Academic literature on the topic 'Postconditioning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Postconditioning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Postconditioning"
Luo, Wanjun, Bei Li, Guoqiang Lin, Ri Chen, and Rimao Huang. "Does cardioplegia leave room for postconditioning in paediatric cardiac surgery?" Cardiology in the Young 18, no. 3 (June 2008): 282–87. http://dx.doi.org/10.1017/s1047951108002072.
Full textVinten-Johansen, Jakob, Derek M. Yellon, and Lionel H. Opie. "Postconditioning." Circulation 112, no. 14 (October 4, 2005): 2085–88. http://dx.doi.org/10.1161/circulationaha.105.569798.
Full textHeusch, Gerd. "Postconditioning." Journal of the American College of Cardiology 44, no. 5 (September 2004): 1111–12. http://dx.doi.org/10.1016/j.jacc.2004.06.013.
Full textCouvreur, Nicolas, Laurence Lucats, Renaud Tissier, Alain Bize, Alain Berdeaux, and Bijan Ghaleh. "Differential effects of postconditioning on myocardial stunning and infarction: a study in conscious dogs and anesthetized rabbits." American Journal of Physiology-Heart and Circulatory Physiology 291, no. 3 (September 2006): H1345—H1350. http://dx.doi.org/10.1152/ajpheart.00124.2006.
Full textSato, Hiroshi, Roberto Bolli, Gregg D. Rokosh, Qiuli Bi, Shujing Dai, Gregg Shirk, and Xian-Liang Tang. "The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats." American Journal of Physiology-Heart and Circulatory Physiology 293, no. 4 (October 2007): H2557—H2564. http://dx.doi.org/10.1152/ajpheart.00858.2007.
Full textYAMAKI, IGOR NAGAI, RUY VICTOR SIMÕES PONTES, FELIPE LOBATO DA SILVA COSTA, VITOR NAGAI YAMAKI, RENAN KLEBER COSTA TEIXEIRA, EDSON YUZUR YASOJIMA, and MARCUS VINICIUS HENRIQUES BRITO. "Kidney ischemia and reperfunsion syndrome: effect of lidocaine and local postconditioning." Revista do Colégio Brasileiro de Cirurgiões 43, no. 5 (October 2016): 348–53. http://dx.doi.org/10.1590/0100-69912016005012.
Full textKupai, Krisztina, Csaba Csonka, Veronika Fekete, Louise Odendaal, Jacques van Rooyen, De Wet Marais, Tamás Csont, and Péter Ferdinandy. "Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite." American Journal of Physiology-Heart and Circulatory Physiology 297, no. 5 (November 2009): H1729—H1735. http://dx.doi.org/10.1152/ajpheart.00484.2009.
Full textPignataro, Giuseppe, Robert Meller, Koichi Inoue, Andrea N. Ordonez, Michelle D. Ashley, Xiong Zhigang, and Roger P. Simon. "In Vivo and In Vitro Characterization of a Novel Neuroprotective Strategy for Stroke: Ischemic Postconditioning." Journal of Cerebral Blood Flow & Metabolism 28, no. 2 (September 19, 2007): 232–41. http://dx.doi.org/10.1038/sj.jcbfm.9600559.
Full textGrewal, Amarjot Kaur, Nirmal Singh, and Thakur Gurjeet Singh. "Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway." Canadian Journal of Physiology and Pharmacology 97, no. 11 (November 2019): 1094–101. http://dx.doi.org/10.1139/cjpp-2019-0188.
Full textPagliaro, Pasquale, and Claudia Penna. "Cardiac Postconditioning." Antioxidants & Redox Signaling 14, no. 5 (March 2011): 777–79. http://dx.doi.org/10.1089/ars.2010.3531.
Full textDissertations / Theses on the topic "Postconditioning"
Flick, Moritz [Verfasser]. "Pathways of Helium Postconditioning induced Cardioprotection / Moritz Flick." Kiel : Universitätsbibliothek Kiel, 2018. http://d-nb.info/1154765555/34.
Full textPenson, Peter Edward. "beta-adrenoceptor subtypes involved in myocardial preconditioning and postconditioning." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54502/.
Full textJanota, Danielle Marie. "Alpha1-Adrenergic Receptor Activation Mimics Ischemic Postconditioning in Cardiac Myocytes." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1406562863.
Full textTsang, Andrew. "Ischaemic postconditioning in normal and type 2 diabetic rat hearts." Thesis, University College London (University of London), 2006. http://discovery.ucl.ac.uk/1446210/.
Full textKratz, Verena Christiane [Verfasser]. "Mechanismen der Postconditioning-vermittelten Protektion gegen den endothelialen Reperfusionsschaden / Verena Christiane Kratz." Gießen : Universitätsbibliothek, 2011. http://d-nb.info/106297249X/34.
Full textVan, Vuuren Derick. "Postconditioning the isolated perfused rat heart : the role of kinases and phosphatases." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/20864.
Full textENGLISH ABSTRACT: It has recently been observed that the application of multiple short cycles of reperfusion and ischaemia, at the onset of reperfusion, elicits cardioprotection against injury due to prior sustained ischaemia. This phenomenon has been termed “postconditioning” (postC) and is of special interest due to its clinical applicability. Although much work has been done to delineate the mechanism of protection, there is still controversy regarding the precise algorithm of postC, the importance of the reperfusion injury salvage kinases (RISK), as well as uncertainty about the possible role of p38 MAPK and the protein phosphatases in postC cardioprotection. The aims of this study were therefore: I. To develop and characterise a cardioprotective postC protocol in the ex vivo rat heart, using both the retrogradely perfused and working heart models. II. To characterise the profiles of PKB/Akt, ERK p42/p44 and p38 MAPK associated with the postC intervention. III. To investigate the possible role of the serine/threonine protein phosphatases type 1 and type 2A (PP1 and PP2A) in the mechanism of postC. Hearts from male Wistar rats were perfused in both the retrograde Langendorff (at a perfusion pressure of 100 cmH2O and diastolic pressure set between 1 and 10 mmHg) and working heart models (preload: 15 cmH20 and afterload: 100 cmH20). Several different postC protocols were tested for their cardioprotective effect, as analysed by infarct size (IFS; determined by triphenyltetrazolium chloride (TTC) staining) and functional recovery. Experimental parameters tested were the number of cycles (3,4 or 6), the duration of the cycles (10, 15, 20 or 30 seconds), the method of application (regional or global) and temperature during the intervention (36.5 or 37 °C). Different sustained ischaemic insults were also utilised: 35 minutes regional (RI) or 20, 25, 30 and 35 minutes global ischaemia (GI). Hearts treated with a cardioprotective postC intervention or standard reperfusion after sustained ischaemia, were freeze-clamped at 10 and 30 minutes reperfusion in both perfusion models. Tissue samples were then analyzed using Western blotting, probing for total and phosphorylated PKB/Akt, ERK p42/p44 and p38 MAPK. The contribution of PKB/Akt and ERK p42/p44 activation to cardioprotection was also investigated by administration of inhibitors (A6730 and PD098059 respectively) in the final 5 minutes of ischaemia and the first 10 minutes of reperfusion, in the presence and absence of the postC intervention. The effect of these inhibitors were analyzed in terms of IFS and kinase profiles. The possible role of the phosphatases in postC was investigated by observing the effect of cantharidin (a PP1 and PP2A inhibitor) treatment directly before sustained ischaemia (PreCanth) or in reperfusion (PostCanth), in the presence and absence of postC, on IFS and kinase profiles. A postC protocol of 6x10 seconds global reperfusion / ischaemia, at 37°C, was found to give the best and most consistent reduction in infarct size in both the Langendorff (IFS in NonPostC: 47.99±3.31% vs postC: 27.81±2.49%; p<0.0001) and working heart (IFS in NonPostC: 35.81±3.67% vs postC: 17.74±2.73%, p<0.001) models. It could however only improve functional recovery in the Langendorff model (after 30 minutes GI: rate pressure product (RPP) recovery: NonPostC = 12.27±2.63% vs postC = 24.61±2.53%, p<0.05; and after 35 minutes GI: left ventricular developed pressure (LVDP) recovery: NonPostC = 28.40±7.02% vs postC = 48.49±3.14%, p<0.05). This protection was associated with increased PKB/Akt (NonPostC: 0.88±0.26 AU (arbitrary unit) vs postC: 1.65±0.06 AU; p<0.05) and ERK p42 (NonPostC: 2.03±0.2 AU vs postC: 3.13±0.19 AU; p<0.05) phosphorylation. Inhibition of PKB/Akt activation with A6730 (2.5 μM) abrogated the infarct sparing effect of postC. Administration of cantharidin, either before of after ischaemia, in the absence of postC, conferred an infarct sparing effect (IFS in PreCanth: 15.42±1.80%, PostCanth: 21.60±2.79%; p<0.05) associated with an increase in the phosphorylation of MAPK p38 (administration before ischaemia: NonCanth: 1.52±0.26 AU vs PreCanth: 2.49±0.17 AU, p<0.05; and administration after ischaemia: NonCanth: 5.64±1.17 AU vs PostCanth: 10.69±1.29 AU, p<0.05) and ERK p42 (when administered in reperfusion; NonCanth: 2.24±0.21 AU vs PostCanth: 3.34±0.37 AU; p<0.05). Cantharidin treatment combined with the postC intervention did not elicit an additive infarct sparing effect (postC: 17.74±2.72%, PreCanth-postC: 13.30±3.46% and PostCanth-postC: 15.39±2.67%). In conclusion: a postC protocol of 6x10 seconds global ischaemia / reperfusion, at 37°C, confers the best infarct sparing effect in both the Langendorff and working rat heart models. This protection is associated with ERK p42 and PKB/Akt phosphorylation, although only PKB/Akt is necessary for cardioprotection. We could not find evidence for PP1 and PP2A involvement in postC, although inhibition of these phosphatases per se does elicit an infarct sparing effect. The latter observation suggests that phosphatase activation during ischaemia / reperfusion is potentially harmful.
AFRIKAANSE OPSOMMING: Dit is onlangs waargeneem dat toediening van meervoudige siklusse herperfusie / iskemie, met die aanvang van herperfusie, die hart teen iskemie / herperfusie beskadiging beskerm. Hierdie verskynsel, bekend as postkondisionering (postC), geniet tans baie aandag vanweë die kliniese toepaslikheid van die ingreep. Ten spyte van intensiewe navorsing om die betrokke meganisme van beskerming vas te stel, is daar steeds kontroversie oor die presiese algoritme van die ingreep, asook die betrokkenheid van die sogenaamde iskemie herperfusie oorlewings kinases (RISK). Daar bestaan ook onsekerheid oor die rol van die stres-kinase, p38 MAPK, asook die proteïen fosfatases in die meganisme van beskerming teen iskemiese besering. Hierdie studie het dus drie doelstellings gehad: I. Ontwikkeling van ‘n postC protokol wat beskerming ontlok in die rothart ex vivo, deur gebruik te maak van beide die retrograad geperfuseerde ballon model, asook die werkhart model. II. Analiese van die profiele van die kinases PKB/Akt, ERK p42/p44 en p38 MAPK tydens herperfusie van postC en kontrole (NonPostC) harte. III. Ondersoek na die moontlike rol van die serien / treonien proteïen fosfatases tipe 1 en tipe 2A (PP1 en PP2A) in die meganisme van postC beskerming. Harte van manlike Wistar rotte is geperfuseer in beide die retrograad geperfuseerde ballon (d.i. die Langendorff) model (teen ‘n konstante perfusie druk van 100 cmH20 en ‘n diastoliese druk gestel tussen 1 en 10 mmHg), asook die werkhart model (teen ‘n voorbelading van 15 cmH20 en ‘n nabelading van 100 cmH20). Verskeie moontlike postC protokolle is getoets vir hul vermoë om kardiobeskerming te ontlok, in terme van funksionele herstel en infarktgrootte (IFS), soos bepaal deur trifenieltetrazolium chloried (TTC) kleuring. Die eksperimentele veranderlikes tydens die postC protokol wat ondersoek is, sluit in: die aantal siklusse (3, 4 of 6), die duur van die siklusse (10, 15, 20 of 30 sekondes), die wyse van postC toediening (streeks of globaal) en laastens die temperatuur tydens die ingreep (36.5 of 37 °C). Daar is ook gebruik gemaak van verskillende periodes iskemie: 35 minute streeks iskemie (RI), asook 20, 25, 30 en 35 minute globale iskemie (GI). Na 10 of 30 minute herperfusie is harte wat blootgestel is aan ‘n kardiobeskermende postC ingreep of gewone standaard herperfusie na iskemie, in beide perfusie modelle, gevriesklamp. Die weefsel proteïen-inhoud is verder geanaliseer deur van die Western blot tegniek gebruik te maak vir bepaling van die totale en fosforileerde vlakke van PKB/Akt, ERK p42/p44 en p38 MAPK. Die funksionele belang van PKB/Akt en ERK p42/p44 is verder ondersoek deur die effek van ‘n geskikte inhibitor (onderskeidelik A6730 en PD098059, toegedien tydens die laaste 5 minute van iskemie en die eerste 10 minute van herperfusie), in die teenwoordigheid en afwesigheid van die postC ingreep, op infarktgrootte en kinase aktiwiteit te monitor. Die moontlike rol van proteïen fosfatases in postC is ondersoek deur die effek van cantharidin (‘n PP1 en PP2A inhibitor) op infarktgrootte en kinase profiele te ondersoek. Cantharidin is óf onmiddelik voor iskemie óf tydens herperfusie toegedien, in die aan – en afwesigheid van die postC ingreep. Daar is bevind dat ‘n postC protokol van 6x10 sekondes globale iskemie / herperfusie, teen 37°C, die mees effektiewe en konstante verlaging in infarktgrootte teweeg gebring het in beide die ballon model (IFS in NonPostC: 47.99±3.31% vs postC: 27.81±2.49%; p<0.0001), asook die werkhart (IFS in NonPostC: 35.81±3.67% vs postC: 17.74±2.73%, p<0.001). Funksionele herstel kon egter slegs ontlok word in die ballon model (na 30 minute GI: tempo druk produk (RPP) herstel: NonPostC = 12.27±2.63% vs postC = 24.61±2.53%, p<0.05; en na 35 minute GI: linker ventrikulêre ontwikkelde druk (LVDP) herstel: NonPostC = 28.40±7.02% vs postC = 48.49±3.14%, p<0.05). Die infarkt-besparende effek van postC was geassosieer met ‘n toename in die fosforilasie van beide PKB/Akt (NonPostC: 0.88±0.26 AU (arbitrêre eenhede) vs postC: 1.65±0.06 AU; p<0.05) en ERK p42 (NonPostC: 2.03±0.2 AU vs postC: 3.13±0.19 AU; p<0.05). Inhibisie van PKB/Akt met A6730 (2.5 μM) het die infarkt-besparende effek van postC opgehef. Inhibisie van PP1 en PP2A opsigself, deur toediening van cantharidin óf voor óf na iskemie (in die afwesigheid van postC), het ‘n infarkt-besparende effek ontlok (IFS in PreCanth: 15.42±1.80%, PostCanth: 21.60±2.79%; p<0.05). Hierdie kardiobeskerming was geassosieer met ‘n toename in die fosforilasie van beide p38 MAPK (met toediening voor iskemie: NonCanth: 1.52±0.26 AU vs PreCanth: 2.49±0.17 AU, p<0.05; en toediening na iskemie: NonCanth: 5.64±1.17 AU vs PostCanth: 10.69±1.29 AU, p<0.05), asook ERK p42, indien cantharidin toegedien is tydens herperfusie (NonCanth: 2.24±0.21 AU vs PostCanth: 3.34±0.37 AU; p<0.05). Kombinasie van cantharidin behandeling met postC toediening kon egter nie ‘n kumulatiewe infarkt-besparende effek uitlok nie (postC: 17.74±2.72%, PreCanth-postC: 13.30±3.46% en PostCanth-postC: 15.39±2.67%). In samevatting: ‘n PostC protokol van 6x10 sekondes globale iskemie / herperfusie, teen 37°C, ontlok die mees effektiewe infarkt-besparende effek in beide die ballon, sowel as die werkhart modelle. Alhoewel hierdie beskerming geassosieer is met ‘n toename in die fosforilasie van beide PKB/Akt en ERK p42/p44 tydens herperfusie, is dit slegs PKB/Akt wat van funksionele belang is in die meganisme van kardiobeskerming. Ons kon geen bewyse vind vir die betrokkenheid van PP1 en PP2A in postC beskerming nie, alhoewel inhibisie van hierdie fosfatases opsigself infarkt-besparend is. Laasgenoemde waarneming toon dat fosfatase aktivering tydens iskemie / herperfusie skadelike gevolge mag hê.
Lacerda, Lydia. "Role of Tumour Necrosis Factor Alpha (TNFa) in ischaemic and pharmacological postconditioning." Doctoral thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/12384.
Full textIschaemic postconditioning (IPostC) is a powerful protective mechanism that activates prosurvival intrinsic signalling cascades to limit reperfusion injury but the exact signalling pathway involved in this cardioprotective effect still remains unclear.
Smith, Shawn Michael. "Postconditioning manipulation of context associative strength on conditioned responding in conditioned taste aversion." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4566.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (June 27, 2007) Includes bibliographical references.
Pong, Terrence Kwok Cay. "Nitric Oxide and Postconditioning: Cardioprotective Methods for Acute Care of Ischemia Reperfusion Injury." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10540.
Full textEngineering and Applied Sciences
Tsubota, Hideki. "Remote postconditioning may attenuate ischaemia-reperfusion injury in the murine hindlimb through adenosine receptor activation." Kyoto University, 2011. http://hdl.handle.net/2433/142045.
Full textBooks on the topic "Postconditioning"
Jancso, Gabor. Ischaemic Postconditioning Reduces Reperfusion Injury After Aortic Revascularization Surgery. INTECH Open Access Publisher, 2012.
Find full textInnate Tolerance In The Cns Translational Neuroprotection By Pre And Postconditioning. Springer, 2012.
Find full textDowney, James, and Michael Cohen. Endogenous Mechanisms of Cardioprotection. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199544769.003.0008.
Full textHausenloy, Derek, and Derek Yellon, eds. Novel Cardioprotective Strategies. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199544769.003.0011.
Full textBook chapters on the topic "Postconditioning"
Minatoguchi, Shinya. "Ischemic Postconditioning." In Cardioprotection Against Acute Myocardial Infarction, 29–30. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0167-8_4.
Full textMinatoguchi, Shinya. "Pharmacological Postconditioning." In Cardioprotection Against Acute Myocardial Infarction, 31–36. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0167-8_5.
Full textDezfulian, Cameron. "Clinical Cerebral Preconditioning and Postconditioning." In Innate Tolerance in the CNS, 553–66. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-9695-4_26.
Full textChiari, Pascal, Stanislas Ledochowski, and Vincent Piriou. "Ischemia-Reperfusion Concepts of Myocardial Preconditioning and Postconditioning." In Metabolic Disorders and Critically Ill Patients, 453–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64010-5_22.
Full textLekic, Tim, Damon Klebe, Jerry Flores, Regina Peters, William B. Rolland, Jiping Tang, and John H. Zhang. "Remote Ischemic Postconditioning (RIPC) After GMH in Rodents." In Acta Neurochirurgica Supplement, 63–67. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-18497-5_11.
Full textCardoso, Ariel R., Bruno B. Queliconi, and Alicia J. Kowaltowski. "Mitochondrial Reactive Oxygen Species in Myocardial Pre- and Postconditioning." In Studies on Cardiovascular Disorders, 109–23. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-600-9_5.
Full textZhao, Heng. "The Protective Effects of Ischemic Postconditioning in Experimental Stroke." In Innate Tolerance in the CNS, 317–35. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-9695-4_16.
Full textPignataro, Giuseppe, Ornella Cuomo, Antonio Vinciguerra, Rossana Sirabella, Elga Esposito, Francesca Boscia, Gianfranco Di Renzo, and Lucio Annunziato. "NCX as a Key Player in the Neuroprotection Exerted by Ischemic Preconditioning and Postconditioning." In Advances in Experimental Medicine and Biology, 223–40. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-4756-6_19.
Full textLekic, Tim, and John H. Zhang. "Exsanguination Postconditioning of ICH (EPIC-H) Using the Lancet for Brain Bleed in Rodents, Preliminary Study." In Acta Neurochirurgica Supplement, 49–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-18497-5_9.
Full textT., Joseph, Michael W., and Joseph C. "Preconditioning and Postconditioning." In Advances in the Preclinical Study of Ischemic Stroke. InTech, 2012. http://dx.doi.org/10.5772/34228.
Full textConference papers on the topic "Postconditioning"
Shcherbak, Natalia, and Galina Yukina. "EFFECT OF ISCHEMIC POSTCONDITIONING OF BRAIN ON THE DENSITY CD68-POSITIVE NEOCORTICAL CELLS." In XVIII INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3007.sudak.ns2022-18/398.
Full textBabiker, Fawzi, Aishah Al-Jarallah, and Mariam Al-Awadi. "94 The presence of comorbidities in male rats counteract the cardioprotective effects of pacing postconditioning." In British Cardiovascular Society Annual Conference ‘High Performing Teams’, 4–6 June 2018, Manchester, UK. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-bcs.93.
Full textYan, Xiao Hong, Yuan Wang, Ya Lan Ding, Min Hu, Gui Mei Wang, and Xiao Min Guo. "ATF6 activated endoplasmic reticulum stress involved in cardioprotection of hydrogen sulfide postconditioning against cardiac myocytes apoptosis by ischemia reperfusion in vivo." In Annual International Conference on Advanced Research: Physiology. Global Science & Technology Forum (GSTF), 2014. http://dx.doi.org/10.5176/2382-607x_arp14.16.
Full text