, ISO, and other styles
48

Ashton, Thomas E. "Microwave-assisted synthesis and local analyses of positive insertion electrodes for Li+ batteries." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7856/.

Full text
Abstract:
Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.
APA, Harvard, Vancouver, ISO, and other styles
49

Karayaylali, Pinar. "Understanding electronic structure and interfaces of positive electrodes for lithium ion batteries." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104288.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 104-110).<br>Lithium ion batteries are the currently the best commercial battery in the market and they are used as energy storage devices for mobile phones, laptops, and other portable electronic devices. This is due to their balance of high energy density with high power density compared to other electrochemical energy devices. Also, these days the automotive industry wants to use lithium ion batteries to electric vehicles to reduce the pollution and independence to oil. Although lithium ion batteries are currently one of the best energy storage devices, there is still an ample room for improvement. One of the key parameters to study is electrode/electrolyte interface of electrodes. EEI on the negative electrode, also known as Solid Electrolyte Interphase (SEI) has the well-known structure with organic and inorganic compounds. Although EEI on negative electrodes is well known, it is not the case for positive electrodes. Numerous studies have been done on positive electrodes; however, there is still a need for systematic study of these interfaces on positive electrodes. This thesis is about understanding the reactivity and interactions of Li-ion battery positive electrode materials with the electrolyte. By understanding reactions at the EEI, we can develop a way to improve cycle life and safety of lithium ion batteries. To unambiguously pinpoint the electrode/electrolyte interface layers on different positive electrode materials, 100 % active materials are used as positive electrodes instead of composite electrodes.<br>by Pinar Karayaylali.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Chengping [Verfasser], and H. [Akademischer Betreuer] Ehrenberg. "Investigation of Metal Oxides/Sulfides as Negative Electrode Materials for Li-ion and Beyond-Li Batteries / Chengping Li ; Betreuer: H. Ehrenberg." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1227451296/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography