Dissertations / Theses on the topic 'Poumons – Cancer – Radiothérapie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'Poumons – Cancer – Radiothérapie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Germain, François. "L'utilisation de marges personnalisées dans le traitement du cancer du poumon en radiothérapie." Master's thesis, Université Laval, 2005. http://hdl.handle.net/20.500.11794/19429.
Full textIndividualized margins in radiotherapy planning of lung cancer: analysis of physiological movements and their dosimetric impacts OBJECTIVE: This study is an analysis of physiological movements and their dosimetric impacts when a single thoracic CT-scan is used for treatment planning purposes in radiation oncology. METHODS: This is a study of 15 patients. Three-dimensional conformal radiation therapy was (3D-CRT) was used. A reference clinical plan was constructed and compared with plans using individualized margins (obtained by using five CT-scans). Volumetric and dosimetric analyses were made for each. RESULTS: The total volume occupied by GTV progressed quickly with the fusion of CT-scans. For a similar coverage, target volume was smaller and lung irradiation was slightly decreased. CONCLUSIONS: Even if the individualized margin was used, it produced a limited clinical advantage. All techniques that increase total volume with an aim to include more movements should come to similar conclusions.
St-Hilaire, Jason. "Planification multimodale et optimisation de la dose pour la radiothérapie externe du cancer du poumon." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29478/29478.pdf.
Full textSt-Pierre, Christine. "Évaluation des impacts anatomique et dosimétrique des mouvements induits par la respiration." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29108/29108.pdf.
Full textSévigny, Caroline. "L'inclusion de l'énergie dans les procédés de planification inverse : une étude appliquée aux cancers pulmonaires." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23710/23710.pdf.
Full textBoldea, Vlad. "Intégration de la respiration en radiothérapie : apport du recalage déformable d'images." Lyon 2, 2006. http://theses.univ-lyon2.fr/documents/lyon2/2006/boldea_v.
Full textA major challenge in lung cancer treatment in radiotherapy is to take into account organs movements and deformations in order to improve dose coverage of the tumor and spare the surrounding healthy tissues. We focused on intensity based deformable registration methods applied to 3D computed tomography scans (3D-CT) of the thorax. The goal is to extract movement and deformation information of lungs and tumor. During this PhD we developed a deformable registration platform with multiples regularizations techniques of vector fields. We did three main studies. In the first one we used deformable registration to study the breath-hold reproducibility with ABC device. The breath-hold was efficient for patients with normal lung behavior and inefficient for patients with lung discrepancies. In the second study, we used 4D-CT acquisitions (a 4D-CT acquisition is a set of 3D-CT images acquired over the free-breathing respiration cycle). The goal was to extract and follow thorax movements for a free-breathing treatment and 4D dosimetric studies. We built a first 4D-CT image model with two 3D-CT images acquired at end-inhale and end-exhale stages of the respiration cycle. The long-term goal is to have a complete model of lung and thorax, allowing tumor tracking and respiration synchronized irradiation, in order to optimize the lung cancer treatment in radiotherapy
Martins, Helder Manuel. "Cancers broncho-pulmonaires secondaires à une radiothérapie ou à une chimiothérapie : à propos de 4 observations." Saint-Etienne, 1988. http://www.theses.fr/1988STET6051.
Full textClement-Colmou, Karen. "Impact du fractionnement de la radiothérapie sur le microenvironnement vasculaire tumoral." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT1029/document.
Full textThe tumour blood vessels are immature and dysfunctional, limiting the distribution and efficacy of anticancer drugs. Conventional radiotherapy (2Gy / day) improves their structure, reduces hypoxia and improves the biodistribution of concomitant treatments. However, hypofractionated radiotherapy, using higher doses per fraction, tends to replace conventional schedules. Their consequences on the tumour microenvironment are poorly understood. Our goal was to define the impact of different fractionation schedules on the tumour vascular microenvironment. A fractionation scale, ranging from 2 to 12Gy per fraction, was implemented on two cancer models (prostate and lung). Several phenotypical and functional aspects of the vasculature and anti-tumour efficacy were studied. A radiation-induced vascular maturation was observed, including an increased pericyte coverage and an improved distribution of doxorubicin. In both models, tumour control was better for hypofractionated schedules. Vascular pseudo-normalization was poorly sensitive to fractionation, but hypoxia was improved in a dose-dependent manner. The depth and duration of the improvement was greater in the slow-growing prostate cancer model: hypoxia seemed to depend as much on the kinetics of repopulation of the model as on the quality of the blood supply. Our results highlight the mutual influence of tumour and vascular responses to irradiation. They will be useful to optimize the future delivery schedule of anticancer treatments
Garcia, Robin. "Validations dosimétriques des conditions cliniques des radiothérapies thoraciques." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/788/.
Full textThe thoracic radiotherapy is complex du to the presence of great thicknesses and very sensitive organs. It profited from advanced conformal radiotherapy and breathing control. The dosimetric validation of clinical conditions, using anthropomorphic phantoms, consisted in simulating three types of target volumes, three photons quality index, three lung volumes densities and the irradiation with intensity modulation. The measurements, using radiochromic films, helped to evaluate the algorithm used, for configurations close to the treatments conditions. Recommendations, resulting from this work, relate to the choices of quality index, analytical calculation in the presence of low densities, dosimetric validation methods and the practice of intensity modulated
Giraud, Philippe. "La radiothérapie conformationnelle (RT3D) du cancer du poumon : du volume tumoral macroscopique au volume traité." Toulouse 3, 2000. http://www.theses.fr/2000TOU30112.
Full textRit, Simon. "Prise en compte du mouvement respiratoire pour la reconstruction d'images tomodensitométriques : obtention d'images TDM 4D en salle de traitement pour la radiothérapie du cancer du poumon." Lyon 2, 2007. http://theses.univ-lyon2.fr/documents/lyon2/2007/rit_s.
Full textA computed tomography (CT) represents the 3D map of the linear attenuation coefficients of a X-ray beam. If the patient breath and the motion is not taken into account, the CT images of the thorax are disturbed by strong artifacts such as blur, streaks and bands. The objective of this thesis is to propose methods to correct these artifacts and to apply them in the context of the radiotherapy of the lung cancer to sequences of cone-beam projections acquired with a CT scanner mounted on the gantry of a linear accelerator. The first method uses a respiratory signal to select for the reconstruction the projections corresponding to a same phase. To apply it, we proposed a method to extract automatically the respiratory signal from the cone-beam projections. A quantitative analysis was then performed on simulated data to evaluate the impact of the reconstruction algorithm and of the different selection parameters of the cone-beam projections. We obtain thus CT images without blur but with a quality limited due to the small number of projections used. Other approaches modify the reconstruction algorithm to compensate for the respiratory motion using a realistic model, which allows to use all the acquired projections. We proposed two motion compensated reconstruction methods. The first one is analytic and based on a heuristic. The second one solves the problem algebraically from a discrete formulation of the transformations at stake via two new approaches, one forward and the other backward
Chastagner, Pascal. "Études expérimentales de l'action de la radiothérapie et du topotécan sur des cancers humains greffés chez la souris nude." Nancy 1, 1998. http://www.theses.fr/1998NAN10331.
Full textZhu, Jian. "Modèles prédictifs de toxicité en radiothérapie par modulation d’intensité." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S017/document.
Full textThis thesis is focused on the predictive models of irradiation induced toxicities in intensity modulated radiotherapy. Six different NTCP models were implemented and their parameters were identified at predicting late rectal and bladder toxicities in prostate cancer. Their predictive skills have been demonstrated on both organs. Second, LKB model was used to predict the irradiation induced acute esophagitis after nun-small-cell lung cancer. Then, the benefit of using EUD in prostate cancer IMRT inverse planning was evaluated. The evaluation of the proposed approach proved that the use of EUD significantly decreased both the dose in the bladder and rectum walls. Then, the incorporation of different biological models in IMRT optimization process has been realized. Objective functions were established for different biological factors like NTCP, EUD and TCP. Obtained results show the superiority of the optimization based on biological factors over the optimization relying only on physical factors. Finally, classical NTCP models were corrected to deal with another radiobiological parameter, the α/β ratio. With this additional factor, NTCP models can be extended to predict toxicity for patients with different dose fractionation, these kinds of treatments being more and more clinically used
Bouilhol, Gauthier. "Incertitudes et mouvement dans le traitement des tumeurs pulmonaires : De la radiothérapie à l’hadronthérapie." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0131/document.
Full textThis PhD thesis focuses on the uncertainties and motion management in lung radiation therapy and particle therapy. Passive motion management techniques are considered. They consist in delivering the dose without any respiratory beam monitoring which may be difficult to set up or may introduce additional uncertainties. Clinical and methodological contributions about different treatment steps are proposed. First of all, computed tomography (CT) images for treatment planning must be carefully acquired in the presence of respiration-induced tumor motion. We assessed the impact of motion artifacts on the quality of treatment planning. We also proposed methodologies and recommendations about the optimization of 4D-CT acquisition parameters and an original method for automated motion artifact detection in 4D-CT images. Target delineation introduces one of the main source of uncertainties during radiation therapy treatment planning. We quantified inter-observer variations in the delineation of the gross tumor volume (GTV) and the internal target volume (ITV) using an original method in order to incorporate them in margin calculation. Reduction of motion uncertainties can be achieved by combining an abdominal pressure device with the immobilization system to reduce the amplitude of respiratory motion. We proposed a study to evaluate the usefulness of such a device according to the tumor location within the lung. Delivering the dose to the ITV implies an important exposure of healthy tissues along the tumor trajectory. An alternative strategy consists in irradiating the tumor in its time-averaged mean position, the mid-position. Margins are reduced compared with an ITV-based strategy while maintaining a correct tumor coverage. One part of the work consisted in participating in the implementation of a clinical trial in photon radiation therapy to compare the two strategies, ITV and mid-position. In the margin recipe proposed by van Herk, a Gaussian distribution of all combined errors is assumed. In most cases, respiratory motion has an asymmetric non-Gaussian distribution and the assumption may not be valid for strongly asymmetric tumor motions with a large amplitude. We proposed a numerical population-based model to incorporate asymmetry and non-Gaussianity of respiratory motion in margin calculation. Finally, when taking respiratory motion into account in particle therapy with safety margins, one must consider various parameters, particularly the dose deposit sensitivity to density variations. The last part is dedicated to a discussion on the defining of safety margins in order to optimally take into account respiratory motion
Soysouvanh, Frédéric. "Sénescence cellulaire radio-induite : application à l’irradiation pulmonaire en conditions stéréotaxiques." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS465.
Full textRadiotherapy is the main modality in cancer treatment but is associated with radiation damages on healthy tissues. Endothelial cells (ECs) play a key role in the evolution of radiation-induced normal tissue injuries. Cellular senescence is a powerful tumor suppressor mechanism but, long-term senescence is deleterious for tissue homeostasis. The presence of senescent cells within the radiation-induced lesions has been shown but their role is not well understood. We aimed to identify and understand the molecular mechanisms involved in radiation-induced senescence (RIS) and its role in radiation-induced lung injuries after stereotactic irradiation. In vivo, using luciferase knock-in mice (p16Ink4-LUC) to detect activation of a senescence player, we explored the presence of senescent cells in radiation-induced pulmonary injury. After high-dose lung irradiation of p16Ink4-LUC mice and using bioluminescence imaging we showed the overexpression of p16 in the irradiation field and its persistence up to 21 months after radiation exposure. Immunostainings revealed a panel of heterogeneous senescent cells including pneumocytes, macrophages and ECs. mRNA expression of 44 genes involved in senescence in 6 human primary irradiated ECs revealed that Human Umbilical Vein Endothelial Cells (HUVECs) are the most relevant in term of gene expression. The dynamic molecular profile associated to RIS in HUVECs was analyzed after 9 doses and 7 time points. Using a deep mathematical/bioinformatics analysis, we deciphered the dynamical transcriptional program involved in RIS and we identified IL1-signaling pathway as a key molecular hub which could modulate the senescence phenotype
Grezes-Besset, Louise. "Détection et analyse du mouvement respiratoire à partir d'images fluoroscopiques en radiothérapie." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00735816.
Full textLoriot, Yohann. "Influence de l’inhibition des signaux de survie et radiosensibilisation des cancers pulmonaires." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T072/document.
Full textTargeted therapies are drugs that block a specific molecular target involved in following alterations in cell physiology: growth signal self-sufficiency, insensitivity to growth-inhibitory signals, evasion of apoptosis, an unlimited replicative potential, sustained angiogenesis, tissue invasion, and metastasis. Although these compounds showed efficacy when given alone, there is now a rationale to combine these agents with other antitumor therapies such as chemotherapy, radiation and surgery. In this context, there is compelling data supporting the association between targeted therapies and radiation. The better understanding of mechanisms of sensitivity or resistance to radiation may help to envision new strategies to improve its efficacy. The primary goal of this work was to assess new strategies of radiosensitization based on molecular characteristics of both small cell lung cancer (by targeting Bcl-2 and Bcl- XL proteins as well as IGF-I pathway) and non-small cell lung cancer (by targeting EGFR pathway). The second objective was also to assess new methods to better investigate combination of radiation with new targeted therapies. In the first part of the work, we evaluated the impact of the inhibition of BCL-2 in small cell lung cancer cell lines with oblimersen, an antisense BCL-2 oligodeoxynucleotide and with a small peptide BH3 mimetic, S44563 which targets both Bcl-2 and Bcl- XL proteins. We showed that inhibiting anti-apoptotic mechanisms could enhance radiosensitivity of SCLC cells. S44563 caused SCLC cells to acquire hallmarks of apoptosis through activation of the mitochondrial pathway in Bcl2 and Bcl- XL overexpressing cell lines. S44563 markedly enhanced the sensitivity of SCLC cells to radiation in both in vitro and in vivo assays through apoptosis induction. This positive interaction was explained by the induction of radiation-induced anti-apopototic proteins, mainly Bcl- XL by the NF-κB pathway. These data were confirmed by in vivo experiments showing that the radiosensitization was greater when S44563 was given after the completion of the radiation in the context of radiation-induced oncogenic addiction. In the second part of the work, we showed that IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model. R1507 (a monoclonal antibody directed against IGF-1R), exhibited synergistic effects with both cisplatin and IR in SCLC cell lines through IGF-IR downregulation and reduced activation of downstream AKT. However, we observed a transient reduction of IGF-1R staining intensity in vivo, concomitant to the activation of multiple cell surface receptors and intracellular proteins involved in proliferation, angiogenesis, and survival. These data underscore the challenge of the combination of concomitant radiotherapy and chemotherapy and support the early use of targeted therapies to improve the antitumor efficacy
Girard, Philippe. "Traitement actuel du cancer bronchique non à petites cellules au stade IIIb : à propos d'une série de 44 patients." Saint-Etienne, 1995. http://www.theses.fr/1995STET6405.
Full textThureau, Sébastien. "Apport de l'imagerie fonctionelle par Tomographie par émissions de positons (TEP) en radiothérapie pulmonaire." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR128/document.
Full textRésumé en anglais non disponible
Balosso, Jacques. "Les associations radio-chimiothérapiques concomitantes en cancérologie : une étude fondamentale et revue des applications cliniques." Montpellier 1, 1990. http://www.theses.fr/1990MON11169.
Full textAnouan, Koutoua Joseph. "Correction de l'effet de volume partiel en imagerie fonctionnelle par TEP au 18F-FDG pour le suivi thérapeutique de patients atteints de cancer pulmonaire non à petites cellules." Rouen, 2013. http://www.theses.fr/2013ROUES028.
Full textBertho, Annaïg. "Lésions pulmonaires après irradiation stéréotaxique : modélisation préclinique et aspects radiopathologiques." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS504.
Full textPulmonary stereotactic radiation therapy uses high doses per fraction (6 to 20 Gy). Despite the decrease in irradiated volumes, patients still develop side effects as lung fibrosis. The lack of radiobiological data for high doses per fraction exposure remains an issue. The purpose is therefore to acquire, in vivo, original data in pulmonary radiopathology thanks to the SARRP. Effect of the irradiation volume is characterized by 4 different beam collimations at a dose of 90 Gy. The 3x3 mm² collimator allows observing radiation induced pulmonary fibrosis requiring depletion of club cells and reactive proliferation of type II pneumocytes. Dose effect study was conducted using a single dose range (from 20 to 120 Gy, 3x3mm²). A dose of 60 Gy is required to generate fibrosis. Study of fractionation effect show that a minimum BED3Gy (Biological Effective Dose) of 200 Gy was required to observe pulmonary fibrosis in mice. In vitro, different pulmonary cell lines were irradiated at variable doses per fraction but constant BED. Analysis of 44 genes suggests an epithelial to mesenchymal transition process. At constant BED, there is no significant effect of dose per fraction in our model
Baudet, Vincent. "Modélisation et simulation paramétrable d'objets déformables.Application aux traitements des cancers pulmonaires." Phd thesis, Université Claude Bernard - Lyon I, 2006. http://tel.archives-ouvertes.fr/tel-00279986.
Full textEn partenariat avec le Centre anticancéreux Léon Bérard de Lyon et dans le projet ETOILE, nous proposons de rechercher des modèles de simulations des objets déformables qui prendraient en considération, en plus de la géométrie issue directement de l'imagerie médicale, les paramètres physiologiques mesurés sur les patients afin de pouvoir garantir de meilleures marges d'erreur, dans le cas des tumeurs pulmonaires.
Dans cette thèse, nous avons choisi de modéliser les poumons avec des systèmes masses-ressorts qui sont généralement utilisés dans le monde de l'animation pour le réalisme et la rapidité.
Pour rendre le système précis et directement paramétré par les données mécaniques du patient, nous nous sommes inspirés des travaux de Van Gelder qui introduit un contrôle par les caractéristiques rhéologiques d'un matériaux "2D" linéaire élastique homogène isotrope.
Cependant, après vérification et étude théorique de ce modèle, il est apparut que celui-ci bien que donnant des animations réalistes était erroné.
Nous avons donc entrepris une étude lagrangienne qui nous a permis de rendre ce modèle 2D rectangulaire, puis 3D à base de brique élémentaire cubique, paramétrable.
Nous avons d'autre part déterminer la robustesse de notre système à l'aide de tests d'étirement, gonflement, fléchissement et cisaillement et par comparaison à des tests effectués sur des modèles éléments finis.
Cette thèse explique ainsi comment ce modèle paramétrable a été obtenu, et comment il pourra être relié avec les données physiologiques et dans quelle précision.
Rivera, Sofia. "Evaluation préclinique d’une nouvelle stratégie de radiosensibilisation pharmacologique : l’inhibition des histones désacétylases." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS507/document.
Full textInsufficient results of conventional chemoradiotherapy in non-small cell lung carcinomas (NSCLC) have encouraged assessment of new pharmacological strategies for modulation of radiosensitization based on epigenetic changes. We have investigated the combination of radiotherapy and a novel pan-histone deacetylase inhibitor (HDACi), abexinostat in vitro and in vivo in two NSCLC models and in an early phase clinical trial. Our findings demonstrate that abexinostat enhances radiosensitivity of NSCLC cells in a time dependent way in vitro in normoxia and hypoxia increasing radio-induced caspase dependent apoptosis and persistent DNA double strand breaks associated with decreased DNA damage signaling and repair. Interestingly, abexinostat potentiates tumor growth delay in vivo in combined modality treatments associating not only abexinostat and irradiation but also in the triplet combination of abexinostat, irradiation and cisplatin.We conducted an exploratory phase 1, dose-escalation study of abexinostat in combination with standard hypofractionated radiotherapy (30Gy in 10 fractions) in patients with advanced solid tumors treated in a palliative setting. Among 58 treated patients, the median age was 61.5 years (range, 20-82); 47% of the patients had M1 stage disease, and 95% had received previous chemotherapy alone or chemotherapy in combination with surgery and/or radiotherapy. The recommended phase 2 dose was determined to be 90 mg/m2. Of the 51 patients evaluable for response, best overall response was 8% (1 complete response [CR], 3 partial responses [PRs]), and best loco-regional response was 12% (1 CR and 5 PRs) at a median follow-up of 16 weeks. Of note, patients with target or non-target brain lesions showed encouraging responses, with 1 patient achieving a best loco-regional response of CR. Treatment-emergent grade ≥3 adverse events (AEs) were few, with most common being thrombocytopenia (17%), lymphopenia (12%), and hypokalemia (7%). Six patients (10%) discontinued treatment due to AEs. No grade ≥3 prolongation of the QTc interval was observed, with no treatment discontinuations due to this AE.Altogether, our data demonstrate in vitro and in vivo a potentiation of anti-tumor effect by abexinostat in combination with irradiation in NSCLC. Oral abexinostat combined with radiotherapy was well tolerated in patients with advanced solid tumors. The combination may have potential for treatment of patients with brain lesions.Moreover, our work suggest for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC.Our studies which are part of a translational research strategy highlight the importance of preclinical investigations in the area of radiotherapy and drug combination research. Only rationale preclinical development and methodologically well conducted clinical development will allow new standards of treatment to emerge and improve patient’s prognostic
Beilla, Sara. "Modélisation Monte-Carlo d'un accélérateur linéaire pour la prise en compte des densités pulmonaires dans le calcul de la dose absorbée en radiothérapie stéréotaxique." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30105/document.
Full textFor clinical routine in external Radiotherapy, dose computation is achieved using commercial Treatment Planning Systems (TPS). Since ten years, TPS algorithms have been improved. However they include approximations that are acceptable in most of the clinical cases but they show their limits in some particular conditions for example in presence of small fields and/or low mass y media. And these two conditions are found in the context of stereotactic body radiation therapy (SBRT) of lung tumor. Some studies were published for standard lung densities but none for very low y like in lung during Deep Inspiration Breath Hold (DIBH). This work is a study of dose computation based on a Monte Carlo (MC) model, for different field sizes and mass densities. The first step was to model a TrueBeam(r) linac (Varian, Palo Alto, CA) using data furnished by the manufacturer. This model is built using the Geant4-based GATE platform. The main compounds of the linac head are modeled. Space phase files (i.e. particles files) are furnished by Varian in "IAEAphsp" format and are integrated to the model above the main jaws. To validate this model, a set of simple fields (from 3x3 to 20x20 cm2) in a water phantom is implemented for different photon energies: 6FF, 6FFF, 10FF and 10FFF (FFF = "Flattening Filter Free"). Percentage depth dose (PDD) and lateral profiles are compared to reference measurement in a water tank: respectively 99% and 97% of all the points of these curves passed the Gamma Index test (2% 2mm). Once this validation was completed, a set of simulation was achieved with small field sizes (3x3 to 8x8 cm2) for simple heterogeneous phantoms for which the measurement was achievable. For this purpose, radiochromic films were inserted in phantoms made of PMMA slabs and two types of cork. Cork densities were 0.12 and 0.24 that correspond respectively to lungs during DIBH and free breathing. Results of the MC model for four energies are compared to experimental measurements and to AAA and Acuros Varian's algorithms. AAA algorithm overestimates the dose inside the lung heterogeneity for small field sizes and low density. As an example in the case a 3x3 cm2 field, inside the heterogeneity of density 0.12 an over estimation of 16% in the lung is observed for AAA. The model is finally used for three non-measurable cases: a cylindrical digital reference object and computerized tomography data of a patient during DIBH with a static and stereotactic arc field. Results showed respectively for CT studies an overestimation of dose in the tumor of 7% and 5.4% and in the lungs of 14% and 9.6% by AAA. From a clinical point of view, this means under-dosing the patient and thus a risk of recurrence
Henriques, de Figueiredo Bénédicte. "Evaluation de l’integration des donnees issues de la tomographie par emission de positons en radiotherapie : application à deux modèles cliniques : les cancers ORL et les cancers pulmonaires." Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22125/document.
Full textObjective: To study the impact of Positron Emission Tomography (PET) data on radiotherapy (RT) planning through two clinical models: the head-and-neck cancers (HNC) and the pulmonary cancers. Methods and Materials: For HNC, after a previous phantom study in order to determinate an automatic segmentation method with adaptive thresholding, two series of nine and 15 patients selected for RT, underwent PET with 18F-Fluorodeoxyglucose (FDG) and 18F-Fluoromisonidazole (FMISO). The impact on RT target volumes (TV) and dosimetries was evaluated. For FMISO-PET, several time acquisitions and several segmentation methods were assessed. For pulmonary cancers, the use of a four-dimensional (4D) FDG-PET with partial volume effect (PVE) correction and several segmentation methods was evaluated through the first seven patients enrolled in the PULMOTEP protocol performed by the CHU of Bordeaux. Results: For HNC, FDG-PET led to a RT TV reduction of 40%, with mismatches between PET and CT data. For FMISO-PET images, a better contrast was obtained 4h after FMISO injection. However, segmented volumes obtained at 3 and 4h were not statistically different allowing PET- acquisitions at 3h in routine clinical practice. The use of FMISO-PET allows considering « dose escalation » on hypoxic TV with an increase of tumour control probability by 18,1% without excessive increase of toxicities. For pulmonary cancers, there was no impact of the respiratory motion correction but only one patient on seven presented a mobile tumour. PVE correction had impact on RT TV with an increase of the maximal tumoural activity by 27% and a volume reduction of 15%. Conclusion: For HNC, the validation of these results needs clinical and prospective studies. For pulmonary cancers, the use of 4D-PET must be decided case by case. On the other side, the implementation of automatic software for PVE correction seems interesting
Moussallem, Mazen. "Optimisation de la délimitation automatique des tumeurs pulmonaires à partir de l'imagerie TEP/TDM pour les planifications dosimétriques des traitements par radiothérapie." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00864905.
Full textArshad, Adnan. "Role of stroma and Wound Healing in carcinoma response to ionizing radiation." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01057047.
Full textMathieu, Dominique. "Traitement du cancer pulmonaire non à petites cellules par radiothérapie stéréotaxique d’ablation." Thèse, 2016. http://hdl.handle.net/1866/13873.
Full textLung neoplasia remains the leading cause of cancer death accounting for nearly 6,000 deaths per year in Quebec. In recent years, stereotactic ablative radiotherapy (SABR) has emerged as an alternative treatment to anatomical resection for inoperable patients suffering from early stage non-small cell lung cancer. This technique can deliver highly focused doses such as 30-60 Gy in 1-8 fractions in order to target precisely the treatment volume while sparing healthy tissue. In 2009, the Centre Hospitalier de l’Université de Montréal acquired a robotic SABR apparatus, the CyberKnife™ (CK), a linear accelerator mounted on a moving arm producing non-coplanar photon beams of 6 MV with millimetric precision. This thesis presents two scientific peer reviewed articles adressing some clinical and physical challenges with CK. On one hand, a clinical prospective study reporting the advantages of lung SABR, a technic that offers excellent long-term tumor control and helps maintain the quality of life and lung function. On the other hand, a medical physics study exposing the limits of computed tomography scan acquisition in breath-holding for CK treatment planning.
Ahumada, Daniel F. "Évaluation de la corrélation inter-substitut pour le suivi de tumeurs pulmonaires indirect." Thesis, 2019. http://hdl.handle.net/1866/24364.
Full textThe main objective of this thesis is to prepare the clinical implementation of the Clarity ultrasound system for indirect lung tumours tracking using a surrogate. It is currently used for motion management during prostate treatments and requires adaptation. Our hypothesis is that an internal marker would have a better correlation with the tumour’s position than an external surrogate. The sub-objectives are : 1) test different setups for the image acquisition on patients ; 2) explore the algorithms’ performance for motion detection as well as the image quality metrics on US and dynamic MRI images ; 3) evaluate the correlation between surrogates and a lung structure to determine which performs best. The ultrasound probe is fixed on the treatment couch for the acquisition on healthy volunteers using a mechanical arm. Low pressure on the patient’s skin results in a loss of signal due to the curvilinear shape of the probe. We observed a loss of contact between the probe and the volunteers’ skin due to ample movements causing a deterioration of the image quality. We tested three different motion detection algorithms on dynamic MRI images : normalized cross-correlation (NCC), root mean square error (RMS) and optical flow. The NCC algorithm is the most robust out of the three for 5/9 volunteers for the internal surrogate tracking ( < 0.050). In specific cases, the optical flow method performed better indicating an interest in developping a new algorithm for indirect lung tracking. Finally, the correlation between the surrogates and a lung structure were calculated using the MRI images. The internal surrogate inside the liver was proven more efficient for indirect lung tumour tracking for 8/9 volunteers. External markers give a greater prediction error. It has also been shown that the positioning of the external marker on the patient’s skin impacts the correlation. The abdominal marker is better than the thoracic one for all the volunteers.