Academic literature on the topic 'Power and Energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Power and Energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Power and Energy"
Nah, Do-Baek, Hyo-Soon Shin, and Duck-Joo Nah. "Offshore Wind Power, Review." Journal of Energy Engineering 20, no. 2 (June 30, 2011): 143–53. http://dx.doi.org/10.5855/energy.2011.20.2.143.
Full textGuerra, Gerardo, and Juan A. Martinez Velasco. "A virtual power plant model for time-driven power flow calculations." AIMS Energy 5, no. 6 (2017): 887–911. http://dx.doi.org/10.3934/energy.2017.6.887.
Full textProf.MS.Vaishali R, Prof MS Vaishali R., Prof D. K. shende Prof.D.K.shende, and Prof MS Shubhangi Prof. MS. Shubhangi. "Energy Optimization And Power Scheduling In Low Power Sensor Network." International Journal of Scientific Research 1, no. 3 (June 1, 2012): 40–42. http://dx.doi.org/10.15373/22778179/aug2012/15.
Full textEom, T. Y., C. S. Oh, and S. J. Park. "Wireless Power Transfer Technologies Trends." Journal of Energy Engineering 24, no. 2 (June 30, 2015): 174–78. http://dx.doi.org/10.5855/energy.2015.24.2.174.
Full textPrasad, Hari, Lakshmipathi S, Nelson John Antony D, Vishwas C, and Subhashini S. "SMART POWER GENERATION WITH RENEWABLE ENERGY SOURCES." International Journal of Current Engineering and Scientific Research 6, no. 6 (June 2019): 126–38. http://dx.doi.org/10.21276/ijcesr.2019.6.6.22.
Full textAminuddin, Jamrud, Mukhtar Effendi, Nurhayati Nurhayati, Agustina Widiyani, Pakhrur Razi, Wihantoro Wihantoro, Abdullah Nur Aziz, et al. "Numerical Analysis of Energy Converter for Wave Energy Power Generation-Pendulum System." International Journal of Renewable Energy Development 9, no. 2 (April 20, 2020): 255–61. http://dx.doi.org/10.14710/ijred.9.2.255-261.
Full textDewi, Marmelia P., Andri D. Setiawan, Yusuf Latief, and Widodo Wahyu Purwanto. "Investment decisions under uncertainties in geothermal power generation." AIMS Energy 10, no. 4 (2022): 844–57. http://dx.doi.org/10.3934/energy.2022038.
Full textMoriarty, Patrick. "Global nuclear energy: an uncertain future." AIMS Energy 9, no. 5 (2021): 1027–42. http://dx.doi.org/10.3934/energy.2021047.
Full textArabkoohsar, Ahmad, and Gorm B. Andresen. "A New Bifunctional Energy Storage Solution for Conventional and Renewable Energy Power Plants." Journal of Clean Energy Technologies 5, no. 6 (November 2017): 454–57. http://dx.doi.org/10.18178/jocet.2017.5.6.415.
Full textAzevedo, Joaquim, and Fábio Mendonça. "Small scale wind energy harvesting with maximum power tracking." AIMS Energy 3, no. 3 (2015): 297–315. http://dx.doi.org/10.3934/energy.2015.3.297.
Full textDissertations / Theses on the topic "Power and Energy"
Erices, Muñoz Eduardo Andrés, and Rojas Cristian Patricio Torres. "Sun Power Energy." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/137206.
Full textEduardo Andres Erices Muñoz [Parte I Análisis estratégico y de mercado], Cristian Patricio Torres Rojas [Parte II Análisis organizativo-financiero]
Autores no autorizan el acceso a texto completo de su documento
La necesidad de aumentar la capacidad instalada de la matriz energética del país es un tema que en la última década se ha instalado en la agenda nacional, dado que el crecimiento económico de Chile implica un mayor consumo eléctrico. A su vez, la estrechez energética se ve representada con mayor profundidad en la industria de la minería, especialmente en el norte grande de Chile. El sector minero, además de ser el principal consumidor de energía eléctrica del país, ha experimentado desde el año 2000 una caída sostenida en su productividad, entre otros factores, por los mayores consumos y costos de la energía eléctrica, enfrentando actualmente uno de los precios más altos de América Latina1. Dado lo anterior, el Gobierno está asumiendo un rol más activo, definiendo una Agenda de Energía que incluye como uno de sus ejes el compromiso que un 45% de la capacidad eléctrica que se instalará en el país hasta el año 2025 sean energías renovables no convencionales (ERNC) y, de esta forma, cumplir con la meta de la Ley 20/25 de ingresar a la matriz energética un 20% de ERNC para dicho año. En este sentido, la energía fotovoltaica es una alternativa técnicamente viable para cubrir el consumo eléctrico, principalmente en el norte grande del país, dado que posee un importantísimo potencial solar. El propósito del presente plan de negocios es evaluar la factibilidad económica y financiera de ingresar al negocio de las energías renovables no convencionales, de una manera no convencional. Más allá de este juego de palabras, dado que la mayoría de los proyectos de generación de energía limpia se basan en el modelo de negocios tradicional, o sea generando e inyectando energía al sistema y transando los precios en el mercado spot, la oportunidad de negocio se visualiza en vender directamente la energía a la industria minera, sin intermediarios ni costos de transmisión relevantes. La industria eléctrica nacional está dividida en tres segmentos: generación, transmisión y distribución de energía eléctrica. Las actividades de transmisión y distribución tienen el carácter de monopolio natural. El sector de generación opera en condiciones de competencia, no obstante se caracteriza por ser un mercado altamente concentrado. Asimismo, existen cuatro sistemas eléctricos siendo los dos más importantes el SING (Sistema Interconectado del Norte Grande) y el SIC (Sistema Interconectado Central). La matriz energética del SING se alimenta en un 95% de fuentes térmicas (carbón, diésel, gas natural). En cuanto al desarrollo de proyectos ERNC, a pesar que el país posee condiciones naturales favorables para las energías solar y eólica, recién en el año 2014 se observó un “despegue” de las ERNC en Chile, materializándose proyectos con una capacidad instalada de casi 1.000 MW. Además, a nivel mundial la curva de aprendizaje en el costo de fabricación y operación de la tecnología solar fotovoltaica, ha permitido alcanzar precios competitivos respecto a las fuentes convencionales de energía. El mercado objetivo se concentra en el segmento de generación, a través del suministro eléctrico en base a energías renovables no convencionales, específicamente solar tipo fotovoltaica, para las empresas mineras (cobre) ubicadas en las regiones de Tarapacá y Antofagasta, ya que reúnen las condiciones de vida útil de la faena minera y disponibilidad de terrenos, de acuerdo a la propuesta de valor del proyecto. El modelo de negocios consiste en satisfacer parte de la demanda de energía eléctrica de las empresas mineras señaladas en el párrafo anterior, por medio de una planta solar fotovoltaica de 3 MW de potencia instalada y a través de un contrato de suministro tipo PPA (Power Purchase Agreement) a 20 años. La ventaja competitiva consiste en ofrecer una tarifa estable durante el período del contrato más baja que su tarifa actual en base a generación convencional, lo cual permitirá al cliente capturar y proyectar el ahorro en sus costos operativos. Además, la propuesta tiene la característica que la planta se construirá in-situ, aprovechando la superficie disponible en la faena minera, generando valor compartido en la economía de escala por el costo del terreno y línea de transmisión y conexión eléctrica. La operación y mantenimiento de la planta fotovoltaica estará a cargo de nuestra empresa. Para el desarrollo del negocio, dado que implica montos de inversión relevantes (USD 5,6 millones para cada planta) y se requiere de un respaldo tecnológico y logístico para realizar ese tipo de proyectos, se creará una Unidad Estratégica de Negocio (UEN) denominada “SUN POWER ENERGY” (SPE), bajo la estructura organizacional de E.CL S.A., una de las empresas principales que operan en el SING. Finalmente, en la evaluación financiera se contempla la ejecución de tres plantas solares dentro de los primeros seis años, con un total de aporte de capital requerido de USD 10 millones. Se ha considerado el apalancamiento financiero del proyecto, mediante la obtención de préstamos bancarios por USD 7,8 millones. Como resultado, través del valor actual de los flujos de caja libres descontados a una tasa del 7,5%, se obtiene un valor de la empresa sin deuda de USD 52.382, con una TIR del 7,5% y un periodo de recuperación de la inversión (payback) de 12 años. La TIR del inversionista alcanza al 7,9% con un VAN ajustado de USD 576.161.
Nikonov, M. "Energy resources: wave power." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/62834.
Full textGohar, Ali Hina. "Maximum Power Point Tracking of Photovoltaic system using Non-Linear Controllers." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671122.
Full textLa creciente demanda de energía, el agotamiento de los combustibles fósiles y el aumento del calentamiento global debido a la emisión de carbono han hecho surgir la necesidad de un sistema energético alternativo, de eficiencia general y respetuoso con el medio ambiente. La energía solar se considera una de las formas de energía más inagotables de este universo, pero tiene el problema de la baja eficiencia debido a las diferentes condiciones ambientales. El panel solar exhibe un comportamiento no lineal en condiciones climáticas reales y la potencia de salida fluctúa con la variación de la irradiancia solar y la temperatura. Las condiciones climáticas cambiantes y el comportamiento no lineal de los sistemas fotovoltaicos plantean un desafío en el seguimiento de la variación máxima de PowerPoint. Por lo tanto, para extraer y entregar continuamente la máxima potencia posible del sistema fotovoltaico, en determinadas condiciones ambientales, se debe formular la estrategia de control de seguimiento del punto de máxima potencia (MPPT) que opere continuamente el sistema fotovoltaico en su MPP. Se requiere un controlador no lineal robusto para asegurar MPPT manejando las no linealidades de un sistema y haciéndolo robusto frente a condiciones ambientales cambiantes. El control de modo deslizante (SMC) se usa ampliamente en sistemas de control no lineales y se ha implementado en sistemas fotovoltaicos (PVC) para rastrear MPP. SMC es robusto contra perturbaciones, incertidumbres del modelo y variaciones paramétricas. Representa fenómenos indeseables como el parloteo, inherentes a él, que provocan pérdidas de energía y calor. En esta tesis, en primer lugar, se formula un controlador SMC de orden entero para extraer la máxima potencia de un sistema fotovoltaico solar en condiciones climáticas variables empleando el esquema MPPT de perturbar y observar (P&O) para el sistema fotovoltaico autónomo propuesto. El sistema propuesto consta de dos esquemas de bucles, a saber, el bucle de búsqueda y el bucle de seguimiento. P&O MPPT se utiliza en el bucle de búsqueda para generar la señal de referencia y se utiliza un controlador SMC de seguimiento en el otro bucle para extraer la máxima potencia fotovoltaica. El sistema fotovoltaico está conectado con la carga a través del convertidor elevador DC-DC electrónico de potencia. Primero se deriva un modelo matemático del convertidor elevador y, en base al modelo derivado, se formula un SMC para controlar los pulsos de puerta del interruptor del convertidor elevador. La estabilidad del sistema de circuito cerrado se verifica mediante el teorema de estabilidad de Lyapunov. El esquema de control propuesto se prueba bajo diferentes niveles de irradiancia y los resultados de la simulación se comparan con el controlador clásico proporcional integral derivado (PID). El SMC clásico describe fenómenos indeseables como el parloteo, inherente a él, que causa pérdidas de energía y calor. En la siguiente parte de esta tesis, se analiza el diseño del controlador de modo deslizante adaptativo (ASMC) para el sistema fotovoltaico propuesto. El control adoptado se ejecuta utilizando un ASMC y la mejora se actualiza utilizando un algoritmo de optimización MPPT del Método de búsqueda de patrón mejorado (IPSM). Se utiliza un IPSM MPPT para generar el voltaje de referencia para controlar el controlador ASMC subyacente. Se ha realizado una comparación con otros dos algoritmos de optimización, a saber, Perturb \ Observe (P&O) y Particle Swarm Optimization (PSO) con IPSM para MPPT. Como estrategia no lineal, la estabilidad del controlador adaptativo está garantizada mediante la realización de un análisis de Lyapunov.
The increasing energy demands, depleting fossil fuels, and increasing global warming due to carbon emission has arisen the need for an alternate, overall efficiency, and environment-friendly energy system. Solar energy is considered to be one of the most inexhaustible forms of energy in this universe, but it has the problem of low efficiency due to varying environmental conditions. Solar panel exhibits nonlinear behavior under real climatic conditions and output power fluctuates with the variation in solar irradiance and temperature. Changing weather conditions and nonlinear behavior of PV systems pose a challenge in the tracking of varying maximum PowerPoint. Hence, to continuously extract and deliver the maximum possible power from the PV system, under given environmental conditions, the maximum power point tracking (MPPT) control strategy needs to be formulated that continuously operates the PV system at its MPP. A robust nonlinear controller is required to ensure MPPT by handling nonlinearities of a system and making it robust against changing environmental conditions. Sliding mode control (SMC) is extensively used in non-linear control systems and has been implemented in photovoltaic systems (PV) to track MPP. SMC is robust against disturbances, model uncertainties, and parametric variations. It depicts undesirable phenomena like chattering, inherent in it causing power and heat losses. In this thesis, first, an integer order SMC controller is formulated for extracting maximum power from a solar PV system under variable climatic conditions employing the perturb and observe (P&O) MPPT scheme for the proposed stand-alone PV system. The proposed system consists of two loops schemes, namely the searching loop and the tracking loop. P&O MPPT is utilized in the searching loop to generate the reference signal and a tracking SMC controller is utilized in the other loop to extract the maximum PV power. PV system is connected with load through the power electronic DC-DC boost converter. A mathematical model of the boost converter is derived first, and based on the derived model, an SMC is formulated to control the gate pulses of the boost converter switch. The closed-loop system stability is verified through the Lyapunov stability theorem. The proposed control scheme is tested under varying irradiance levels and the simulation results are compared with the classical proportional integral derivative (PID) controller. Classical SMC depicts undesirable phenomena like chattering, inherent in it causing power and heat losses. In the next part of this thesis, the design of the adaptive sliding mode controller (ASMC) is discussed for the proposed PV system. The adopted control is executed utilizing an ASMC and the enhancement is actualized utilizing an Improved Pattern Search Method (IPSM) MPPT optimization algorithm. An IPSM MPPT is used to generate the reference voltage in order to command the underlying ASMC controller. Comparison with two other optimization algorithms, namely, a Perturb & Observe (P&O) and Particle Swarm Optimization (PSO) with IPSM for MPPT has been conducted. As a non-linear strategy, the stability of the adaptive controller is guaranteed by conducting a Lyapunov analysis. The performance of the proposed control architectures is validated by comparing the proposals with that of the well-known and widely used PID controller. The simulation results validate that the proposed controller effectively improves the voltage tracking, system power with reduced chattering effect, and steady-state error. A tabular comparison is provided at the end of each optimization algorithm category as a resume quantitative comparison. It is anticipated that this work will serve as a reference and provides important insight into MPPT control of the PV systems.
Chebbo, Ahmad Mustapha. "Security constrained reactive power dispatch in electrical power systems." Thesis, Durham University, 1990. http://etheses.dur.ac.uk/6580/.
Full textEvans, E. M. "Tidal stream energy." Thesis, University of Plymouth, 1987. http://hdl.handle.net/10026.1/515.
Full textGough, Michael J. "Demand, energy, and power factor." Thesis, Monterey, California. Naval Postgraduate School, 1994. http://hdl.handle.net/10945/25812.
Full textKorpås, Magnus. "Distributed Energy Systems with Wind Power and Energy Storage." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-132.
Full textThe topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose.
Chapter 3 presents a sequential simulation model of a general windhydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to compare different storage solutions.
In chapter 5, energy storage is evaluated as an alternative for increasing the value of wind power in a market-based power system. A method for optimal short-term scheduling of wind power with energy storage has been developed. The basic model employs a dynamic programming algorithm for the scheduling problem. Moreover, different variants of the scheduling problem based on linear programming are presented. During on-line operation, the energy storage is operated to minimize the deviation between the generation schedule and the actual power output of the wind-storage system. It is shown how stochastic dynamic programming can be applied for the on-line operation problem by explicitly taking into account wind forecast uncertainty. The model presented in chapter 6 extends and improves the linear programming model described in chapter 5. An operation strategy based on model predictive control is developed for effective management of uncertainties. The method is applied in a simulation model of a wind-hydrogen system that supplies the local demand for electricity and hydrogen. Utilization of fuel cell heat and electrolytic oxygen as by-products is also considered. Computer simulations show that the developed operation method is beneficial for grid-connected as well as for isolated systems. For isolated systems, the method makes it possible to minimize the usage of backup power and to ensure a secure supply of hydrogen fuel. For grid-connected wind-hydrogen systems, the method could be applied for maximizing the profit from operating in an electricity market.
Comprehensive simulation studies of different example systems have been carried out to obtain knowledge about the benefits and limitations of using energy storage in conjunction with wind power. In order to exploit the opportunities for energy storage in electricity markets, it is crucial that the electrical efficiency of the storage is as high as possible. Energy storage combined with wind power prediction tools makes it possible to take advantage of varying electricity prices as well as reduce imbalance costs. Simulation results show that the imbalance costs of wind power and the electricity price variations must be relatively high to justify the installation of a costly energy storage system. Energy storage is beneficial for wind power integration in power systems with high-cost regulating units, as well as in areas with weak grid connection.
Hydrogen can become an economically viable energy carrier and storage medium for wind energy if hydrogen is introduced into the transportation sector. It is emphasized that seasonal wind speed variations lead to high storage costs if compressed hydrogen tanks are used for long-term storage. Simulation results indicate that reductions in hydrogen storage costs are more important than obtaining low-cost and high-efficient fuel cells and electrolyzers. Furthermore, it will be important to make use of the flexibility that the hydrogen alternative offers regarding sizing, operation and possibly the utilization of oxygen and heat as by-products.
The main scientific contributions from this thesis are the development of
- a simulation model for estimating the cost and energy efficiency of wind-hydrogen systems,
- a probabilistic model for predicting the performance of a gridconnected wind power plant with energy storage,
- optimization models for increasing the value of wind power in electricity markets by the use of hydrogen storage and other energy storage solutions and the system knowledge about wind energy and energy storage that has been obtained by the use of these models.
Paper 1 is reprinted with kind permission of ACTA Press. Paper 2 is reprinted with kind permission of Elsevier/ Science Direct. http://www.elsevier.com, http://www.sciencedirect.com Paper 3 is reprinted with kind permission of IEEE.
Elmes, John. "MAXIMUM ENERGY HARVESTING CONTROL FOROSCILLATING ENERGY HARVESTING SYSTEMS." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3400.
Full textM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Roe, Curtis Aaron. "Impacts of automated residential energy management technology on primary energy source utilization." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45865.
Full textSylvester, Jeremy E. "Power systems and energy storage modeling for directed energy weapons." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42734.
Full textAs the United States Navy makes leaps forward in technology that is being deployed onboard ships, there is a growing need for research to predict what will be needed to integrate new weapon systems with old. Directed energy weapons are being deployed onboard naval platforms starting in 2014, and this paper seeks to answer the question of what energy storage, if any, must be used in conjunction with high-power lasers in order to integrate them with current ships in the fleet. Four energy storage methods are being researched. These storage medias will allow a ship to fire multiple shots from a high-powered laser without taxing the ship’s electrical system. Lead acid batteries, lithium ion batteries, supercapacitors, and flywheels each have their benefits and drawbacks, and those will be discussed. A computer simulation has been developed and used to represent a DDG-51 Arleigh Burke class destroyer and each of the four energy storage methods. This simulation was run repeatedly with different powered high-powered lasers in order to produce a recommendation for what types of energy storage would be necessary to operate these devices onboard ships.
Books on the topic "Power and Energy"
Raṇavaka, Pāṭhalī Campika. Power and power. Colombo: Patali Champika Ranawaka, 2014.
Find full textBook chapters on the topic "Power and Energy"
Yang, Jie, and Haochen Hua. "Power Quality and Power Experience." In Energy Internet, 381–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45453-1_13.
Full textWiser, Wendell H. "Electric Power." In Energy Resources, 183–200. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1226-3_8.
Full textEhrlich, Robert, Harold A. Geller, and John R. Cressman. "Wind Power." In Renewable Energy, 197–236. 3rd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172673-7.
Full textEhrlich, Robert, Harold A. Geller, and John R. Cressman. "Nuclear Power." In Renewable Energy, 101–44. 3rd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172673-4.
Full textEhrlich, Robert, Harold A. Geller, and John R. Cressman. "Nuclear Power." In Renewable Energy, 71–100. 3rd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172673-3.
Full textRapier, Robert. "Renewable Energy." In Power Plays, 25–44. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4087-7_3.
Full textRapier, Robert. "Energy Production." In Power Plays, 45–63. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4087-7_4.
Full textSanyal, Subir K. "Geothermal Power geothermal power Economics geothermal power economics." In Renewable Energy Systems, 924–35. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_232.
Full textSöder, Lennart. "Wind Power wind power , Introduction." In Renewable Energy Systems, 1780–84. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_75.
Full textAckermann, Thomas, and Rena Kuwahata. "Global Wind Power wind power Installations wind power installations." In Renewable Energy Systems, 1020–38. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_76.
Full textConference papers on the topic "Power and Energy"
Muljadi, E., T. B. Nguyen, and M. A. Pai. "Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781039.
Full textLarsen, Esben, Divya K. Chandrashekhara, and Jacob Ostergard. "Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781053.
Full textDi Wu, Hao Chen, T. Das, and D. C. Aliprantis. "Bidirectional Power Transfer between HEVs and Grid without External Power Converters." In 2008 IEEE Energy 2030 Conference. IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781038.
Full textCastillo, Ricardo J., Diogenes Molina, Martin S. Huertas, Juan Carlos Balda, and H. Alan Mantooth. "Testing of Power Electronic Modules for Distributed Systems at the National Center for Reliable Electric Power Transmission." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781050.
Full textZhu, Yongqiang, Zejun Ding, and Yuan Gong. "Advanced Agricultural Irrigation System Applying Wind Power Generation." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781005.
Full textJansson, Peter Mark, Richard A. Michelfelder, Victor E. Udo, Gary Sheehan, Sarah Hetznecker, and Michael Freeman. "Integrating Large-Scale Photovoltaic Power Plants into the Grid." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781007.
Full textMazumder, Sudip K., and Tirthajyoti Sarkar. "Optical Modulation for High Power Systems: Potential for Electromagnetic-Emission, Loss, and Stress Control by Switching Dynamics Variation of Power Semiconductor Devices." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781027.
Full textAwerbuch, Jonathan J., and Charles R. Sullivan. "Control of Ultracapacitor-Battery Hybrid Power Source for Vehicular Applications." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781003.
Full textSteimer, Peter K. "Power Electronics, a Key Technology for Energy Efficiency and Renewables." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781022.
Full textDas, Trishna, and Dionysios C. Aliprantis. "Small-Signal Stability Analysis of Power System Integrated with PHEVs." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781036.
Full textReports on the topic "Power and Energy"
Jaskierny, W. Energy discharge heater power supply. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10135286.
Full textJaskierny, W. Energy discharge heater power supply. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6712951.
Full textAuthor, Not Given. Wind Power: Today's energy option. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6118223.
Full textLambiase R. Energy Recovery Linac: Power Supplies. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/1061956.
Full textFang, J. M. Power marketing and renewable energy. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/537318.
Full textDeSteese, John G., Donald J. Hammerstrom, and Lawrence A. Schienbein. Electric Power From Ambient Energy Sources. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/900930.
Full textDrost, M. K., Z. I. Antoniak, D. R. Brown, and K. Sathyanarayana. Thermal energy storage for power generation. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5055651.
Full textDe Steese, J. G., D. J. Hammerstrom, and L. A. Schienbein. Electric Power from Ambient Energy Sources. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/764590.
Full textOggianu, Stella M., Shawn Gale, Luis Arnedo, Suman Dwari, Robert Thornton, Yiqing Lin, Giri Venkataramanan, Rick Arnold, Harry Carson, and Barry Miller. Distributed Power Systems for Sustainable Energy. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada600331.
Full textTarekegne, Bethel, Rebecca O'Neil, and Savanna Michener. Energy Storage and Power Plant Decommissioning. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1830807.
Full text