Journal articles on the topic 'Potential antimicrobial agents'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Potential antimicrobial agents.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
N., K. Undavia, B. Trivedi P., P. Shanishchara A., and P. Trivedi Vasudev. "Synthesis of 2,5-disubstituted 1,3,4-oxadiazoles as potential antimicrobial agents." Journal of Indian Chemical Society Vol. 82, Aug 2005 (2022): 746–47. https://doi.org/10.5281/zenodo.5830153.
Full textSimkó, J., A. Csilek, J. Karászi, and I. Lőrincz. "Proarrhythmic Potential of Antimicrobial Agents." Infection 36, no. 3 (2008): 194–206. http://dx.doi.org/10.1007/s15010-007-7211-8.
Full textBrady, A. J., T. B. Farnan, J. G. Toner, D. F. Gilpin, and M. M. Tunney. "Treatment of a cochlear implant biofilm infection: a potential role for alternative antimicrobial agents." Journal of Laryngology & Otology 124, no. 7 (2010): 729–38. http://dx.doi.org/10.1017/s0022215110000319.
Full textKudiyirickal, Marina George, and Romana Ivančaková. "Antimicrobial Agents Used in Endodontic Treatment." Acta Medica (Hradec Kralove, Czech Republic) 51, no. 1 (2008): 3–12. http://dx.doi.org/10.14712/18059694.2017.1.
Full textPatil, Siddappa A., Shivaputra A. Patil, Ever A. Ble-González, Stephen R. Isbel, Sydney M. Hampton, and Alejandro Bugarin. "Carbazole Derivatives as Potential Antimicrobial Agents." Molecules 27, no. 19 (2022): 6575. http://dx.doi.org/10.3390/molecules27196575.
Full textMandal, Sudip Kumar. "INDANYL ANALOGS AS POTENTIAL ANTIMICROBIAL AGENTS." Asian Journal of Pharmaceutical and Clinical Research 11, no. 5 (2018): 278. http://dx.doi.org/10.22159/ajpcr.2018.v11i5.24635.
Full textStefanovic, Olgica, Ivana Radojevic, and Ljiljana Comic. "Synthetic cinnamates as potential antimicrobial agents." Chemical Industry 69, no. 1 (2015): 37–42. http://dx.doi.org/10.2298/hemind130928014s.
Full textSingh, S. P., and Krishna Jha. "Indolinone Derivatives as Potential Antimicrobial Agents." Zentralblatt für Mikrobiologie 144, no. 2 (1989): 105–9. http://dx.doi.org/10.1016/s0232-4393(89)80073-3.
Full textPatil, Siddappa A., Aravind R. Nesaragi, Raúl R. Rodríguez-Berrios, Sydney M. Hampton, Alejandro Bugarin, and Shivaputra A. Patil. "Coumarin Triazoles as Potential Antimicrobial Agents." Antibiotics 12, no. 1 (2023): 160. http://dx.doi.org/10.3390/antibiotics12010160.
Full textShivam, Yadav Chetana Mayekar Nikita Pagare Alnaj Thange Sonal Yadav. "Naphthalene: A Multidimensional Scaffold in Medicinal Chemistry with Promising Antimicrobial Potential." International Journal Of Pharmaceutical Sciences 2, no. 12 (2024): 3280–95. https://doi.org/10.5281/zenodo.14565869.
Full textMotelica, Ludmila, Denisa Ficai, Anton Ficai, et al. "Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite—Potential Coating for Grapes." Foods 9, no. 12 (2020): 1801. http://dx.doi.org/10.3390/foods9121801.
Full textYimer, Ebrahim M., Ousman A. Mohammed, and Seid I. Mohammedseid. "Pharmacological Exploitation of Non-Steroidal Anti-inflammatory Drugs as Potential Sources of Novel Antibacterial Agents." Anti-Infective Agents 17, no. 2 (2019): 81–92. http://dx.doi.org/10.2174/2211352516666181008114542.
Full textJenssen, Håvard, Pamela Hamill, and Robert E. W. Hancock. "Peptide Antimicrobial Agents." Clinical Microbiology Reviews 19, no. 3 (2006): 491–511. http://dx.doi.org/10.1128/cmr.00056-05.
Full textSaketi, Jaganmohana Rao, S. N. Murthy Boddapati, Raghuram M, Geetha Bhavani Koduru, and Haribabu Bollikolla. "Novel Substituted Indazoles towards Potential Antimicrobial Agents." Oriental Journal Of Chemistry 37, no. 2 (2021): 508–12. http://dx.doi.org/10.13005/ojc/370234.
Full textLokhandwala, S. R., and K. R. Desai. "Novel Organophosphorus Compounds as Potential Antimicrobial Agents." Phosphorus, Sulfur, and Silicon and the Related Elements 183, no. 5 (2008): 1264–71. http://dx.doi.org/10.1080/10426500701640827.
Full textKlimešová, Věra, Martin Svoboda, Karel Waisser, Milan Pour, and Jarmila Kaustová. "New pyridine derivatives as potential antimicrobial agents." Il Farmaco 54, no. 10 (1999): 666–72. http://dx.doi.org/10.1016/s0014-827x(99)00078-6.
Full textGuzmán-Rodríguez, Jaquelina Julia, Alejandra Ochoa-Zarzosa, Rodolfo López-Gómez, and Joel E. López-Meza. "Plant Antimicrobial Peptides as Potential Anticancer Agents." BioMed Research International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/735087.
Full textAmarh, Margaret Amerley, Michael Konney Laryea, and Lawrence Sheringham Borquaye. "De novo peptides as potential antimicrobial agents." Heliyon 9, no. 9 (2023): e19641. http://dx.doi.org/10.1016/j.heliyon.2023.e19641.
Full textIsbel, Stephen R., Siddappa A. Patil, and Alejandro Bugarin. "NHCs silver complexes as potential antimicrobial agents." Inorganica Chimica Acta 563 (April 2024): 121899. http://dx.doi.org/10.1016/j.ica.2023.121899.
Full textSperanza, Barbara, Angela Guerrieri, Angela Racioppo, Antonio Bevilacqua, Daniela Campaniello, and Maria Rosaria Corbo. "Sage and Lavender Essential Oils as Potential Antimicrobial Agents for Foods." Microbiology Research 14, no. 3 (2023): 1089–113. http://dx.doi.org/10.3390/microbiolres14030073.
Full textHuang, Fuqing, Kunling Teng, Yayong Liu, et al. "Bacteriocins: Potential for Human Health." Oxidative Medicine and Cellular Longevity 2021 (April 10, 2021): 1–17. http://dx.doi.org/10.1155/2021/5518825.
Full textMasoamphambe, Effita Fifi, Bright Lipenga, Raymond Pongolani, et al. "The market systems and supply chain of antimicrobial agents in Malawi." Wellcome Open Research 10 (March 5, 2025): 123. https://doi.org/10.12688/wellcomeopenres.23280.1.
Full textRabea, Esraa Yasser, Esraa Dakrory Mahmoud, Nada Khaled Mohamed, et al. "Potential of Venom-Derived Compounds for the Development of New Antimicrobial Agents." Toxins 17, no. 5 (2025): 238. https://doi.org/10.3390/toxins17050238.
Full textManorama, Garima Awasthi. "A Overview Of The 2-Aminopyrimidine Derivatives As Antimicrobial Agents." International Journal of Pharmaceutical Sciences 2, no. 8 (2024): 2420–26. https://doi.org/10.5281/zenodo.13167948.
Full textBin Liew, Kai, Ashok Kumar Janakiraman, Ramkanth Sundarapandian, et al. "A review and revisit of nanoparticles for antimicrobial drug delivery." Journal of Medicine and Life 15, no. 3 (2022): 328–35. http://dx.doi.org/10.25122/jml-2021-0097.
Full textDesai, Nisheeth C., Darshita V. Vaja, Krunalsinh A. Jadeja, Surbhi B. Joshi, and Vijay M. Khedkar. "Synthesis, Biological Evaluation and Molecular Docking Study of Pyrazole, Pyrazoline Clubbed Pyridine as Potential Antimicrobial Agents." Anti-Infective Agents 18, no. 3 (2020): 306–14. http://dx.doi.org/10.2174/2211352517666190627144315.
Full textAlotaibi, Areej M., Nasser B. Alsaleh, Alanoud T. Aljasham, et al. "Silver Nanoparticle-Based Combinations with Antimicrobial Agents against Antimicrobial-Resistant Clinical Isolates." Antibiotics 11, no. 9 (2022): 1219. http://dx.doi.org/10.3390/antibiotics11091219.
Full textKOCADAĞ, Meryemnur, Pinar SANLIBABA, Rezzan KASIM, and Mehmet Ufuk KASIM. "Natural and commercial antimicrobial agents that inhibit the growth of Listeria monocytogenes strains." Scientia Agropecuaria 13, no. 4 (2022): 351–58. http://dx.doi.org/10.17268/sci.agropecu.2022.032.
Full textZhanel, George G., Michael A. Zhanel, and James A. Karlowsky. "Intravenous Fosfomycin: An Assessment of Its Potential for Use in the Treatment of Systemic Infections in Canada." Canadian Journal of Infectious Diseases and Medical Microbiology 2018 (June 25, 2018): 1–13. http://dx.doi.org/10.1155/2018/8912039.
Full textPrimon-Barros, Muriel, and Alexandre José Macedo. "Animal Venom Peptides: Potential for New Antimicrobial Agents." Current Topics in Medicinal Chemistry 17, no. 10 (2017): 1119–56. http://dx.doi.org/10.2174/1568026616666160930151242.
Full textGiovine, Arianna, Marilena Muraglia, Marco Florio, et al. "Synthesis of Functionalized Arylaziridines as Potential Antimicrobial Agents." Molecules 19, no. 8 (2014): 11505–19. http://dx.doi.org/10.3390/molecules190811505.
Full textChen, Ying-Ying, Lavanya Gopala, Rammohan R. Yadav Bheemanaboina, et al. "Novel Naphthalimide Aminothiazoles as Potential Multitargeting Antimicrobial Agents." ACS Medicinal Chemistry Letters 8, no. 12 (2017): 1331–35. http://dx.doi.org/10.1021/acsmedchemlett.7b00452.
Full textValent, Aladár, Milan Melnı́k, Daniela Hudecová, Barbora Dudová, Raikko Kivekäs, and Markku R. Sundberg. "Copper(II) salicylideneglycinate complexes as potential antimicrobial agents." Inorganica Chimica Acta 340 (November 2002): 15–20. http://dx.doi.org/10.1016/s0020-1693(02)01062-9.
Full textZia-ur-Rehman, Niaz Muhammad, Afzal Shah, Saqib Ali, Ian S. Butler, and Auke Meetsma. "Supramolecular organotin(IV) dithiocarboxylates as potential antimicrobial agents." Journal of Coordination Chemistry 65, no. 18 (2012): 3238–53. http://dx.doi.org/10.1080/00958972.2012.707316.
Full textSharma, Sahil, Vikas Thakur, Ritu Ojha, Abhishek Budhiraja, Kunal Nepali, and Preet Mohinder Singh Bedi. "Aza Analogs of Flavones as Potential Antimicrobial Agents." Letters in Drug Design & Discovery 10, no. 4 (2013): 327–34. http://dx.doi.org/10.2174/1570180811310040006.
Full textSingh, Girwar, Neeraj Kumar, Ashok K. Yadav, and A. K. Mishra. "Potential antimicrobial agents: Trifluoromethyl-10H-phenothiazines and ribofuranosides." Heteroatom Chemistry 14, no. 6 (2003): 481–86. http://dx.doi.org/10.1002/hc.10165.
Full textVashistha, Vinod Kumar, Sonali Gautam, Renu Bala, Anuj Kumar, and Dipak Kumar Das. "Transition Metal-Based Nanoparticles as Potential Antimicrobial Agents." Reviews and Advances in Chemistry 12, no. 4 (2022): 222–47. http://dx.doi.org/10.1134/s2634827622600244.
Full textOliphant, Catherine M. "Therapeutic Drug Monitoring of Therapy for Infectious Diseases." Journal of Pharmacy Practice 8, no. 1 (1995): 18–28. http://dx.doi.org/10.1177/089719009500800103.
Full textSharma, Praveen Kumar, and Reena Makkar. "A REVIEW: THIAZINES DERIVATIVES TREATED AS POTENTIAL ANTIMICROBIAL AGENTS." Asian Journal of Pharmaceutical and Clinical Research 10, no. 1 (2016): 43. http://dx.doi.org/10.22159/ajpcr.2017.v10i1.115467.
Full textGolkar, Zhabiz, Omar Bagasra, and Donald Gene Pace. "Bacteriophage therapy: a potential solution for the antibiotic resistance crisis." Journal of Infection in Developing Countries 8, no. 02 (2014): 129–36. http://dx.doi.org/10.3855/jidc.3573.
Full textChen, Baixing, T. Fintan Moriarty, Hans Steenackers, et al. "Exploring the potential of naturally occurring antimicrobials for managing orthopedic-device-related infections." Journal of Bone and Joint Infection 9, no. 5 (2024): 249–60. http://dx.doi.org/10.5194/jbji-9-249-2024.
Full textRibeiro, Adriana, Rahaf Alsayyed, Daniele Oliveira, Rui Loureiro, and Helena Cabral-Marques. "Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens." Future Pharmacology 4, no. 3 (2024): 590–625. http://dx.doi.org/10.3390/futurepharmacol4030033.
Full textRAKESH, K. BANERJEE, LAKHAN RAM, and N. SHUKLA B. "A Simple Preparation of 1-Methyl-3-aryl-2-thio-2,4(1H,3H)-quinazolindiones as Potential Antimicrobial Agents." Journal of Indian Chemical Society Vol. 75, Jan 1998 (1998): 52. https://doi.org/10.5281/zenodo.5913210.
Full textYasein, Nada, Wejdan Shroukh, Farihan Barghouti, et al. "The potential counter effect of COVID-19 outbreak on an antimicrobial agents prescribing educational intervention." Journal of Infection in Developing Countries 15, no. 11 (2021): 1653–60. http://dx.doi.org/10.3855/jidc.15213.
Full textKrátký, Martin, Neto-Honorius Houngbedji, and Jarmila Vinšová. "Hidden potential of hydrazinecarboxamides (semicarbazides) as potential antimicrobial agents: A review." Biomedicine & Pharmacotherapy 180 (November 2024): 117556. http://dx.doi.org/10.1016/j.biopha.2024.117556.
Full textOliphant, Catherine M. "Therapeutic Drug Monitoring of Therapy for Infectious Diseases." Journal of Pharmacy Practice 10, no. 1 (1997): 7–19. http://dx.doi.org/10.1177/089719009701000104.
Full textRatajczak, Katarzyna, Agnieszka Piotrowska-Cyplik, and Paweł Cyplik. "Analysis of the Effect of Various Potential Antimicrobial Agents on the Quality of the Unpasteurized Carrot Juice." Molecules 28, no. 17 (2023): 6297. http://dx.doi.org/10.3390/molecules28176297.
Full textZanjani, Negar T., Monica Miranda-Saksena, Anthony L. Cunningham, and Fariba Dehghani. "Antimicrobial Peptides of Marine Crustaceans: The Potential and Challenges of Developing Therapeutic Agents." Current Medicinal Chemistry 25, no. 19 (2018): 2245–59. http://dx.doi.org/10.2174/0929867324666171106155936.
Full textRayan, Mahmoud, Saleh Abu Lafi, Mizied Falah, et al. "Alkyl Gallates as Potential Antibiofilm Agents: A Review." Molecules 28, no. 4 (2023): 1751. http://dx.doi.org/10.3390/molecules28041751.
Full textMorsy, Mohamed A., Enas M. Ali, Mahmoud Kandeel, et al. "Screening and Molecular Docking of Novel Benzothiazole Derivatives as Potential Antimicrobial Agents." Antibiotics 9, no. 5 (2020): 221. http://dx.doi.org/10.3390/antibiotics9050221.
Full text