Journal articles on the topic 'Powder melting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Powder melting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ayoola, W.A., W.J. Suder, and S.W. Williams. "Identification of Welding Regime in Powder Melting." Nigerian Research Journal of Engineering and Environmental Sciences 6, no. 2` (2021): 574–86. https://doi.org/10.5281/zenodo.5805165.
Full textSu, Pengsheng, Hao Yang, Linping Zhang, Yuewen Zhai, Yuhan Ge, and Xiaozhi Yang. "The research on the geometrical characteristics and microstructure of the cladding track of DZ125L Nickel-based alloy deposited by laser metal direct deposition." Journal of Physics: Conference Series 2819, no. 1 (2024): 012026. http://dx.doi.org/10.1088/1742-6596/2819/1/012026.
Full textYoung, Zachary, Minglei Qu, Meelap Michael Coday, et al. "Effects of Particle Size Distribution with Efficient Packing on Powder Flowability and Selective Laser Melting Process." Materials 15, no. 3 (2022): 705. http://dx.doi.org/10.3390/ma15030705.
Full textTshabalala, Lerato Criselda, Ntombizodwa Mathe, and Hilda Chikwanda. "Characterization of Gas Atomized Ti-6Al-4V Powders for Additive Manufacturing." Key Engineering Materials 770 (May 2018): 3–8. http://dx.doi.org/10.4028/www.scientific.net/kem.770.3.
Full textBigerelle, Maxence, Anaïs Galliere, Yucelys Y. Santana, et al. "A Multiscale Topographical Surface Analysis of High Entropy Alloys Coatings by Laser Melting." Materials 16, no. 2 (2023): 629. http://dx.doi.org/10.3390/ma16020629.
Full textSaprykin, Alexander A., Yuriy P. Sharkeev, Natalya A. Saprykina, and Egor A. Ibragimov. "The Mechanism of Forming Coagulated Particles in Selective Laser Melting of Cobalt-Chromium-Molybdenum Powder." Key Engineering Materials 839 (April 2020): 79–85. http://dx.doi.org/10.4028/www.scientific.net/kem.839.79.
Full textSaprykina, Natalia, Valentina Chebodaeva, Alexandr Saprykin, Yurii Sharkeev, Egor Ibragimov, and Taisiya Guseva. "Synthesis of a three-component aluminum-based alloy by selective laser melting." Metal Working and Material Science 24, no. 4 (2022): 151–64. http://dx.doi.org/10.17212/1994-6309-2022-24.4-151-164.
Full textvan Belle, Laurent, and Alban Agazzi. "Inverse Thermal Analysis of Melting Pool in Selective Laser Melting Process." Key Engineering Materials 651-653 (July 2015): 1519–24. http://dx.doi.org/10.4028/www.scientific.net/kem.651-653.1519.
Full textSaprykina, Natalia, Valentina Chebodaeva, Alexandr Saprykin, Yurii Sharkeev, Egor Ibragimov, and Taisiya Guseva. "Optimization of selective laser melting modes of powder composition of the AlSiMg system." Metal Working and Material Science 26, no. 1 (2024): 22–37. http://dx.doi.org/10.17212/1994-6309-2024-26.1-22-37.
Full textBalyakin, A. V. "Model of interaction between laser radiation and metal powder composition during direct laser growth." VESTNIK of Samara University. Aerospace and Mechanical Engineering 23, no. 4 (2024): 99–111. https://doi.org/10.18287/2541-7533-2024-23-4-99-111.
Full textSaprykina, Natal'ya, Aleksandr Saprykin, Egor Ibragimov, and Margarita Himich. "MODE INFLUENCE OF SELECTIVE LASER IMPACT UPON POROSITY OF SAMPLES OF COBALT, CHROMIUM AND MOLYBDENUM POWDERS." Bulletin of Bryansk state technical university 2021, no. 8 (2021): 22–28. http://dx.doi.org/10.30987/1999-8775-2021-8-22-28.
Full textCondruz, Mihaela Raluca, Gheorghe Matache, and Alexandru Paraschiv. "Characterization of IN 625 recycled metal powder used for selective laser melting." Manufacturing Review 7 (2020): 5. http://dx.doi.org/10.1051/mfreview/2020002.
Full textChristakopoulos, Fotis, Enrico Troisi, and Theo A. Tervoort. "Melting Kinetics of Nascent Poly(tetrafluoroethylene) Powder." Polymers 12, no. 4 (2020): 791. http://dx.doi.org/10.3390/polym12040791.
Full textWright, C. Steven, M. Youseffi, S. P. Akhtar, T. H. C. Childs, C. Hauser, and P. Fox. "Selective Laser Melting of Prealloyed High Alloy Steel Powder Beds." Materials Science Forum 514-516 (May 2006): 516–23. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.516.
Full textAlkahari, Mohd Rizal, Tatsuaki Furumoto, Takashi Ueda, and Akira Hosokawa. "Melt Pool and Single Track Formation in Selective Laser Sintering/Selective Laser Melting." Advanced Materials Research 933 (May 2014): 196–201. http://dx.doi.org/10.4028/www.scientific.net/amr.933.196.
Full textYang, Xinliang, Feng Gao, Fengzai Tang, Xinjiang Hao, and Zushu Li. "Effect of Surface Oxides on the Melting and Solidification of 316L Stainless Steel Powder for Additive Manufacturing." Metallurgical and Materials Transactions A 52, no. 10 (2021): 4518–32. http://dx.doi.org/10.1007/s11661-021-06405-3.
Full textChen, Tiebing, and Yuwen Zhang. "Three-Dimensional Modeling of Selective Laser Sintering of Two-Component Metal Powder Layers." Journal of Manufacturing Science and Engineering 128, no. 1 (2005): 299–306. http://dx.doi.org/10.1115/1.2122947.
Full textVasilevskyi, Oleksandr, Alexandra Woods, Matthew Jones, and Michael Cullinan. "Quantitative Methodology for Assessing the Quality of Direct Laser Processing of 316L Steel Powder Using Type I and Type II Control Errors." Electronics 14, no. 7 (2025): 1476. https://doi.org/10.3390/electronics14071476.
Full textFyrillas, Marios M., and Loucas Papadakis. "Transient Powder Melting in SLM Using an Analytical Model with Phase Change and Spherical Symmetry in a Semi-Infinite Medium." Journal of Manufacturing and Materials Processing 3, no. 2 (2019): 50. http://dx.doi.org/10.3390/jmmp3020050.
Full textLiu, Jin Hui, Rui Di Li, and Can Zhao. "Study on Fiber Laser Single Melting Track During Selective Laser Forming." Advanced Materials Research 97-101 (March 2010): 4020–23. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.4020.
Full textZhang, Cai Jun, Dong Mei Tu, and Min Hu. "Influence of Titanium Compounds on Melting and Crystalline Temperature of Mold Powder." Advanced Materials Research 284-286 (July 2011): 1111–14. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.1111.
Full textUpadhyay, Meet, Chad Sinclair, and Daan Maijer. "Effect of powder properties on mesoscale thermal FEM simulations of powder bed additive manufacturing." IOP Conference Series: Materials Science and Engineering 1281, no. 1 (2023): 012013. http://dx.doi.org/10.1088/1757-899x/1281/1/012013.
Full textSato, Naoko, Masaki Ito, Takayuki Izumida, Toru Shimizu, and Shizuka Nakano. "Usability of Ti6Al4V Powder via Hydride-Dehydride Process for Selective Laser Melting Process." Materials Science Forum 879 (November 2016): 1698–702. http://dx.doi.org/10.4028/www.scientific.net/msf.879.1698.
Full textVinnakota, Raj K., and Dentcho A. Genov. "Surface plasmon induced enhancement in selective laser melting processes." Rapid Prototyping Journal 25, no. 6 (2019): 1135–43. http://dx.doi.org/10.1108/rpj-06-2018-0146.
Full textWu, Haihua, Junfeng Li, Zhengying Wei, and Pei Wei. "Effect of processing parameters on forming defects during selective laser melting of AlSi10Mg powder." Rapid Prototyping Journal 26, no. 5 (2020): 871–79. http://dx.doi.org/10.1108/rpj-07-2018-0184.
Full textFoadian, Farzad, Robert Kremer, Matthias Post, Arvin Taghizadeh Tabrizi, and Hossein Aghajani. "Investigation of In-Situ Low Copper Alloying of 316L Using the Powder Bed Fusion Process." Solids 4, no. 3 (2023): 156–65. http://dx.doi.org/10.3390/solids4030010.
Full textSaprykin, Alexander A., Yuriy P. Sharkeev, Natalya A. Saprykina, and Egor A. Ibragimov. "Surface Formation Mechanisms in Selective Laser Melting of Cobalt-Chromium-Molybdenum Powder." Key Engineering Materials 839 (April 2020): 73–78. http://dx.doi.org/10.4028/www.scientific.net/kem.839.73.
Full textCoe, Hannah G., and Somayeh Pasebani. "Use of Bimodal Particle Size Distribution in Selective Laser Melting of 316L Stainless Steel." Journal of Manufacturing and Materials Processing 4, no. 1 (2020): 8. http://dx.doi.org/10.3390/jmmp4010008.
Full textLin, Che Yi, Hui Yum Bor, Chao Nan Wei, and Chien Hung Liao. "Compositional Optimization of In718 Superalloy Powder for Additive Manufacturing." Materials Science Forum 941 (December 2018): 2167–72. http://dx.doi.org/10.4028/www.scientific.net/msf.941.2167.
Full textAntony, Kurian, and T. Reghunathan Rakeshnath. "Study on selective laser melting of commercially pure titanium powder." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233, no. 7 (2018): 1794–807. http://dx.doi.org/10.1177/0954405418798862.
Full textBaitimerov, R. M., A. B. Liberzon, and V. I. Mitin. "Selective Laser Melting of Mixed EP648-Alumina Powder." Materials Science Forum 946 (February 2019): 966–71. http://dx.doi.org/10.4028/www.scientific.net/msf.946.966.
Full textFeng, Jianqing, Yafeng Lu, Lian Zhou, et al. "The study on melting behavior of precursor powders for powder melting processed YBa2Cu3O7−x superconductors." Physica C: Superconductivity 459, no. 1-2 (2007): 52–55. http://dx.doi.org/10.1016/j.physc.2007.05.001.
Full textUhlmann, Eckart, Julian Polte, Janek Maria Fasselt, et al. "A Comparative Evaluation of Powder Characteristics of Recycled Material from Bronze Grinding Chips for Additive Manufacturing." Materials 17, no. 14 (2024): 3396. http://dx.doi.org/10.3390/ma17143396.
Full textEichler, Fabian, Marco Skupin, Laura Katharina Thurn, Susanne Kasch, and Thomas Schmidt. "Operating limits for beam melting of glass materials." MATEC Web of Conferences 299 (2019): 01004. http://dx.doi.org/10.1051/matecconf/201929901004.
Full textLykov, P. A., and R. M. Baitimerov. "Selective Laser Melting of AlSi12 Powder." Solid State Phenomena 284 (October 2018): 667–72. http://dx.doi.org/10.4028/www.scientific.net/ssp.284.667.
Full textYap, Chor Yen, Hongyi Kenneth Tan, Zhenglin Du, Chee Kai Chua, and Zhili Dong. "Selective laser melting of nickel powder." Rapid Prototyping Journal 23, no. 4 (2017): 750–57. http://dx.doi.org/10.1108/rpj-01-2016-0006.
Full textKobashi, Makoto, and Naoyuki Kanetake. "Morphological Control of Porous Structure in Al-Ti Intermetallics Foam Manufactured by Reactive Precursor Process." Materials Science Forum 794-796 (June 2014): 790–95. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.790.
Full textWang, Yan Yan, Chang Ling Zhou, Chong Hai Wang, Rui Xiang Liu, Xi Zhu Lin, and Hong Zhao Xu. "The Effect of Different Preparation Methods on the Microstructure of Zirconium Diboride Ceramic Powder." Advanced Materials Research 624 (December 2012): 9–12. http://dx.doi.org/10.4028/www.scientific.net/amr.624.9.
Full textCampanelli, Sabina Luisa, Nicola Contuzzi, Paolo Posa, and Andrea Angelastro. "Printability and Microstructure of Selective Laser Melting of WC/Co/Cr Powder." Materials 12, no. 15 (2019): 2397. http://dx.doi.org/10.3390/ma12152397.
Full textSmykova, Polina, Aleksey Ishkov, Alexander Katasonov, et al. "Registration of melting temperature at phase boundaries in melting powder mixtures." Journal of Physics: Conference Series 2697, no. 1 (2024): 012048. http://dx.doi.org/10.1088/1742-6596/2697/1/012048.
Full textJeon, Tae, Tae Hwang, Hye Yun, Chester VanTyne, and Young Moon. "Control of Porosity in Parts Produced by a Direct Laser Melting Process." Applied Sciences 8, no. 12 (2018): 2573. http://dx.doi.org/10.3390/app8122573.
Full textShakirov, I. V., Yu M. Markova, and D. M. Anisimov. "Optimal parameters for selective laser melting of various steel powders." Journal of Physics: Conference Series 2182, no. 1 (2022): 012079. http://dx.doi.org/10.1088/1742-6596/2182/1/012079.
Full textBao, Tao, Yuanqiang Tan, and Yangli Xu. "Mesoscopic Simulation of Core–Shell Composite Powder Materials by Selective Laser Melting." Materials 16, no. 21 (2023): 7005. http://dx.doi.org/10.3390/ma16217005.
Full textTsai, Shu-Yao, Gregory J. Tsay, Chien-Yu Li, Yu-Tzu Hung, and Chun-Ping Lin. "Assessment of Melting Kinetics of Sugar-Reduced Silver Ear Mushroom Ice Cream under Various Additive Models." Applied Sciences 10, no. 8 (2020): 2664. http://dx.doi.org/10.3390/app10082664.
Full textKhan, Rehbar, Inayat Rasool, Mohammad Afzal, and Ateeb Ahmad Khan. "Powder Bed Fusion Techniques in Metal 3D Printing: A Review." Applied Mechanics and Materials 922 (August 19, 2024): 67–75. http://dx.doi.org/10.4028/p-ny5hlx.
Full textIvanova, Tatiana, Miroslav Mashlan, Tomáš Ingr, Hana Doláková, Dmitry Sarychev, and Anna Sedláčková. "Mössbauer Spectroscopy for Additive Manufacturing by Selective Laser Melting." Metals 12, no. 4 (2022): 551. http://dx.doi.org/10.3390/met12040551.
Full textAlamri, Nawaf Mohammad H. "A Review on Powder Bed Fusion Process and Smart Manufacturing Technologies." International Journal of Current Engineering and Technology 11, no. 05 (2021): 500–501. http://dx.doi.org/10.14741/ijcet/v.11.5.1.
Full textZagabathuni Rahul Sankrutyayan, Kadapana Pavan Kumar Reddy, and Y. Rameswara Reddy. "Preparation of 316L stainless steel by using laser powder bed fusion technique." World Journal of Advanced Engineering Technology and Sciences 14, no. 2 (2025): 030–35. https://doi.org/10.30574/wjaets.2025.14.2.0030.
Full textHuang, Sheng, Swee Leong Sing, and Wai Yee Yeong. "Selective Laser Melting of Ti42Nb Composite Powder and the Effect of Laser Re-Melting." Key Engineering Materials 801 (May 2019): 270–75. http://dx.doi.org/10.4028/www.scientific.net/kem.801.270.
Full textSing, Swee Leong, Wai Yee Yeong, Florencia Edith Wiria, et al. "Direct selective laser sintering and melting of ceramics: a review." Rapid Prototyping Journal 23, no. 3 (2017): 611–23. http://dx.doi.org/10.1108/rpj-11-2015-0178.
Full text