Academic literature on the topic 'Potassium Lithium Niobate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Potassium Lithium Niobate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Potassium Lithium Niobate"
Wiegel, M., G. Blasse, and M. Ouwerkerk. "Luminescence of potassium lithium niobate compositions." Materials Research Bulletin 27, no. 5 (May 1992): 617–21. http://dx.doi.org/10.1016/0025-5408(92)90150-x.
Full textM Rust, David. "New Materials Applications in Solar Spectral Analysis." Australian Journal of Physics 38, no. 6 (1985): 781. http://dx.doi.org/10.1071/ph850781.
Full textYang, Changxi, Youting Song, Daofan Zhang, Xiaomin Wang, Tang Zhou, Feidi Fan, and Xing Wu. "Photorefractive properties of potassium lithium niobate crystals." Applied Physics Letters 74, no. 10 (March 8, 1999): 1385–87. http://dx.doi.org/10.1063/1.123558.
Full textZhang, H. X., C. H. Kam, Y. Zhou, X. Q. Han, S. D. Cheng, Y. C. Chan, K. Pita, and Y. L. Lam. "Optical properties of potassium lithium niobate films." Integrated Ferroelectrics 33, no. 1-4 (January 2001): 71–78. http://dx.doi.org/10.1080/10584580108222289.
Full textJuang, Y. D. "Phase transition of lithium potassium niobate ceramics." Solid State Communications 120, no. 1 (September 2001): 25–28. http://dx.doi.org/10.1016/s0038-1098(01)00322-2.
Full textDubey, Ashutosh Kumar, Ryota Kinoshita, and Ken-ichi Kakimoto. "Piezoelectric sodium potassium niobate mediated improved polarization and in vitro bioactivity of hydroxyapatite." RSC Advances 5, no. 25 (2015): 19638–46. http://dx.doi.org/10.1039/c5ra00771b.
Full textNurgazizov N. I., Bizyaev D. A., Bukharaev A. A., Chuklanov A. P., Shur V. Ya., and Akhmatkhanov A. R. "Influence of thermoinduced magnetoelastic effect on domain structure of planar Ni microparticles." Physics of the Solid State 64, no. 9 (2022): 1305. http://dx.doi.org/10.21883/pss.2022.09.54171.29hh.
Full textAshino, Tetsuya, Kan-ichi Makabe, and Kunio Takada. "Determination of elements in lithium potassium niobate and lithium niobate containing vanadium by ICP-AES." Fresenius' Journal of Analytical Chemistry 349, no. 10-11 (1994): 772–74. http://dx.doi.org/10.1007/bf00325656.
Full textONO, Satomi, and Shin-ichi HIRANO. "Processing of Lithium Niobate and Potassium Lithium Niobate Films Using Environmentally-Friendly Aqueous Precursor Solutions." Journal of the Ceramic Society of Japan 115, no. 1348 (2007): 801–7. http://dx.doi.org/10.2109/jcersj2.115.801.
Full textAdachi, Masatoshi, Mayumi Nakatsuji, and Tomoaki Karaki. "Piezoelectric properties of potassium lithium niobate single crystals." Ferroelectrics 262, no. 1 (January 2001): 257–62. http://dx.doi.org/10.1080/00150190108225159.
Full textDissertations / Theses on the topic "Potassium Lithium Niobate"
Volk, Martin [Verfasser]. "Optical ridge waveguides in lithium niobate and potassium titanyl phosphate / Martin Volk." Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2019. http://d-nb.info/1179197119/34.
Full textRejm'ankov'a, Petra. "Etude par diffraction et topographie aux rayons X de monocristaux de LiIO3, de KTiOPO4 et de LiNbO3 sous champ électrique." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10179.
Full textJiang, Quanzhong. "Crystal growth and characterisation of mixed niobates for non-linear optical applications." Thesis, University of Strathclyde, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366805.
Full textFortin, Wulfran. "Contribution à l'étude des propriétés optiques et structurales de solutions solides de niobates de potassium et de lithium K6Li4Nb10O30 (KLN) et de niobates et tantalates d'argent AgNb(x)Ta(1-x)O3 (ATN) pour apllications diélectriques hautes fréquences et génération de seconde harmonique." Metz, 1996. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1996/Fortin.Wulfran.SME9637.pdf.
Full textThe physical properties of the tungsten bronze compound K6Li4Nb10O30 (KLN) and the perovskite compound AgNb(x)Ta(1-x)O3 (ATN), based on the common NbO6 octahedra, were studied theoretically and experimentally. These two families are intensively studied for their strong optical non linearities, suitable for laser beams generation and processing. In section A, a non destructive characterisation process of Nb excess in our samples was performed. It was based on a Raman spectroscopy study and a second harmonic generation study on KLN crystals, A correlation between the frequency of a characteristic mode and Nb excess was evidenced. The Raman spectroscopy study pointed out the possible presence of an overdamped soft mode near the ferroelectric-paraelectric phase transition. Moreover, the Nb concentration of our samples was confirmed by a non collinear phase matching study in SHG experiments. Owing to the extraordinary refraction index strong dependence on Nb concentration, a non critical phase matching can be performed by choosing the Nb content. The KLN system seems to be a promising material for frequency doubling integrated wave guides. In section B of the thesis, the dynamical properties of the perovskite compound AgNb(x)Ta(1-x)O3 (ATN) were analysed. Thanks to a collaboration with Russian (Moscow), Lithuanian (Vilnius) and polish (Katowice) laboratories, a study of the dielectric response of this system, on a broad frequency range ((1 MHz - 30 THz), evidenced the following facts : a high frequency (0. 5 THz) dielectric dispersion occurs, the dispersion exhibits a relaxational nature involving the Nb5+ ions. This dispersion was described by two kinds of response functions. , the control of Nb/Ta substitution can be used to set dielectric permittivity from 100 to 700 without losses in the 1 MHz - 100 GHz range, making ATN compound very interesting for high frequency dielectric devices. At last, in section C, a general discussion on the physical origins of the phase transitions and optical non linearities in the tungsten bronze and the perovskite compounds is presented. The role of NbO6 octahedra on these properties has been evidenced on the basis of the results of sections A and B, and on literature data
FORTIN, WULFRAN KUGEL G. "CONTRIBUTION A L'ETUDE DES PROPRIETES OPTIQUES ET STRUCTURALES DE SOLUTIONS SOLIDES DE NIOBATES DE POTASSIUM ET DE LITHIUM K#6LI#4NB#1#0O#3#0 (KLN) ET DE NIOBATES ET TANTALATES D'ARGENT AGNB#XTA#1#-#XO#3 (ATN) POUR APPLICATIONS DIELECTRIQUES HAUTES FREQUENCES ET GENERATION DE SECONDE HARMONIQUE /." [S.l.] : [s.n.], 1996. ftp://ftp.scd.univ-metz.fr/pub/Theses/1996/Fortin.Wulfran.SME9637.pdf.
Full textTong, Xiaolin. "Properties and applications of potassium lithium tantalate niobate." Thesis, 1998. https://thesis.library.caltech.edu/505/1/Tong_xl_1998.pdf.
Full textHofmeister, Rudolf. "Growth and applications of photorefractive potassium lithium tantalate niobate (KLTN)." Thesis, 1993. https://thesis.library.caltech.edu/3246/1/Hofmeister_rj_1993.pdf.
Full textDas, Suman. "Synthesis and Investigations of a Few Anode Materials for Alkali-based Rechargeable Batteries." Thesis, 2017. https://etd.iisc.ac.in/handle/2005/4272.
Full textAhamad, M. Niyaz. "Multifunctionalities Of Telllurite And Borate Based Glasses Comprising Nano/Micro Crystals Of Tetragonal Tungsten Bronze-Type Ferroelectric Oxides." Thesis, 2009. https://etd.iisc.ac.in/handle/2005/1004.
Full textAhamad, M. Niyaz. "Multifunctionalities Of Telllurite And Borate Based Glasses Comprising Nano/Micro Crystals Of Tetragonal Tungsten Bronze-Type Ferroelectric Oxides." Thesis, 2009. http://hdl.handle.net/2005/1004.
Full textBook chapters on the topic "Potassium Lithium Niobate"
Li, Jun, Yang Li, Zhongxiang Zhou, Ruyan Guo, and Amar Bhalla. "Dielectric Properties of Nb-Rich Potassium Lithium Tantalate Niobate Single Crystals." In Ceramic Transactions Series, 179–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118511350.ch18.
Full textRakhikrishna, R., and J. Philip. "Magneto-Electric Properties of Sodium Potassium Lithium Niobate-Ni/Co Ferrite Nanocomposites." In Green Materials and Environmental Chemistry, 179–202. Includes bibliographical references and index.: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9780429330674-11.
Full textConference papers on the topic "Potassium Lithium Niobate"
Milton, M. J. T., J. Wang, T. D. Gardiner, and D. Rytz. "Potassium Niobate and Lithium Niobate OPO's for Atmospheric Remote Sensing." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cfi6.
Full textXu, Jiayue, Shiji Fan, Yafang Lin, and Yiting Fei. "Growth and characterization of potassium lithium niobate crystals." In Photonics China '98, edited by Chuangtian Chen. SPIE, 1998. http://dx.doi.org/10.1117/12.318264.
Full textZhang, Hong X., Yan Zhou, Chan Hin Kam, X. Q. Han, Shi De Cheng, Boon Siew Ooi, Yee Loy Lam, et al. "Deposition of potassium lithium niobate films by sol-gel method." In International Symposium on Photonics and Applications, edited by Marek Osinski, Soo-Jin Chua, and Shigefusa F. Chichibu. SPIE, 1999. http://dx.doi.org/10.1117/12.370342.
Full textZhang, H. X., C. H. Kam, Y. Zhou, X. Q. Han, S. D. Cheng, J. Zhou, M. B. Yu, Z. Sun, Y. C. Chan, and Y. L. Lam. "Deposition of potassium lithium niobate films for nonlinear optics applications." In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.907060.
Full textMori, Yusuke, Takahiro Obana, Takatomo Sasaki, Norio Ohnishi, Tsuguo Fukuda, and Hiroyuki Tanaka. "Generation of blue light by using potassium lithium niobate crystal." In Compact Blue-Green Lasers. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cbgl.1994.cthd.3.
Full textGettemy, Donald J., Norman P. Barnes, William C. Harker, and Dinh C. Nguyen. "Thermo-optic and Absorption Coefficients of Potassium Titanyl Phosphate, Lithium Niobate and Lithium lodate." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1987. http://dx.doi.org/10.1364/assl.1987.tud12.
Full textAdachi, M., K. Takeuchi, and T. Karaki. "Growth of potassium lithium niobate-tantalate single crystal for piezoelectric applications." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693823.
Full textRasch, Andreas S., and Eberhard Handrich. "Applications of lithium niobate and potassium titanyl phosphate integrated optic devices." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Giancarlo C. Righini and S. Iraj Najafi. SPIE, 1999. http://dx.doi.org/10.1117/12.343725.
Full textRashid, A., and N. V. Giridharan. "Structural, ferroelectric and piezoelectric properties of lithium doped sodium potassium niobate." In INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0019633.
Full textMaxwell, Gisele, Alan Petersen, and Dylan Dalton. "Laser heated pedestal growth of potassium lithium niobate for UV generation." In SPIE LASE, edited by Konstantin L. Vodopyanov. SPIE, 2011. http://dx.doi.org/10.1117/12.873420.
Full text