Dissertations / Theses on the topic 'Post-Translational Protein Processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'Post-Translational Protein Processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
O'Hara, John F. "An investigation of post-translational processing in the transgenic mammary gland." Thesis, University of Kent, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365215.
Full textMullins, Fraser Hewitt. "Post-translational processing of microtubule protein during peripheral nerve regeneration." Thesis, University of Liverpool, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385223.
Full textChen, Li. "TAK1-Mediated Post-Translational Modifications Modulate Immune Response: A Dissertation." eScholarship@UMMS, 2005. http://escholarship.umassmed.edu/gsbs_diss/786.
Full textChen, Li. "TAK1-Mediated Post-Translational Modifications Modulate Immune Response: A Dissertation." eScholarship@UMMS, 2015. https://escholarship.umassmed.edu/gsbs_diss/786.
Full textScholz, Claus Jürgen. "Analyse der Expression und posttranslationalen Modifikation des Tetraspanins Tspan-1 in Ovarialkarzinomzellen." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-59801.
Full textChiocco, Matthew J. "Beta-secretase transgenic mice effects of BACE1 and BACE2 on Alzheimer's disease pathogenesis /." Connect to text online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1111597750.
Full textLi, M. "In vitro reconstitution of the extraordinary post-translational processing of Concanavalin A precursor : circular sequence permutation by enzymatic cleavages and protein splicing." Thesis, Swansea University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637901.
Full textKing, Henry Owain. "Role of ApoEr2 isoforms in the cellular processing of the Alzheimer's amyloid precursor protein : insights into the post translational processing of ApoEr2 and identification of a novel mechanism of APP regulation." Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574497.
Full textTurunen, S. (Sanna). "Protein-bound citrulline and homocitrulline in rheumatoid arthritis:confounding features arising from structural homology." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526203904.
Full textTiivistelmä Nivelreuma on niveltulehduksen aiheuttava autoimmuunitauti, joka voi johtaa pysyviin muutoksiin nivelen rusto- ja luukudoksessa. Nivelreumaa sairastavilla esiintyy vasta-aineita sitrullinoituneita ja karbamyloituneita proteiineja vastaan. Sitrulliiniin sitoutuvia vasta-aineita voi esiintyä elimistössä jo vuosia ennen taudin puhkeamista, ja niiden esiintyminen on yhdistetty vaikeampaan taudinkuvaan. Sitrulliini ja lysiinin karbamylaatiotuote homositrulliini ovat rakenteellisesti samankaltaisia. Proteiinien sitrullinaatiota on tutkittu nivelreumassa ja neurologisissa taudeissa, mutta homositrulliinin olemassaoloa tai sen vaikutusta tutkimusmenetelmiin ei ole huomioitu. Tämän tutkimuksen tarkoituksena oli selvittää proteiineihin sitoutuneiden sitrulliinin ja homositrulliinin ominaisuuksia aikaisempiin tutkimuksiin ja nivelreuman immunologisiin reaktioihin liittyen. Tässä tutkimuksessa homositrulliinin osoitettiin häiritsevän sitrulliinin tunnistamista. Ensimmäisessä ja toisessa osatyössä aiheutettiin kokeellisesti vasta-aineita sitrulliinia ja homositrulliinia sisältävillä proteiinirakenteilla. Vasta-aineiden havaittiin reagoivan sekä ureidoryhmän että proteiinirakenteen kanssa. Vasta-aineet pystyivät erottamaan sitrulliinin ja homositrulliinin toisistaan samassa rakenteessa, vaikka sitoutuivat kumpaankin. Kolmannessa osatyössä osoitettiin, että sitrulliinia ja homositrulliinia esiintyy samanaikaisesti nivelreumapotilaan tulehtuneessa nivelkalvossa. Tutkimus osoitti, että sitrulliinin ja homositrulliinin samanaikainen esiintyminen ja kokeellisesti aiheutettujen vasta-aineiden ominaisuudet huomioiden homositrulliinilla voi olla jokin toistaiseksi selvittämätön rooli nivelreumassa. Homositrulliinin olemassaolo on syytä huomioida sitrullinaatiota tutkittaessa
Cruz, Tapias Paola. "Un mécanisme de trans-méthylation entre les deux principales méthyltransférases de H3K9 SETDB1 et SUV39H1, régule l'établissement de l'hétérochromatine." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC285.
Full textHistone H3 lysine 9 (H3K9) methylation, which is established by the lysine methyltransferases (KMTs) SETDB1, SUV39H1, G9A and GLP, is a central epigenetic mechanism involved in cell fate regulation. In particular, H3K9 methylation is directly involved in heterochromatin formation and gene silencing. Our lab showed that the main H3K9 KMTs (SETDB1, G9A, GLP and SUV39H1) form a functional megacomplex involved in transcriptional silencing, probably via the cooperative establishment of the different H3K9 methylation levels. However, up to now, the regulation of the H3K9 KMT complexes is not fully understood. Interestingly, post-translational modifications (PTMs) have been implicated in the regulation of H3K9 KMT functions. In this, my PhD thesis aimed to decipher how methylation of SETDB1, regulates its activity (complex formation, interaction with partners, recruitment to chromatin), which ultimately could impact on heterochromatin formation, gene expression and cell fate regulation. SETDB1 is crucial during development and cellular differentiation. Moreover, SETDB1 is essential in mouse embryonic stem cells (mESCs) pluripotency and self-renewal, Setbd1 KO is lethal at the peri-implantation stage at 7.5 days postcoitum (dpc). Beside histones, SETDB1 is also able to methylate other proteins (e.g. UBF, ING2, p53). Notably, my current data show that SETDB1 undergoes (auto)methylation on the lysines K1170 and K1178 located inside its catalytic SET domain. SETDB1 and SUV39H1 coordinate the establishment and maintenance of H3K9me3 at constitutive pericentromeric heterochromatin and co-regulate many genomic targets within heterochromatin, including transposable elements, such as long interspersed nuclear elements (LINEs) and endogenous retroviruses (ERVs). Since SUV39H1 is a H3K9 tri-methyltransferase that uses H3K9me1 or H3K9me2 as a primary substrate, SETDB1 could probably provide mono- or di-methylated H3K9. Interestingly, my results point to a model in which SETDB1 auto-methylation paves the path to a subsequent trans-methylation by SUV39H1. This mechanism could regulate not only the SETDB1/SUV39H1 physical interaction (via the SUV39H1 chromodomain), but also cooperation in the establishment and maintenance of both heterochromatin blocks (large domains) and transposable elements (TEs) silencing, at least in ES cells. Thus, we would like to better understand how the crosstalk between these two key H3K9 KMTs, SETDB1 and SUV39H1, occurs in terms of interaction and recruitment to target loci
Selivanova, Alexandra. "Intracellular dynamics of Alzheimer disease-related proteins /." Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-234-7/.
Full textWu, Gengshu. "Lipoprotein lipase : mechanism for adaptation of activity to the nutritional state." Doctoral thesis, Umeå : Umeå univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-175.
Full textTurkina, Maria. "Functional proteomics of protein phosphorylation in algal photosynthetic membranes." Doctoral thesis, Linköping : Univ, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10708.
Full textRotunno, Melissa S. "Identifying, Targeting, and Exploiting a Common Misfolded, Toxic Conformation of SOD1 in ALS: A Dissertation." eScholarship@UMMS, 2015. http://escholarship.umassmed.edu/gsbs_diss/781.
Full textLeBron, Cynthia. "Regulation of MDMX nuclear import and degradation by Chk2 and 14-3-3." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0001992.
Full textNico, Juliana Andreoni. "Evidências de redundância funcional entre as pró-hormônio convertases no processamento pós-traducional do precursor da vitelogenina VIT-6 do nematóide Caenorhabditis elegans." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/42/42135/tde-07042009-102906/.
Full textFour kpc genes are found in the Caenorhabditis elegans genome: (kex2/subtilisin-like proprotein convertases): kpc-1, kpc-2/egl-3, kpc-3/aex-5, kpc-4/bli-4. Two of the four vitellogenin polypeptides, YP115 and YP88, originate from a precursor, VIT-6. VIT-6 is cleaved post-translationally after the RGKR motif. Transgenic worms carrying GFP transcription reporter constructs were produced. Expression of kpc-1 has been localized to neurons as well as muscular and intestinal cells. These data, together with the ones available from the literature for the other kpc genes, suggest the involvement of KPC-1 in the processing of VIT-6, which is secreted from intestinal cells. Western-blot analysis compared the pattern of VIT-6 processing in wild-type, mutants and RNAi-treated worms for the other kpcs. Analysis of worms treated by combined RNAi confirmed the redundancy of KPCs in VIT-6 processing.
Santos, Keity Souza. "Identificação das proteínas do veneno de abelhas africanizadas (Apis mellifera L.) imunoreativas ao soro antiveneno por abordagem proteômica." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/5/5146/tde-25032009-175225/.
Full textThe aim of this work was to identify the protein profile of honeybee venom, and detect allergenic proteins and post-translational modifications. Furthermore specific antivenom was produced and potency tests were performed in order to check its power of neutralization of toxic activities of venom. They were identified 54 proteins, 9 that have never been reported before in this venom. After identification of these proteins it was possible to outline a feasible mechanism of action of venom. For the first time MRJP-8, transferrin, PDGF and VEGF factors were identified as allergenic. Results of neutralization of citotoxic, hemolytic and myotoxic activities showed the efficacy of antivenom that had satisfactory results to be tested in clinical assay
Campbell, Emma. "Post-translational processing of proteins implicated in the pathogenesis of Alzheimer's disease." Thesis, Sheffield Hallam University, 2001. http://shura.shu.ac.uk/19422/.
Full textForsgren, Nina. "Structural studies of the surface adhesin SspB from Streptococcus gordonii." Doctoral thesis, Umeå : Umeå universitet, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-32910.
Full textLoomis, Wendy Pulkkinen. "Translational control of messenger RNA processing in the F1845 fimbrial operon of Escherichia coli /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/11507.
Full textLackman, J. (Jarkko). "Glycosylation and dimerization of the human δ-opioid receptor polymorphic variants." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526221342.
Full textTiivistelmä Solujenvälisellä viestinnällä on keskeinen tehtävä kehon kaikissa toiminnoissa. δ-opioidireseptori (δOR) on solusignalointiin erikoistuneen kalvoproteiiniperheen (G-proteiiniin kytketyt reseptorit) jäsen, joka ohjaa kivuntuntemusta ja mielialoja. Sitä pidetään mahdollisena lääkekehityksen kohteena paitsi kivunlievityksen, myös useiden neurologisten häiriöiden hoidossa. δOR ilmenee kahtena polymorfisena muotona sen solunulkoisessa osassa tapahtuneen aminohappomuutoksen vuoksi (Phe27Cys). Työssä tutkittiin reseptorin glykosylaatiota ja dimerisaatiota, jotka säätelevät sen prosessointia, käyttäytymistä ja toimintaa. Käyttäen useita biokemiallisia ja solubiologisia menetelmiä työssä osoitettiin polymorfian vaikuttavan useisiin prosessointivaiheisiin ja muokkaavan siten reseptorin viestintää. Proteiinien laadunvalvontakoneiston havaittiin säätelevän reseptorin siirtymistä endoplasmakalvostolta solun pinnalle kahdella eri mekanismilla ohjaten osan reseptoreista hajotukseen. Toisin kuin Phe27-variantin, tehottomasti kypsyvän Cys27-variantin laadunvalvonta on riippuvainen reseptoriin liittyvistä N-glykaaneista ja näihin sitoutuvasta kaitsijaproteiinista, kalneksiinista. Reseptorivariantit, joista N-glykaanit puuttuvat, siirtyvät nopeammin solukalvolle, mutta ne ovat epästabiileja ja häviävät nopeasti solun pinnalta. Vaihtoehtoinen N-glykaaneista riippumaton laadunvalvontamekanismi sallii myös inaktiivisen Cys27-variantin pääsyn solun pinnalle. Varianttien dimerisoitumisen osoitettiin säätelevän niiden kuljetusta soluissa. Cys27-variantin havaittiin sitoutuvan Phe27-varianttiin aikaisessa biosynteesivaiheessa ja ohjaavan osan siitä hajotukseen. Tällä voi olla suuri merkitys opioidiviestinnässä molempia alleeleja kantavilla henkilöillä. Työssä havaittiin myös GalNAc-transferaasi-2-entsyymin ohjaavan Golgin laitteessa tapahtuvaa reseptorin O-glykosylaatiota. Se glykosyloi reseptorin solunulkoisen osan seriinitähteitä (Ser6, Ser25, Ser29), stabiloiden siten solun pinnan reseptoreita ja tehostaen niiden viestintää. Lisäksi havaittiin eroja varianttien O-glykosylaatiossa, mikä voi osaltaan selittää varianttien ilmentymisessä todettuja eroja. Tutkimus luo uutta tietoa biosynteesireitin merkityksestä G-proteiiniin kytkettyjen reseptorien säätelyssä sekä antaa pohjaa keinoille, joilla tätä voitaisiin hyödyntää farmakologisesti
"Characterization of the PIAS family (protein inhibitors of activated STATs) of the sumoylation E3 ligases." 2005. http://library.cuhk.edu.hk/record=b5896452.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 189-206).
Abstracts in English and Chinese.
Acknowledgements --- p.i
Table of Contents --- p.iii
Abstract --- p.xi
摘要 --- p.xiv
Abbreviation List --- p.xv
List of Figures --- p.xvii
List of Tables --- p.xxiii
Chapter Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Ubiquitination --- p.1
Chapter 1.1.1 --- Ubiquitin --- p.1
Chapter 1.1.2 --- Ubiquitin Pathway --- p.3
Chapter 1.1.3 --- Functions of Ubiquitination --- p.5
Chapter 1.1.4 --- Ubiquitin Like Proteins --- p.8
Chapter 1.2 --- SUMO Proteins --- p.10
Chapter 1.2.1 --- SUMO Isoforms --- p.10
Chapter 1.2.2 --- SUMO Structure --- p.11
Chapter 1.3 --- Sumoylation --- p.14
Chapter 1.3.1 --- Functions of Sumoylation --- p.14
Chapter 1.3.1.1 --- General Functions of Sumoylation --- p.15
Chapter 1.3.1.2 --- Function of Sumoylation on Transcription Factors
Chapter 1.3.1.3 --- Specific Function of SUMO-2/3 Conjugation
Chapter 1.3.2 --- Sumoylation Pathway --- p.19
Chapter 1.4 --- E3 Ligases in Sumoylation --- p.24
Chapter 1.4.1 --- Types and Functions of E3 Ligases --- p.23
Chapter 1.4.2 --- Structure of PI AS --- p.23
Chapter 1.4.3 --- Function of PI AS --- p.27
Chapter 1.5 --- Aims of Study --- p.29
Chapter Chapter 2 --- Materials & Methods --- p.30
Chapter 2.1 --- Polymerase Chain Reaction (PCR) Screening of Multiple Human Tissue cDNA (MTC´ёØ) Panel --- p.30
Chapter 2.1.1 --- Primer Design --- p.30
Chapter 2.1.2 --- Semi-quantitative PCR --- p.31
Chapter 2.1.2.1 --- Human MTC´ёØ Panel --- p.31
Chapter 2.1.2.2 --- PCR --- p.32
Chapter 2.2 --- DNA Cloning --- p.34
Chapter 2.2.1 --- "Amplification of El, E3 (PIAS), PIAS1 Fragments" --- p.34
Chapter 2.2.1.1 --- Primer Design --- p.34
Chapter 2.2.1.2 --- PCR --- p.36
Chapter 2.2.1.3 --- Purification of PCR Product --- p.37
Chapter 2.2.2 --- Restriction Digestion --- p.37
Chapter 2.2.3 --- Ligation --- p.40
Chapter 2.2.4 --- Transformation --- p.40
Chapter 2.2.4.1 --- Preparation of Chemically Competent Cells'(DH5α) --- p.40
Chapter 2.2.4.2 --- Transformation of Ligation Product --- p.41
Chapter 2.2.5 --- Plasmid Preparation --- p.42
Chapter 2.2.6 --- Screening for Recombinant Clones --- p.43
Chapter 2.2.7 --- Sequencing of Recombinant Plasmid --- p.43
Chapter 2.3 --- Subcellular Localization Study --- p.45
Chapter 2.3.1 --- Midi Scale Plasmid Preparation --- p.45
Chapter 2.3.2 --- Transfection of GFP Recombinant Plasmids --- p.46
Chapter 2.3.2.1 --- Cell Culture of WRL-68 & HepG2 Cell Lines --- p.46
Chapter 2.3.2.2 --- LipofectAMINE Based Transfection --- p.47
Chapter 2.3.3 --- Immunostaining of Endogenous SUMO-1 & -2/-3 --- p.48
Chapter 2.3.4 --- Nucleus Staining by DAPI --- p.48
Chapter 2.3.5 --- Fluorescent Microscopic Visualization --- p.49
Chapter 2.3.6 --- Western Blotting --- p.49
Chapter 2.3.6.1 --- LipofectAMINE Based Transfection --- p.49
Chapter 2.3.6.2 --- Protein Extraction --- p.50
Chapter 2.3.6.3 --- Protein Quantification --- p.51
Chapter 2.3.6.4 --- SDS-PAGE Analysis --- p.51
Chapter 2.3.6.5 --- GFP Fusion Proteins Detection --- p.52
Chapter 2.4 --- Two-Dimensional Gel Electrophoretic Analyses --- p.54
Chapter 2.4.1 --- Sample Preparation --- p.54
Chapter 2.4.1.1 --- Protein Extraction from the Nucleus --- p.54
Chapter 2.4.1.2 --- Clean Up of Extracted Nuclear Fraction --- p.55
Chapter 2.4.2 --- First Dimensional Isoelectric Focusing (IEF) --- p.55
Chapter 2.4.3 --- Second Dimension SDS-PAGE --- p.57
Chapter 2.4.3.1 --- SDS-PAGE Analysis --- p.57
Chapter 2.4.3.2 --- Silver Staining --- p.58
Chapter 2.4.4 --- Image Analysis --- p.59
Chapter 2.4.5 --- Protein Identification by Mass Spectrometry --- p.60
Chapter 2.4.5.1 --- Sample Preparation --- p.60
Chapter 2.4.5.2 --- Data Acquisition --- p.62
Chapter 2.4.5.3 --- Data Analysis of Protein Fingerprinting --- p.62
Chapter 2.5 --- Confirmation of the Differentially Expressed Proteins by RT-PCR & Western Blotting --- p.63
Chapter 2.5.1 --- RT-PCR Analysis --- p.63
Chapter 2.5.1.1 --- RNA Extraction --- p.63
Chapter 2.5.1.2 --- First Strand cDNA Synthesis --- p.64
Chapter 2.5.1.3 --- Normalization of cDNA Template --- p.64
Chapter 2.5.1.4 --- PCR Amplification of the Target Genes --- p.65
Chapter 2.5.2 --- Western Blotting --- p.66
Chapter 2.6 --- Expression of Human PIAS and PIAS1 Fragments in Prokaryotic System --- p.67
Chapter 2.6.1 --- Preparation of Competent Cells --- p.67
Chapter 2.6.2 --- Small Scale Expression --- p.67
Chapter 2.6.2.1 --- Transformation --- p.67
Chapter 2.6.2.2 --- IPTG Induced Protein Expression --- p.68
Chapter 2.6.3 --- Large Scale Expression of PIAS1 Fragments --- p.70
Chapter 2.6.3.1 --- Transformation --- p.70
Chapter 2.6.3.2 --- IPTG Induced Protein Expression --- p.70
Chapter 2.6.4 --- Purification Trial of MBP-PIAS1-321-410 --- p.71
Chapter 2.6.4.1 --- Binding of Amylose Resin & On Column Cleavage (with Low Concentration of DTT) --- p.71
Chapter 2.6.4.2 --- Elution from the Amylose Resin & Cleavage (with Low Concentration of DTT) --- p.73
Chapter 2.6.4.3 --- Elution from the Amylose Resin & Cleavage (with High Concentration of DTT) --- p.73
Chapter 2.6.4.4 --- Purification of PIAS1-321-410 by Size ExclusionChromatography --- p.73
Chapter 2.6.5 --- Purification of MBP-PIAS1 Fragments --- p.74
Chapter 2.6.5.1 --- Purification by Affinity Column (Amylose) --- p.74
Chapter 2.6.5.2 --- Amylose Resin Regeneration --- p.74
Chapter 2.6.5.3 --- Purification by Both Affinity and Ion Exchange (Heparin) --- p.75
Chapter 2.6.5.4 --- Regeneration of Heparin Column --- p.76
Chapter 2.6.5.5 --- Purification by Size Exclusion Chromatography --- p.76
Chapter 2.6.5.6 --- Regeneration of Size Exclusion Chromatography --- p.77
Chapter 2.6.6 --- Co-expression & Purification of PIAS1 Fragment with E2 (Ubc9) --- p.77
Chapter 2.6.6.1 --- Co-transformation of pMAL-PIASl (Fragments) & pET-Ubc9 --- p.77
Chapter 2.6.6.2 --- Co-expression of PIAS1 Fragments & Ubc9 --- p.78
Chapter 2.6.6.3 --- Purification by Affinity Column (Amylose Resin) --- p.78
Chapter 2.6.6.4 --- Purification by Both Affinity & Ion Exchange (Heparin) --- p.79
Chapter 2.6.6.5 --- Purification by Size Exclusion Chromatography --- p.79
Chapter 2.6.7 --- Urea Treatment for the Purification of PIAS 1 Fragments --- p.80
Chapter 2.6.7.1 --- Transformation --- p.80
Chapter 2.6.7.2 --- IPTG Induced Protein Expression --- p.80
Chapter 2.6.7.3 --- Purification by Affinity Column (Amylose Resin) --- p.80
Chapter 2.6.7.4 --- Purification by Both Affinity & Ion Exchange (Heparin) --- p.80
Chapter 2.6.7.5 --- Purification by Size Exclusion Chromatography --- p.81
Chapter Chapter 3 --- Results --- p.82
Chapter 3.1 --- Tissue Distribution of Human PIAS Genes --- p.82
Chapter 3.1.1 --- Determination of the Number of Cycles for PCR --- p.82
Chapter 3.1.2 --- General Expression Pattern of All PIAS Genes --- p.82
Chapter 3.1.3 --- Tissue Distribution of PIAS1 --- p.83
Chapter 3.1.4 --- Tissue Distribution of PIAS3 --- p.83
Chapter 3.1.5 --- Tissue Distribution of PIASxa --- p.83
Chapter 3.1.6 --- Tissue Distribution of PIASxp --- p.84
Chapter 3.1.7 --- Tissue Distribution of PIASy --- p.84
Chapter 3.2 --- Subcellular Localization of SUMO Pathway Components --- p.90
Chapter 3.2.1 --- Overexpression Confirmation --- p.90
Chapter 3.2.2 --- Multiple Bands Detected After Overexpression of EGFP- SUMO-1 --- p.91
Chapter 3.2.3 --- Subcellular Localization of EGFP --- p.94
Chapter 3.2.4 --- Subcellular Localization of El Subunits --- p.94
Chapter 3.2.5 --- Subcellular Localization of E2 (Ubc9) --- p.95
Chapter 3.2.6 --- Subcellular Localization of PIAS Proteins --- p.95
Chapter 3.2.7 --- Subcellular Localization of PIAS1 Fragments --- p.96
Chapter 3.2.8 --- Subcellular Localization of SUMO-1 --- p.97
Chapter 3.3 --- Differential Protein Expression Pattern after Transient Transfection of SUMO-1 --- p.112
Chapter 3.3.1 --- Protein Expression Profiles after Transient Transfection
Chapter 3.3.2 --- Identification of the Differential Expressed Proteins --- p.113
Chapter 3.4 --- Confirmation of Differentially Expressed Proteins in Cells Overexpressing SUMO-1 --- p.124
Chapter 3.4.1 --- RT-PCR Analyses --- p.124
Chapter 3.4.1.1 --- Downregulation of RNA Transcript of hnRNP A2/B1 isoform B1 --- p.124
Chapter 3.4.1.2 --- No Significant Change in the Transcription Level of UDG --- p.125
Chapter 3.4.2 --- Western Blotting --- p.128
Chapter 3.4.2.1 --- Upregulation of hnRNP A2/B1 at the Protein Level --- p.128
Chapter 3.4.2.2 --- Different Molecular Weight of hnRNP A2/B1 Was Detected --- p.129
Chapter 3.4.2.3 --- Upregulation of UDG at the Protein Level --- p.129
Chapter 3.5 --- Expression & Purification of Human PIAS Proteins & PIAS1 Fragments --- p.133
Chapter 3.5.1 --- Expression of Human PIAS Proteins --- p.133
Chapter 3.5.2 --- Expression of PIAS1 Fragments --- p.135
Chapter 3.5.3 --- A Trial of Purification of MBP-PIAS1-321-410 --- p.137
Chapter 3.5.3.1 --- On Column Cleavage of MBP Tag --- p.137
Chapter 3.5.3.2 --- Cleavage after Elution --- p.137
Chapter 3.5.3.3 --- High Concentration of DTT Used --- p.138
Chapter 3.5.3.4 --- Separation of the Cleaved and Non Cleaved Proteins --- p.138
Chapter 3.5.4 --- Purification of the PIAS 1 Fragments --- p.141
Chapter 3.5.4.1 --- Purified by Affinity Column (Amylose Resin) --- p.141
Chapter 3.5.4.2 --- Purified by Heparin Column --- p.141
Chapter 3.5.4.3 --- Purified by Gel Filtration --- p.143
Chapter 3.5.5 --- Co-expression & Purification of PIAS1 Fragments & E2 --- p.147
Chapter 3.5.5.1 --- Co-expression of PIAS1 Fragments & E2 --- p.147
Chapter 3.5.5.2 --- Co-purification of PIAS1 Fragments & E2 Amylose --- p.147
Chapter 3.5.5.3 --- Co-purification of PIAS1 Fragments & E2 by Heparin --- p.148
Chapter 3.5.5.4 --- Co-purification of PIAS 1 Fragments with Ubc9 by Gel Filtration --- p.148
Chapter 3.5.6 --- Urea Treatment for Purification of PIAS1 Fragments --- p.153
Chapter 3.5.6.1 --- Purification by Amylose Resin --- p.153
Chapter 3.5.6.2 --- Purification by Heparin --- p.153
Chapter 3.5.6.3 --- Purification by Gel Filtration --- p.154
Chapter Chapter 4 --- Discussion --- p.157
Chapter 4.1 --- Tissue Specificity of PIAS Proteins --- p.157
Chapter 4.1.1 --- Principle of Tissue Specificity Study --- p.157
Chapter 4.1.2 --- Importance of Sumoylation --- p.158
Chapter 4.1.3 --- Role of Sumoylation in Reproduction --- p.159
Chapter 4.1.4 --- Functional Role of Sumoylation in Other Tissue --- p.160
Chapter 4.2 --- Subcellular Localization of SUMO Pathway --- p.162
Chapter 4.2.1 --- SUMO Conjugation Occurs in the Nucleus --- p.162
Chapter 4.2.2 --- Does Sumoylation Occur Outside the Nucleus --- p.163
Chapter 4.2.3 --- Dots-like Structure Formed by the PIAS --- p.164
Chapter 4.2.4 --- SAP Domain and PINIT Motif Are Not Essential for Nuclear Targeting --- p.165
Chapter 4.2.5 --- Signal Involves in the Formation of Nuclear Speckles --- p.167
Chapter 4.3 --- Differentially Expressed Proteins under SUMO-1 Overexpression --- p.169
Chapter 4.3.1 --- Increase in High Molecular Weight Proteins --- p.169
Chapter 4.3.2 --- Upregulation of hnRNP A2/B1 & UDG in Protein Level --- p.170
Chapter 4.3.3 --- Variants of hnRNP A2/B1 Formed --- p.172
Chapter 4.3.4 --- Possibility of Sumoylation on hnRNP A2/B1 isoform B1 & UDG --- p.172
Chapter 4.3.5 --- Possible Roles of SUMO-1 on hnRNP A2/B1 isoform B1 --- p.174
Chapter 4.3.6 --- Mechanism of Sumoylation on mRNA Processing --- p.175
Chapter 4.3.7 --- Possible Roles of SUMO-1 on UDG --- p.176
Chapter 4.3.8 --- Important of SUMO on Genome Integrity --- p.178
Chapter 4.3.9 --- Sumoylation and Carcinogenesis --- p.178
Chapter 4.4 --- Protein Purification of the Human PIAS Proteins & PIAS1 Fragments --- p.180
Chapter 4.4.1 --- Low Expression Level & Solubility of the PIAS Proteins --- p.180
Chapter 4.4.2 --- High Expression Level & Solubility of PIAS 1 Fragments --- p.181
Chapter 4.4.3 --- Incorrect Disulfide Bond Formation of the PIAS1 Fragments --- p.182
Chapter 4.4.4 --- MBP-PIAS1 Fragments Formed Soluble Aggregates --- p.182
Chapter 4.4.5 --- A Low Concentration of Urea Cannot Dissociate the Soluble Aggregates --- p.183
Chapter 4.4.6 --- Aggregation May Weaken the Interaction between the PIAS1 Fragments & Ubc9 --- p.184
Chapter 4.5 --- Conclusion --- p.185
Chapter 4.6 --- Future Perspectives --- p.187
Chapter 4.6.1 --- Identification of the Role of SUMO Interacting Motif in the Nuclear Speckle Formation --- p.187
Chapter 4.6.2 --- Investigation of Sumoylation on Liver Cancer --- p.187
Chapter 4.6.3 --- Optimization of the Expression & Purification of the PIAS Proteins --- p.188
References --- p.189
Appendix --- p.207
Teixeira, Márcia Joana Nascimento. "Investigation of genes associated to mitochondrial import and post-translational processing in LHON." Master's thesis, 2018. http://hdl.handle.net/10316/86217.
Full textThe Leber’s Hereditary Optic Neuropathy (LHON) is a rare mitochondrial disorder characterized by the loss of retinal ganglion cells (RGCs), which are responsible for the conduction of the visual information to the cerebral cortex. This loss leads to the degeneration of the optic nerve resulting in a sudden loss of vision. The major confirmed genetic causes of this disorder are mitochondrial DNA (mtDNA) mutations in genes encoding subunits belonging to the complex I of the mitochondrial respiratory chain (MRC), namely MT-ND1 (m.3460G>A), MT-ND4 (m.11778G>A) and MT-ND6 (m.14484T>C). The presence of these mutations do not totally explain the disease phenotype, since the existence of individuals carrying homoplasmic mtDNA mutations without disease manifestation have been reported. There are several factors including nuclear genetic modifiers that have been suggested to be influencers of the phenotype manifestation. The presence of nuclear gene variants in subunits and proteins involved in the mitochondrial protein import and processing of imported precursor proteins may contribute as genetic modifiers in LHON. To assess this possibility, a search for the mentioned genetic variants in whole-exome sequencing data was performed and the prediction of functional impact of the relevant variants was evaluated using bioinformatics’ tools. This analysis resulted in the identification of the promising c.280C>T and c.170delA/c.172_176delGGCAC variants from MIPEP and TOMM20L gene, respectively, in a LHON individual with the m.14484T>C mutation. These variants were confirmed using two additional methods, namely Sanger sequencing and PCR-RFLP.The implications at the protein level have been investigated in a preliminary study. Limitations at the level of tissue specificity of Tom20L protein expression did not allow the evaluation of the impact of the genetic variants identified in the protein expression. Further experimental validation of the genetic variants is required for the clarification of its pathogenicity, but the results suggest that the alteration c.280C>T of MIPEP gene may have an additional effect on the pathogenicity of the variant m.14484T>C.
A Neuropatia Ótica Hereditária de Leber (LHON) é uma doença mitocondrial rara caracterizada pela perda de células ganglionares da retina, responsáveis pelo envio da informação visual para o córtex cerebral. A perda destas células resulta na degenerescência do nervo ótico e, consequentemente, na perda súbita da visão. As causas genéticas que comprovam a presença desta doença são mutações em genes mitocondriais que codificam subunidades do complexo I da cadeia respiratória mitocondrial, nomeadamente MT-ND1 (m.3460G>A), MT-ND4 (m.11778G>A) e MT-ND6 (m.14484T>C). A presença destas mutações não explica totalmente o fenótipo da doença, visto que a existência de indivíduos portadores de mutações do mtDNA homoplásmicas, sem manifestação da doença tem sido reportada. Existem vários fatores incluindo fatores genéticos nucleares, que têm sido sugeridos como moduladores da manifestação da doença. Um destes fatores genéticos poderá ser a presença de variantes em genes nucleares, que codificam subunidades e proteínas envolvidas na importação de proteínas para a mitocôndria e no processamento pós-tradução e importação. No sentido de avaliar esta possibilidade, foi realizada a pesquisa destas variantes em dados de sequenciação de exoma total e foi avaliada a previsão do impacto funcional das variantes relevantes. A análise resultou na identificação de 3 variantes promissoras: c.170delA e c.172_176delGGCAC no gene TOMM20L e c.280C>T no gene MIPEP, num doente afetado com LHON portador da mutação patogénica m.14484T>C. As variantes identificadas foram confirmadas por dois métodos adicionais, sequenciação de Sanger e PCR-RFLP. As implicações das variantes genéticas ao nível da proteína foram investigadas num estudo preliminar. Limitações ao nível da especificidade da expressão tecidular da proteína Tom20L não permitiram avaliar o impacto das variantes genéticas identificadas ao nível da expressão da proteína. A validação funcional e experimental adicional das variantes genéticas identificadas será necessária para clarificar a sua patogenicidade, mas os resultados sugerem que a alteração c.280C>T do gene MIPEP poderá ter um efeito potenciador da patogenicidade da variante m.14484T>C.
Outro - Projecto financiado por Fundos FEDER através do Programa Operacional Factores de Competitividade - COMPETE 2020 e por fundos nacionais através da FCT - Fundação para a Ciência e a Tecnologia no âmbito do projecto Estratégico com referência atribuída pelo COMPETE: POCI-01-0145-FEDER-007440
Swartz, Jennifer Elizabeth. "The SR protein 9G8 and the Wilms' tumor suppressor protein WT1 promote translation of mRNAs with retained introns." 2007. http://wwwlib.umi.com/dissertations/fullcit/3300270.
Full textSong, Yue. "Characterization of reptilian protamine genes and study of post-translational processing of the protamine-like protein in a bivalve mollusc." 2003. http://hdl.handle.net/1828/411.
Full text"Histone post-translational modifications in the brain of the senescence-accelerated prone 8 mouse." Thesis, 2009. http://library.cuhk.edu.hk/record=b6074980.
Full textNowadays, many countries including China are experiencing aging populations. Aging has become the major risk factor for many diseases, such as neurodegenerative disease. The studies on the role of epigenetics in the aging process have grown tremendously in recent years. However, no systematic investigations have provided the information on histone post-translational modifications (PTMs) in aged brain and the roles of histone PTMs in brain aging are still unknown.
This study gave a new insight into the link between histone PTMs and brain aging. It could provide the experimental evidence for future studies and help us to better understand aging or neurodegenerative disease at epigenetic level. Furthermore, it could benefit for setting up the strategies for epigenetic therapy to neurodegenerative disease.
Wang, Chunmei.
Adviser: Ngai Saiming.
Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: .
Thesis (Ph.D.)--Chinese University of Hong Kong, 2009.
Includes bibliographical references (leaf 136).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
"The potential role of posttranslational modifications on angiotensin II types 2 (AT2) receptor trafficking." Thesis, 2011. http://library.cuhk.edu.hk/record=b6075136.
Full textThesis (Ph.D.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (leaves 215-235).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Mashtalir, Nazar. "Regulation of BAP1 tumor suppressor complex by post-translational modifications." Thèse, 2014. http://hdl.handle.net/1866/12772.
Full textBAP1 is a nuclear deubiquitinating enzyme (DUB) that acts as a transcription regulator and a DUB of nucleosomal histone H2AK119. In the recent years, it has become clear that BAP1 is a major tumor suppressor, inactivated in a plethora of hereditary and sporadic human malignancies. Although, we now accumulated a significant body of knowledge in respect to the occurrence, penetrance and impact of BAP1 disruption in cancer, its mechanism of action and regulation remained poorly defined. This work is dedicated to the biochemical and functional characterization of the BAP1 multiprotein complex and presents one of the first cases regarding its regulation by post-translational modifications. First, we defined the initial composition of the BAP1 complex and its main interacting components. Second, we specifically focused on two aspects of BAP1 regulation. We described the cross regulation between the two major components of the complex namely HCF-1 and OGT. We found that HCF-1 is important for the maintenance of the cellular levels of OGT. OGT, in turn, is required for the proper maturation of HCF-1 by promoting O-GlcNAcylation-mediated limited proteolysis of its precursor. Third, we discovered an intricate regulatory mechanism of BAP1 mediated by the atypical ubiquitin ligase UBE2O. UBE2O multi-monoubiquitinates BAP1 on its NLS and promotes its exclusion from the nucleus. Importantly, our work emphasises the role of the autocatalytic activity of both enzymes namely the auto-deubiquitination activity of BAP1, required for the maintenance of nuclear BAP1 and the auto-ubiquitination of UBE2O implicated in its nucleocytoplasmic transport. Significantly, we found that auto-deubiquitination of BAP1 is disrupted by cancer-associated mutations, indicating the involvement of this process in tumor suppression.
Ramsey, Catherine Sharon. "Posttranslational modifications of NF-kB and MEK-1 /." 2007. http://wwwlib.umi.com/dissertations/fullcit/3280022.
Full textBarker, Megan. "Structural Investigation of Processing α-Glucosidase I from Saccharomyces cerevisiae." Thesis, 2010. http://hdl.handle.net/1807/32660.
Full text