Academic literature on the topic 'Positron annihilation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Positron annihilation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Positron annihilation"

1

Lingenfelter, Richard E., and Reuven Ramaty. "Annihilation Radiation and Gamma-Ray Continuum from the Galactic Center Region." Symposium - International Astronomical Union 136 (1989): 587–605. http://dx.doi.org/10.1017/s0074180900187091.

Full text
Abstract:
Observations of the time-dependent, electron-positron annihilation line radiation and gamma-ray continuum emission from the region of the Galactic Center show that there are two components to the annihilation line emission: a variable, compact source at or near the Galactic Center, and a steady, diffuse interstellar distribution. We suggest that the annihilating positrons in the compact source, observed from 1977 through 1979, result from photon-photon pair production, most likely around an accreting black hole, and that the annihilating, interstellar positrons result from the decay of radionuclei produced by thermonuclear burning in supernovae.
APA, Harvard, Vancouver, ISO, and other styles
2

Lynn, K. G., Bent Nielsen, and D. O. Welch. "Hydrogen interaction with oxidized Si(111) probed with positrons." Canadian Journal of Physics 67, no. 8 (August 1, 1989): 818–20. http://dx.doi.org/10.1139/p89-141.

Full text
Abstract:
A variable-energy positron beam was utilized to study the interface action of hydrogen with Si(111) covered by an ultrahigh-vacuum thermally grown oxide of 2–3 nm thickness. It was observed that positrons implanted at shallow depth (<100 nm) after diffusion are trapped either at the interface between the oxide and the Si or in the oxide. The positron-annihilation characteristics of these trapped positrons are found to be very sensitive to hydrogen exposure. The momentum distribution of the annihilating positron–electron pair, as observed in the Doppler broadening of the annihilation line, broadens considerably after exposure to hydrogen. The effect recovers after annealing at [Formula: see text], suggesting a hydrogen binding at the interface of ~3 ± 0.3 eV.
APA, Harvard, Vancouver, ISO, and other styles
3

Stewart, A. T., C. V. Briscoe, and J. J. Steinbacher. "Positron annihilation in simple condensed gases." Canadian Journal of Physics 68, no. 12 (December 1, 1990): 1362–76. http://dx.doi.org/10.1139/p90-196.

Full text
Abstract:
The angular-correlation technique of positron annihilation has been used to detect and measure the localized bubble state of positronium (Ps) in liquid Ne, Ar, Kr, H2, and N2 and in liquid and solid He at various pressures and temperatures. No bubble state was seen in liquid O2 or in solid Ne and Ar. The dynamics of bubble formation is not yet understood. In the cases where theoretical calculations, and adequate data, exist, viz. He, Ar, and H2, there is reasonable agreement for the momentum of the photons from the annihilation of positrons with the outer electrons of these atoms. The Ps annihilations from the self-trapped bubble state are reasonably well described in terms of a simple finite potential-well model.
APA, Harvard, Vancouver, ISO, and other styles
4

Panther, Fiona H., Roland M. Crocker, Ivo R. Seitenzahl, and Ashley J. Ruiter. "SN1991bg-like supernovae are a compelling source of most Galactic antimatter." Proceedings of the International Astronomical Union 11, S322 (July 2016): 176–79. http://dx.doi.org/10.1017/s1743921316011911.

Full text
Abstract:
AbstractThe Milky Way Galaxy glows with the soft gamma ray emission resulting from the annihilation of ~5 × 1043 electron-positron pairs every second. The origin of this vast quantity of antimatter and the peculiar morphology of the 511keV gamma ray line resulting from this annihilation have been the subject of debate for almost half a century. Most obvious positron sources are associated with star forming regions and cannot explain the rate of positron annihilation in the Galactic bulge, which last saw star formation some 10 Gyr ago, or else violate stringent constraints on the positron injection energy. Radioactive decay of elements formed in core collapse supernovae (CCSNe) and normal Type Ia supernovae (SNe Ia) could supply positrons matching the injection energy constraints but the distribution of such potential sources does not replicate the required morphology. We show that a single class of peculiar thermonuclear supernova - SN1991bg-like supernovae (SNe 91bg) - can supply the number and distribution of positrons we see annihilating in the Galaxy through the decay of 44Ti synthesised in these events. Such 44Ti production simultaneously addresses the observed abundance of 44Ca, the 44Ti decay product, in solar system material.
APA, Harvard, Vancouver, ISO, and other styles
5

Wagner, A., M. Butterling, F. Fiedler, F. Fritz, M. Kempe, and T. E. Cowan. "Position-resolved Positron Annihilation Lifetime Spectroscopy." Journal of Physics: Conference Series 443 (June 10, 2013): 012091. http://dx.doi.org/10.1088/1742-6596/443/1/012091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gajos, Aleksander. "Sensitivity of Discrete Symmetry Tests in the Positronium System with the J-PET Detector." Symmetry 12, no. 8 (August 1, 2020): 1268. http://dx.doi.org/10.3390/sym12081268.

Full text
Abstract:
Study of certain angular correlations in the three-photon annihilations of the triplet state of positronium, the electron–positron bound state, may be used as a probe of potential CP and CPT-violating effects in the leptonic sector. We present the perspectives of CP and CPT tests using this process recorded with a novel detection system for photons in the positron annihilation energy range, the Jagiellonian Positron Emission Tomography (J-PET). We demonstrate the capability of this system to register three-photon annihilations with an unprecedented range of kinematical configurations and to measure the CPT-odd correlation between positronium spin and annihilation plane orientation with a precision improved by at least an order of magnitude with respect to present results. We also discuss the means to control and reduce detector asymmetries in order to allow J-PET to set the first measurement of the correlation between positronium spin and momentum of the most energetic annihilation photon which has never been studied to date.
APA, Harvard, Vancouver, ISO, and other styles
7

Jean, Y. C., X. Lu, Y. Lou, A. Bharathi, C. S. Sundar, Y. Lyu, P. H. Hor, and C. W. Chu. "Positron annihilation inC60." Physical Review B 45, no. 20 (May 15, 1992): 12126–29. http://dx.doi.org/10.1103/physrevb.45.12126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

OUGIZAWA, Toshiaki. "Positron Annihilation Spectroscopy." Kobunshi 55, no. 9 (2006): 750–54. http://dx.doi.org/10.1295/kobunshi.55.750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

OUGIZAWA, Toshiaki, and Makoto MURAMATSU. "Positron Annihilation SPectroscoPy." Kobunshi 51, no. 10 (2002): 831. http://dx.doi.org/10.1295/kobunshi.51.831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Belyanin, A. A., V. V. Kocharovskii, and Vl V. Kocharovskii. "Collective Electron-Positron Annihilation." International Astronomical Union Colloquium 128 (1992): 117–22. http://dx.doi.org/10.1017/s0002731600154903.

Full text
Abstract:
AbstractThe phenomenon of collective spontaneous annihilation of a magnetized electron-positron plasma is predicted. Like the superradiance in systems with discrete energy spectra, collective annihilation leads to the generation of powerful coherent radiation with the rate of this process considerably exceeding the spontaneous annihilation and collisional relaxation rates.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Positron annihilation"

1

Moscoso, Michael Douglas. "Electron-positron pair winds /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Green, D. G. "Positron annihilation on core electrons." Thesis, Queen's University Belfast, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.557607.

Full text
Abstract:
Diagrammatic many-body theory (MBT) is used to calculate the -y-spectra and an- nihilation rates for positrons annihilating on the core electrons of many-electron atoms. Long-range positron-atom and short-range positron-electron correlations are accounted for through the evaluation of the positron Dyson orbital and the true many-body annihilation vertex, which includes the exact electron-positron ladder series. The numerical implementation of the theory proceeds through the employment of a B-spline basis. It is tested through a comprehensive study of positron annihilation in the hydrogen-like ions He ", Li2+, BH and F8+, the ionization energies of which span those typical of the core electrons of many-electron atoms. The scattering phase shifts and normalized annihilation rate parameters Zeff are found to be in excellent agreement with existing sophisticated variational calculations, and -y-spectra are also predicted. , The annihilation ')'-spectra and partial annihilation rates are then calculated for ther- malized positrons annihilating on the core and valence electrons of the noble gas atoms Ar, Kr and Xe. Although stronger for the valence shells, the short-range correlations are found to significantly enhance the -y-spectra of the core subshells. For Ar, Kr and Xe, the core contributions to Zeff are found to be 0,55%, 1.5% and 2.2% respectively, their small values reflecting the difficulty for the positron to probe distances close to the nucleus. However, the core subshells have a broad momentum distribution and they markedly contribute to, and even dominate, the -y-spectra at Doppler energy shifts .2::. 3 ke V. It is found that proper inclusion of the core spectra is crucial in bringing the theoretical spectra into agreement with the experiment across the full range of Doppler energy shifts. State-dependent vertex enhancement factors 1nl, which quantify the effects of the short- range correlations, are estimated analytically and calculated using the MBT. They are found to follow a simple and physically motivated scaling with the subshell ionization energy Inz: 1nl = 1 + AI.;r;:z + sr], where A, Band (3 are positive constants. These factors can be incorporated in simple independent-particle-model calculations to reconstruct the true annihilation -y-spectra for annihilation on core electrons of atoms across the periodic table, and on the localized atomic-like core electrons of condensed matter systems. In the last part of the work, the atomic MBT is used to address the important problem of calculating the annihilation -y-spectra of molecues, with focus on the role of the positron- nuclear repulsion and correlation effects.
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, A. P. "Positron annihilation at metal surfaces." Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Steinbacher, John James. "Positron annihilation in simple condensed gases." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0001/NQ35980.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iwata, Koji. "Positron annihilation on atoms and molecules /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9811796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shan, Yueyue. "A study of GaAs and CdZnTe by positron annihilation spectroscopy /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19324248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shan, Yueyue, and 沈躍躍. "A study of GaAs and CdZnTe by positron annihilation spectroscopy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31237630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

區皓良 and Ho-leung Au. "Experimental studies of positron annihilation in semiconductors." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31233417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Au, Ho-leung. "Experimental studies of positron annihilation in semiconductors /." [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13570419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Avalos, Victor P. "Positron annihilation investigation of electron irradiated silicon." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23204.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Positron annihilation"

1

B, Foster, ed. Electron-positron annihilation physics. Bristol: A. Hilger, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Attila, Vértes. Pozitronkémia: Akadémiai székfoglaló, 1994. március 22. Budapest: Akadémiai Kiadó, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International Workshop on Positron and Positronium Chemistry. (3rd 1990 Milwaukee, Wis.). Third International Workshop on Positron and Positronium Chemistry: July 16-18, 1990, Milwaukee, USA. Edited by Jean Y. C. Singapore: World Scientific, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mogensen, Ole Erik. Positron Annihilation in Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-85123-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krause-Rehberg, Reinhard, and Hartmut S. Leipner. Positron Annihilation in Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03893-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mogensen, Ole Erik. Positron annihilation in chemistry. Berlin: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mogensen, Ole Erik. Positron Annihilation in Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

C, Jean Y., Mallon P. E, and Schrader D. M, eds. Principles and applications of positron & positronium chemistry. River Edge: World Scientific, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International School of Physics "Enrico Fermi" (1993 Varenna, Italy). Positron spectroscopy of solids. Amsterdam: IOS Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jean, Y. C. Positrons and positronium: A bibliography, 1930-1984. Amsterdam, The Netherlands: Elsevier, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Positron annihilation"

1

Chiari, Luca, and Masanori Fujinami. "Positron Annihilation." In Handbook of Advanced Non-Destructive Evaluation, 1–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-30050-4_19-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chiari, Luca, and Masanori Fujinami. "Positron Annihilation." In Handbook of Advanced Nondestructive Evaluation, 1301–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-26553-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Triftshäuser, W. "Positron Annihilation." In Topics in Current Physics, 249–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-46571-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Süvegh, K., and T. Marek. "Positron Annihilation Spectroscopies." In Handbook of Nuclear Chemistry, 1461–84. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-0720-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Geise, Geoffrey. "Positron Annihilation Spectroscopy." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1151-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Geise, Geoffrey. "Positron Annihilation Spectroscopy." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-40872-4_1151-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dryzek, Jerzy. "Positron Annihilation Techniques." In SpringerBriefs in Materials, 5–23. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-41093-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sundar, C. S. "Positron Annihilation in Fullerenes." In Nuclear and Radiation Chemical Approaches to Fullerene Science, 3–15. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9419-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dlubek, G., and N. Meyendorf. "Positron Annihilation Spectroscopy (PAS)." In Nondestructive Materials Characterization, 374–411. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08988-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sakaki, Kouji. "Positron Annihilation Spectroscopy (PAS)." In Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials, 377–402. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22792-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Positron annihilation"

1

Ramaty, R., and R. E. Lingenfelter. "Galactic positron annihilation radiation." In AIP Conference Proceedings Volume 155. AIP, 1987. http://dx.doi.org/10.1063/1.36436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diehl, Roland. "Gamma-Rays from Positron Annihilation." In 7th INTEGRAL Workshop. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.067.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abdel-Mageed, M. M., H. S. Zaghloul, and M. Abdel-Aziz. "Positron Annihilation In Xe Atoms." In MODERN TRENDS IN PHYSICS RESEARCH: Second International Conference on Modern Trends in Physics Research MTPR-06. AIP, 2007. http://dx.doi.org/10.1063/1.2711131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Milne, P. A. "Investigations of positron annihilation radiation." In Fifth compton symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1303167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weiss, Alex. "Positron annihilation induced Auger electron spectroscopy." In 4th International workshop on: Slow−positron beam techniques for solids and surfaces. AIP, 1991. http://dx.doi.org/10.1063/1.40173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tuomisto, Filip. "Defects in nitrides, positron annihilation spectroscopy." In SPIE OPTO, edited by Jen-Inn Chyi, Yasushi Nanishi, Hadis Morkoç, Joachim Piprek, Euijoon Yoon, and Hiroshi Fujioka. SPIE, 2013. http://dx.doi.org/10.1117/12.2000251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dorn, Randy T. "Electron-positron annihilation and absorption models." In SPIE Optical Engineering + Applications, edited by Chandrasekhar Roychoudhuri, Al F. Kracklauer, and Hans De Raedt. SPIE, 2015. http://dx.doi.org/10.1117/12.2185588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, H. M., Somia Awad, Y. C. Jean, J. Yang, L. James Lee, Floyd D. McDaniel, and Barney L. Doyle. "Positron Annihilation Studies In Polymer Nano-Composites." In APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY: Twenty-First International Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3586138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, S. J. "Physisorbed surfaces studied by positron annihilation spectroscopy." In The fifth international workshop on slow positron beam techniques for solids and surfaces. AIP, 1994. http://dx.doi.org/10.1063/1.45501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tueller, Jack. "Positron annihilation radiation from the Galactic Center." In COMPTON GAMMA-RAY OBSERVATORY. AIP, 1993. http://dx.doi.org/10.1063/1.44211.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Positron annihilation"

1

Nees, John A. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada471027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Colmenares, C., R. H. Howell, D. Ancheta, T. Cowan, J. Hanafee, and P. Sterne. First positron annihilation lifetime measurement of Pu. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/491854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaye, H. Stephen. Quark Flavor Identification In Electron-Positron Annihilation. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1453991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, y. Computer Simulation of Electron Positron Annihilation Processes. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/826474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Naslund, Robert A., and Phillip L. Jones. Positron Annihilation Studies of Thermoplastic LCP Composites,. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada299436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brodsky, Stanley J. Hunting for Glueballs in Electron-Positron Annihilation. Office of Scientific and Technical Information (OSTI), May 2003. http://dx.doi.org/10.2172/813140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baden, A. R. Lambda production in electron-positron annihilation at 29 GeV. Office of Scientific and Technical Information (OSTI), August 1986. http://dx.doi.org/10.2172/7010478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brodsky, S. QCD PHYSICS OPPORTUNITIES IN LOW-ENERGY ELECTRON-POSITRON ANNIHILATION. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/826550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kinzer, R. L., W. R. Purcell, W. N. Johnson, J. D. Kurfess, G. Jung, and J. Skibo. OSSE observations of positron annihilation in the galactic plane. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada464397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gold, M. S. Hard photon processes in electron-positron annihilation at 29 GeV. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/7059641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography