Dissertations / Theses on the topic 'Power and Energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Power and Energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Erices, Muñoz Eduardo Andrés, and Rojas Cristian Patricio Torres. "Sun Power Energy." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/137206.
Full textEduardo Andres Erices Muñoz [Parte I Análisis estratégico y de mercado], Cristian Patricio Torres Rojas [Parte II Análisis organizativo-financiero]
Autores no autorizan el acceso a texto completo de su documento
La necesidad de aumentar la capacidad instalada de la matriz energética del país es un tema que en la última década se ha instalado en la agenda nacional, dado que el crecimiento económico de Chile implica un mayor consumo eléctrico. A su vez, la estrechez energética se ve representada con mayor profundidad en la industria de la minería, especialmente en el norte grande de Chile. El sector minero, además de ser el principal consumidor de energía eléctrica del país, ha experimentado desde el año 2000 una caída sostenida en su productividad, entre otros factores, por los mayores consumos y costos de la energía eléctrica, enfrentando actualmente uno de los precios más altos de América Latina1. Dado lo anterior, el Gobierno está asumiendo un rol más activo, definiendo una Agenda de Energía que incluye como uno de sus ejes el compromiso que un 45% de la capacidad eléctrica que se instalará en el país hasta el año 2025 sean energías renovables no convencionales (ERNC) y, de esta forma, cumplir con la meta de la Ley 20/25 de ingresar a la matriz energética un 20% de ERNC para dicho año. En este sentido, la energía fotovoltaica es una alternativa técnicamente viable para cubrir el consumo eléctrico, principalmente en el norte grande del país, dado que posee un importantísimo potencial solar. El propósito del presente plan de negocios es evaluar la factibilidad económica y financiera de ingresar al negocio de las energías renovables no convencionales, de una manera no convencional. Más allá de este juego de palabras, dado que la mayoría de los proyectos de generación de energía limpia se basan en el modelo de negocios tradicional, o sea generando e inyectando energía al sistema y transando los precios en el mercado spot, la oportunidad de negocio se visualiza en vender directamente la energía a la industria minera, sin intermediarios ni costos de transmisión relevantes. La industria eléctrica nacional está dividida en tres segmentos: generación, transmisión y distribución de energía eléctrica. Las actividades de transmisión y distribución tienen el carácter de monopolio natural. El sector de generación opera en condiciones de competencia, no obstante se caracteriza por ser un mercado altamente concentrado. Asimismo, existen cuatro sistemas eléctricos siendo los dos más importantes el SING (Sistema Interconectado del Norte Grande) y el SIC (Sistema Interconectado Central). La matriz energética del SING se alimenta en un 95% de fuentes térmicas (carbón, diésel, gas natural). En cuanto al desarrollo de proyectos ERNC, a pesar que el país posee condiciones naturales favorables para las energías solar y eólica, recién en el año 2014 se observó un “despegue” de las ERNC en Chile, materializándose proyectos con una capacidad instalada de casi 1.000 MW. Además, a nivel mundial la curva de aprendizaje en el costo de fabricación y operación de la tecnología solar fotovoltaica, ha permitido alcanzar precios competitivos respecto a las fuentes convencionales de energía. El mercado objetivo se concentra en el segmento de generación, a través del suministro eléctrico en base a energías renovables no convencionales, específicamente solar tipo fotovoltaica, para las empresas mineras (cobre) ubicadas en las regiones de Tarapacá y Antofagasta, ya que reúnen las condiciones de vida útil de la faena minera y disponibilidad de terrenos, de acuerdo a la propuesta de valor del proyecto. El modelo de negocios consiste en satisfacer parte de la demanda de energía eléctrica de las empresas mineras señaladas en el párrafo anterior, por medio de una planta solar fotovoltaica de 3 MW de potencia instalada y a través de un contrato de suministro tipo PPA (Power Purchase Agreement) a 20 años. La ventaja competitiva consiste en ofrecer una tarifa estable durante el período del contrato más baja que su tarifa actual en base a generación convencional, lo cual permitirá al cliente capturar y proyectar el ahorro en sus costos operativos. Además, la propuesta tiene la característica que la planta se construirá in-situ, aprovechando la superficie disponible en la faena minera, generando valor compartido en la economía de escala por el costo del terreno y línea de transmisión y conexión eléctrica. La operación y mantenimiento de la planta fotovoltaica estará a cargo de nuestra empresa. Para el desarrollo del negocio, dado que implica montos de inversión relevantes (USD 5,6 millones para cada planta) y se requiere de un respaldo tecnológico y logístico para realizar ese tipo de proyectos, se creará una Unidad Estratégica de Negocio (UEN) denominada “SUN POWER ENERGY” (SPE), bajo la estructura organizacional de E.CL S.A., una de las empresas principales que operan en el SING. Finalmente, en la evaluación financiera se contempla la ejecución de tres plantas solares dentro de los primeros seis años, con un total de aporte de capital requerido de USD 10 millones. Se ha considerado el apalancamiento financiero del proyecto, mediante la obtención de préstamos bancarios por USD 7,8 millones. Como resultado, través del valor actual de los flujos de caja libres descontados a una tasa del 7,5%, se obtiene un valor de la empresa sin deuda de USD 52.382, con una TIR del 7,5% y un periodo de recuperación de la inversión (payback) de 12 años. La TIR del inversionista alcanza al 7,9% con un VAN ajustado de USD 576.161.
Nikonov, M. "Energy resources: wave power." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/62834.
Full textGohar, Ali Hina. "Maximum Power Point Tracking of Photovoltaic system using Non-Linear Controllers." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671122.
Full textLa creciente demanda de energía, el agotamiento de los combustibles fósiles y el aumento del calentamiento global debido a la emisión de carbono han hecho surgir la necesidad de un sistema energético alternativo, de eficiencia general y respetuoso con el medio ambiente. La energía solar se considera una de las formas de energía más inagotables de este universo, pero tiene el problema de la baja eficiencia debido a las diferentes condiciones ambientales. El panel solar exhibe un comportamiento no lineal en condiciones climáticas reales y la potencia de salida fluctúa con la variación de la irradiancia solar y la temperatura. Las condiciones climáticas cambiantes y el comportamiento no lineal de los sistemas fotovoltaicos plantean un desafío en el seguimiento de la variación máxima de PowerPoint. Por lo tanto, para extraer y entregar continuamente la máxima potencia posible del sistema fotovoltaico, en determinadas condiciones ambientales, se debe formular la estrategia de control de seguimiento del punto de máxima potencia (MPPT) que opere continuamente el sistema fotovoltaico en su MPP. Se requiere un controlador no lineal robusto para asegurar MPPT manejando las no linealidades de un sistema y haciéndolo robusto frente a condiciones ambientales cambiantes. El control de modo deslizante (SMC) se usa ampliamente en sistemas de control no lineales y se ha implementado en sistemas fotovoltaicos (PVC) para rastrear MPP. SMC es robusto contra perturbaciones, incertidumbres del modelo y variaciones paramétricas. Representa fenómenos indeseables como el parloteo, inherentes a él, que provocan pérdidas de energía y calor. En esta tesis, en primer lugar, se formula un controlador SMC de orden entero para extraer la máxima potencia de un sistema fotovoltaico solar en condiciones climáticas variables empleando el esquema MPPT de perturbar y observar (P&O) para el sistema fotovoltaico autónomo propuesto. El sistema propuesto consta de dos esquemas de bucles, a saber, el bucle de búsqueda y el bucle de seguimiento. P&O MPPT se utiliza en el bucle de búsqueda para generar la señal de referencia y se utiliza un controlador SMC de seguimiento en el otro bucle para extraer la máxima potencia fotovoltaica. El sistema fotovoltaico está conectado con la carga a través del convertidor elevador DC-DC electrónico de potencia. Primero se deriva un modelo matemático del convertidor elevador y, en base al modelo derivado, se formula un SMC para controlar los pulsos de puerta del interruptor del convertidor elevador. La estabilidad del sistema de circuito cerrado se verifica mediante el teorema de estabilidad de Lyapunov. El esquema de control propuesto se prueba bajo diferentes niveles de irradiancia y los resultados de la simulación se comparan con el controlador clásico proporcional integral derivado (PID). El SMC clásico describe fenómenos indeseables como el parloteo, inherente a él, que causa pérdidas de energía y calor. En la siguiente parte de esta tesis, se analiza el diseño del controlador de modo deslizante adaptativo (ASMC) para el sistema fotovoltaico propuesto. El control adoptado se ejecuta utilizando un ASMC y la mejora se actualiza utilizando un algoritmo de optimización MPPT del Método de búsqueda de patrón mejorado (IPSM). Se utiliza un IPSM MPPT para generar el voltaje de referencia para controlar el controlador ASMC subyacente. Se ha realizado una comparación con otros dos algoritmos de optimización, a saber, Perturb \ Observe (P&O) y Particle Swarm Optimization (PSO) con IPSM para MPPT. Como estrategia no lineal, la estabilidad del controlador adaptativo está garantizada mediante la realización de un análisis de Lyapunov.
The increasing energy demands, depleting fossil fuels, and increasing global warming due to carbon emission has arisen the need for an alternate, overall efficiency, and environment-friendly energy system. Solar energy is considered to be one of the most inexhaustible forms of energy in this universe, but it has the problem of low efficiency due to varying environmental conditions. Solar panel exhibits nonlinear behavior under real climatic conditions and output power fluctuates with the variation in solar irradiance and temperature. Changing weather conditions and nonlinear behavior of PV systems pose a challenge in the tracking of varying maximum PowerPoint. Hence, to continuously extract and deliver the maximum possible power from the PV system, under given environmental conditions, the maximum power point tracking (MPPT) control strategy needs to be formulated that continuously operates the PV system at its MPP. A robust nonlinear controller is required to ensure MPPT by handling nonlinearities of a system and making it robust against changing environmental conditions. Sliding mode control (SMC) is extensively used in non-linear control systems and has been implemented in photovoltaic systems (PV) to track MPP. SMC is robust against disturbances, model uncertainties, and parametric variations. It depicts undesirable phenomena like chattering, inherent in it causing power and heat losses. In this thesis, first, an integer order SMC controller is formulated for extracting maximum power from a solar PV system under variable climatic conditions employing the perturb and observe (P&O) MPPT scheme for the proposed stand-alone PV system. The proposed system consists of two loops schemes, namely the searching loop and the tracking loop. P&O MPPT is utilized in the searching loop to generate the reference signal and a tracking SMC controller is utilized in the other loop to extract the maximum PV power. PV system is connected with load through the power electronic DC-DC boost converter. A mathematical model of the boost converter is derived first, and based on the derived model, an SMC is formulated to control the gate pulses of the boost converter switch. The closed-loop system stability is verified through the Lyapunov stability theorem. The proposed control scheme is tested under varying irradiance levels and the simulation results are compared with the classical proportional integral derivative (PID) controller. Classical SMC depicts undesirable phenomena like chattering, inherent in it causing power and heat losses. In the next part of this thesis, the design of the adaptive sliding mode controller (ASMC) is discussed for the proposed PV system. The adopted control is executed utilizing an ASMC and the enhancement is actualized utilizing an Improved Pattern Search Method (IPSM) MPPT optimization algorithm. An IPSM MPPT is used to generate the reference voltage in order to command the underlying ASMC controller. Comparison with two other optimization algorithms, namely, a Perturb & Observe (P&O) and Particle Swarm Optimization (PSO) with IPSM for MPPT has been conducted. As a non-linear strategy, the stability of the adaptive controller is guaranteed by conducting a Lyapunov analysis. The performance of the proposed control architectures is validated by comparing the proposals with that of the well-known and widely used PID controller. The simulation results validate that the proposed controller effectively improves the voltage tracking, system power with reduced chattering effect, and steady-state error. A tabular comparison is provided at the end of each optimization algorithm category as a resume quantitative comparison. It is anticipated that this work will serve as a reference and provides important insight into MPPT control of the PV systems.
Chebbo, Ahmad Mustapha. "Security constrained reactive power dispatch in electrical power systems." Thesis, Durham University, 1990. http://etheses.dur.ac.uk/6580/.
Full textEvans, E. M. "Tidal stream energy." Thesis, University of Plymouth, 1987. http://hdl.handle.net/10026.1/515.
Full textGough, Michael J. "Demand, energy, and power factor." Thesis, Monterey, California. Naval Postgraduate School, 1994. http://hdl.handle.net/10945/25812.
Full textKorpås, Magnus. "Distributed Energy Systems with Wind Power and Energy Storage." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-132.
Full textThe topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose.
Chapter 3 presents a sequential simulation model of a general windhydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to compare different storage solutions.
In chapter 5, energy storage is evaluated as an alternative for increasing the value of wind power in a market-based power system. A method for optimal short-term scheduling of wind power with energy storage has been developed. The basic model employs a dynamic programming algorithm for the scheduling problem. Moreover, different variants of the scheduling problem based on linear programming are presented. During on-line operation, the energy storage is operated to minimize the deviation between the generation schedule and the actual power output of the wind-storage system. It is shown how stochastic dynamic programming can be applied for the on-line operation problem by explicitly taking into account wind forecast uncertainty. The model presented in chapter 6 extends and improves the linear programming model described in chapter 5. An operation strategy based on model predictive control is developed for effective management of uncertainties. The method is applied in a simulation model of a wind-hydrogen system that supplies the local demand for electricity and hydrogen. Utilization of fuel cell heat and electrolytic oxygen as by-products is also considered. Computer simulations show that the developed operation method is beneficial for grid-connected as well as for isolated systems. For isolated systems, the method makes it possible to minimize the usage of backup power and to ensure a secure supply of hydrogen fuel. For grid-connected wind-hydrogen systems, the method could be applied for maximizing the profit from operating in an electricity market.
Comprehensive simulation studies of different example systems have been carried out to obtain knowledge about the benefits and limitations of using energy storage in conjunction with wind power. In order to exploit the opportunities for energy storage in electricity markets, it is crucial that the electrical efficiency of the storage is as high as possible. Energy storage combined with wind power prediction tools makes it possible to take advantage of varying electricity prices as well as reduce imbalance costs. Simulation results show that the imbalance costs of wind power and the electricity price variations must be relatively high to justify the installation of a costly energy storage system. Energy storage is beneficial for wind power integration in power systems with high-cost regulating units, as well as in areas with weak grid connection.
Hydrogen can become an economically viable energy carrier and storage medium for wind energy if hydrogen is introduced into the transportation sector. It is emphasized that seasonal wind speed variations lead to high storage costs if compressed hydrogen tanks are used for long-term storage. Simulation results indicate that reductions in hydrogen storage costs are more important than obtaining low-cost and high-efficient fuel cells and electrolyzers. Furthermore, it will be important to make use of the flexibility that the hydrogen alternative offers regarding sizing, operation and possibly the utilization of oxygen and heat as by-products.
The main scientific contributions from this thesis are the development of
- a simulation model for estimating the cost and energy efficiency of wind-hydrogen systems,
- a probabilistic model for predicting the performance of a gridconnected wind power plant with energy storage,
- optimization models for increasing the value of wind power in electricity markets by the use of hydrogen storage and other energy storage solutions and the system knowledge about wind energy and energy storage that has been obtained by the use of these models.
Paper 1 is reprinted with kind permission of ACTA Press. Paper 2 is reprinted with kind permission of Elsevier/ Science Direct. http://www.elsevier.com, http://www.sciencedirect.com Paper 3 is reprinted with kind permission of IEEE.
Elmes, John. "MAXIMUM ENERGY HARVESTING CONTROL FOROSCILLATING ENERGY HARVESTING SYSTEMS." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3400.
Full textM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Roe, Curtis Aaron. "Impacts of automated residential energy management technology on primary energy source utilization." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45865.
Full textSylvester, Jeremy E. "Power systems and energy storage modeling for directed energy weapons." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42734.
Full textAs the United States Navy makes leaps forward in technology that is being deployed onboard ships, there is a growing need for research to predict what will be needed to integrate new weapon systems with old. Directed energy weapons are being deployed onboard naval platforms starting in 2014, and this paper seeks to answer the question of what energy storage, if any, must be used in conjunction with high-power lasers in order to integrate them with current ships in the fleet. Four energy storage methods are being researched. These storage medias will allow a ship to fire multiple shots from a high-powered laser without taxing the ship’s electrical system. Lead acid batteries, lithium ion batteries, supercapacitors, and flywheels each have their benefits and drawbacks, and those will be discussed. A computer simulation has been developed and used to represent a DDG-51 Arleigh Burke class destroyer and each of the four energy storage methods. This simulation was run repeatedly with different powered high-powered lasers in order to produce a recommendation for what types of energy storage would be necessary to operate these devices onboard ships.
Pekkala, Ossian. "WIND POWER USED IN ENERGY CERTIFICATES AND DISTRIBUTED ENERGY SYSTEMS." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219443.
Full textProynov, Plamen. "Low-power techniques for power conditioning in electromagnetic energy harvesting." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682563.
Full textBroders, Adam C. "Combining of renewable energy plants to improve energy production stability." Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-042908-132847/.
Full textMateu, Sáez Maria Loreto. "Energy harvesting from human passive power." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/48637.
Full textThe trends in technology allow the decrease in both size and power consumption of complex digital systems. This decrease in size and power gives rise to the concept of wearable devices which are integrated in everyday personal belongings like clothes, watch, glasses, et cetera. Power supply is a limiting factor in the mobility of the wearable device which gets restricted to the lifetime of the battery. Furthermore, due to the costs and inaccessible locations, the replacement or recharging of batteries is often not feasible for wearable devices integrated in smart clothes. Wearable devices are devices distributed in personal belongings and thus, an alternative for powering them is to harvest energy from the user. Therefore, the energy can be harvested, distributed and supplied over the human body. Wearable devices can create, like the sensors of a Wireless Sensor Network (WSN), a Body Area Network. A study of piezoelectric, inductive and thermoelectric generators that harvest passive human power is the main objective of this thesis. The physical principle of an energy harvesting generator is obviously the same no matter whether it is employed with an environmental or human body source. Nevertheless, the limitations related to low voltage, current and frequency levels obtained from human body sources bring new requirements to the energy harvesting topic that were not present in the case of the environment sources. This analysis is the motivation for this thesis. The type of input energy and transducer form a tandem since the election of one imposes the other. It is important that measurements are done in different parts of the human body while doing different physical activities to locate which positions and activities produce more energy. The mechanical coupling between the transducer and the human body depends on the location of the transducer and the activity that is done. A specific design taking this into account can increase more than a 200% the efficiency of the transducer as has been demonstrated with piezoelectric films located in the insoles of shoes. Acceleration measurements have been performed in different body locations and different physical activities, in order to quantify the amount of available energy associated with usual human movements. A system-level simulation has been implemented modeling the elements of an energy self-powered system. Physical equations have been used for the transducer in order to include the mechanical part of the system and electrical and behavioral models for the rest of the components. In this way, the process of the design of the complete application (including the load and an energy storage element when it is necessary) is simplified to achieve the expected requirements. Obviously, the load must be a low power consumption device as for example a RF transmitter. In this case, it is preferable to operate it in a discontinuous way without a battery as it is deduced from simulation results obtained. However, the evolution in low power transmission modules can change this conclusion depending mostly on the evolution of the power consumption in stand-by mode and the configuration time in transmission operation. It has been deduced from the analysis of inductive generators that time-domain analysis allows to calculate some magnitudes that are not available in frequency domain. For example, the maximum power can be calculated in frequency domain, but for energy harvesting applications it is more interesting to know the value of the recovered energy during a certain time, or the average power since the power generated by human activities can be highly discontinuous. It has been demonstrated that energy harvesting transducers are able to supply power to present-day low power electronic devices as was demonstrated with a RF transmitter powered by a thermogenerator that employs the temperature gradient between human body and the environment (3-5 K) and that it is able to sense and transmit data once every second.
Alaei, Zohreh. "Power Enhancement in Piezoelectric Energy Harvesting." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188956.
Full textClare, Lindsay Roger. "Power Conditioning For Vibration Energy Harvesting." Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520185.
Full textNyman, Johan, and Amy Rankka. "Energy Efficient, Electric-Hydraulic Power Pack." Thesis, Linköpings universitet, Fordonssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119477.
Full textSchofield, Daniel M. K. "Power converters for photovoltaic energy generation." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7029/.
Full textAlmureeh, Mohammad. "Renewable energy power system performance monitoring." Thesis, Almureeh, Mohammad (2014) Renewable energy power system performance monitoring. Other thesis, Murdoch University, 2014. https://researchrepository.murdoch.edu.au/id/eprint/25567/.
Full textMurray, William Norman. "Energy wheeling viability of distributed renewable energy for industry." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2730.
Full textIndustry, which forms the lifeblood of South Africa’s economy, is under threat as a result of increased electricity pricing and unstable supply. Wheeling of energy, which is a method to transport electricity generated from an Independent Power Producer (IPP) to an industrial consumer via the utility’s network, could potentially address this problem. Unlike South Africa’s electricity landscape, which is highly regulated and monopolized by Eskom, most developed countries have deregulated their electricity market, which has led to greater competition for electricity supply. This thesis, presents an evaluation of the economic viability and technical concerns arising from third party transportation of energy between an IPP and an industrial consumer. IPP’s are able to generate electricity from various renewable distributed generation (DG) sources, which are often physically removed from the load. In practice, electricity could be generated by an IPP and connected to a nearby Main Transmission Substation (MTS) in a region with high solar, wind or hydropower resources and sold to off-takers a few hundred kilometres away. Using two software simulation packages, technical and economic analysis have been conducted based on load data from two industrial sites, to determine the viability of wheeling energy between an IPP and off-taker. The viability will be evaluated based on levelized cost of electricity (LCOE); net present cost (NPC); DG technology; distance from the load; available renewable resources; impact on voltage profile, fault contribution, thermal loading of the equipment and power loss. The results from both case studies show that the impact of DG on the voltage profile is negligible. The greatest impact on voltage profile was found to be at the site closest to the load. Asynchronous and synchronous generators have a greater fault contribution than inverter-based DG. The fault contribution is proportional to the distance from the load. Overall, thermal loading of lines increased marginally, but decreased based on distances from the load. Power loss on short lines is negligible but there is a significant loss on the line between the load and DG based on the distance from the load. Electricity generated from wind power is the most viable based on LCOE and NPC. For larger wind systems, as illustrated by the second case study, grid parity has already been reached. Wheeling of wind energy has already proven to be an economically viable option. According to future cost projection, large scale solar energy will become viable by 2019. The concept of wheeling energy between an IPP and off-taker has technical and economic merit. Wheeling charges are perceived to be high, but this is not the case as wheeling tariffs consist of standard network charges. In the future, renewable energy will continue to mature based on technology and cost. Solar energy, including lithium-ion battery back-up technology, looks promising based on future cost projections. Deregulation of the electricity market holds the key to the successful implementation of energy wheeling as it will open the market up for greater competition.
Nielsen, Knut Erik. "Superconducting magnetic energy storage in power systems with renewable energy sources." Thesis, Norwegian University of Science and Technology, Department of Electrical Power Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10817.
Full textThe increasing focus on large scale integration of new renewable energy sources like wind power and wave power introduces the need for energy storage. Superconducting Magnetic Energy Storage (SMES) is a promising alternative for active power compensation. Having high efficiency, very fast response time and high power capability it is ideal for levelling fast fluctuations. This thesis investigates the feasibility of a current source converter as a power conditioning system for SMES applications. The current source converter is compared with the voltage source converter solution from the project thesis. A control system is developed for the converter. The modulation technique is also investigated. The SMES is connected in shunt with an induction generator, and is facing a stiff network. The objective of the SMES is to compensate for power fluctuations from the induction generator due to variations in wind speed. The converter is controlled by a PI-regulator and a current compensation technique deduced from abc-theory. Simulations on the system are carried out using the software PSIM. The simulations have proved that the SMES works as both an active and reactive power compensator and smoothes power delivery to the grid. The converter does however not seem like an optimum solution at the moment. High harmonic distortion of the output currents is the main reason for this. However this system might be interesting for low power applications like wave power. I
Fuentes, Ruiz Sergio. "Energy security in power systems within the frame of energy transitions." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672889.
Full textEl cambio climático es real. La población humana global está creciendo como nunca antes. Los recursos naturales son limitados. Estos factores han llevado a los distintos países a adoptar distintas rutas encaminadas a satisfacer las necesidades energéticas de su población, entendiendo a la energía como un instrumento fundamental para alcanzar el desarrollo sostenible. Debido a que cada economía decide, de acuerdo a sus necesidades, posibilidades e intereses, su propio cambio en producción y consumo de energía, esta tendencia ha recibido el nombre de transiciones energéticas. Estas, a través de la digitalización, descentralización y descarbonización del sistema energético, han colocado al sistema eléctrico como el centro de las infraestructuras modernas, haciendo imperativo el procurar su seguridad en el largo plazo. La presente tesis está enfocada en la seguridad de los sistemas eléctricos, para lo que, luego de una exhaustiva revisión de políticas energéticas de distintas economías, se presenta un índice multidimensional como herramienta para los encargados de la elaboración de políticas orientadas a procurar la seguridad de los sistemas eléctricos. El índice compuesto es posteriormente aplicado a diferentes naciones desde dos perspectivas distintas: el seguimiento temporal del desarrollo de un país y la evaluación, comparación y jerarquización de diferentes economías en un tiempo específico. La herramienta diseñada representa un marco integral para la evaluación y mejoramiento de la seguridad energética de los sistemas eléctricos, siento precisamente esta la mayor contribución de la presente tesis: el desarrollo y propuesta de un instrumento que contribuya, a través del mejoramiento de los sistemas energéticos, haciéndolos más seguros, a alcanzar el desarrollo sostenible.
Enginyeria elèctrica
Sudhakar, Soumya. "Balancing actuation energy and computing energy in low-power motion planning." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127096.
Full textCataloged from the official PDF of thesis.
Includes bibliographical references (pages 89-91).
Inspired by emerging low-power robotic vehicles, we identify a new class of motion planning problems in which the energy consumed by the computer while planning a path can be as large as the energy consumed by the actuators during the execution of the path. As a result, minimizing energy requires minimizing both actuation energy and computing energy since computing energy is no longer negligible. We propose the first algorithm to address this new class of motion planning problems, called Computing Energy Included Motion Planning (CEIMP). CEIMP operates similarly to other anytime planning algorithms, except it stops when it estimates that while further computing may save actuation energy by finding a shorter path, the additional computing energy spent to find that path will negate those savings. The algorithm formulates a stochastic shortest path problem based on Bayesian inference to estimate future actuation energy savings from homotopic class changes. We assess the trade-off between the computing energy required to continue sampling to potentially reduce the path length, the potential future actuation energy savings due to reduction in path length, and the overhead computing energy expenditure CEIMP introduces to decide when to stop computing. We evaluate CEIMP on realistic computational experiments involving 10 MIT building floor plans, and CEIMP outperforms the average baseline of using maximum computing resources. In one representative experiment on an embedded CPU (ARM Cortex A-15), for a simulated vehicle that uses one Watt to travel one meter per second, CEIMP saves 2.1-8.9x of the total energy on average across the 10 floor plans compared to the baseline, which translates to missions that can last equivalently longer on the same battery. As the the energy to move relative to the energy to compute decreases, the energy savings with CEIMP will increase, which highlights the advantage in spending computing energy to decide when to stop computing.
by Soumya Sudhakar.
S.M.
S.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Kiljanov, Grigory. "Accumulation of energy in autonomous power plants using renewable energy sources." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264272.
Full textKilyanov G.M. Energilagring i autonoma kraftverk som använder förnybara energikällor, 2017 - s.105, 11 tabeller, 40 bild. Chef Bessel V.V., professor, Ph.D. Institutionen för termodynamik och termiska motorer. En analys av befintliga energilagringsenheter i världen utförs. Den vetenskapliga och tekniska grunden för energilagring. Enheten och driftsprincipen för ett autonomt kombinerat kraftverk med en energilagringsanordning beaktas. Baserat på den tekniska beräkningen valdes en optimal kombination av en vindgenerator, ett system av solpaneler och en reservoar, som kan ge pålitlig och oavbruten elproduktion. Projektets ekonomiska effektivitet på användningen av kombinerade medelkraftverk vid gasproduktionsanläggningar i avlägsna områden uppskattades. Slutsatser dras om att det är lämpligt att införa energisystem baserade på förnyelsebara källor med energilagringsenheter hos landets företag.
Faki, Hisham. "Energy policy, energy efficiency and the UK electricity supply industry." Thesis, Aberystwyth University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315868.
Full textJung, Eun-Sun. "Energy efficiency in wireless networks." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2718.
Full textBousnane, Kafiha. "Real-time power system dynamic simulation." Thesis, Durham University, 1990. http://etheses.dur.ac.uk/6623/.
Full textAnwar, Saeed. "Active Power Compensation of Microgrid Connected Systems." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1406653103.
Full textCid-Pastor, Ángel. "Energy processing by means of power gyrators." Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/6337.
Full textDes d'un punt de vista circuital, es tracta d'una estructura de dos ports que es caracteritza per algun d'aquests dos grups d'equacions: 1) I1=gV2, I2=gV1 , 2) V1=rI2, V2=rI1, on I1, V1, i I2, V2 són els valors en contínua corresponents als valors de tensió i corrent als ports d'entrada i sortida respectivament, essent g (r) la conductància (resistència) del girador.
En aquesta tesi, les estructures giradores de potència s'han classificat en funció de com transformen una font d'excitació al port d'entrada en la seva representació dual al port de sortida. Segons aquesta classificació es poden distingir tres tipus de giradors: 1) girador de potència de tipus G, 2) girador de potència de tipus G amb corrent d'entrada controlada i 3) giradors de potència de tipus R. Les categories 1 i 2 són les dues possibles solucions de síntesi de les equacions (1), mentre que la categoria 3 correspon a la solució de síntesi de les equacions (2).
A més a més, no existeixen estudis sistemàtics on basant-se en les equacions de definició s'arribi finalment a una verificació experimental. En aquesta tesi es presenta el disseny i anàlisi dels giradors que s'han presentat. L'anàlisi cobreix exhaustivament l'estudi tant del comportament dinàmic com estàtic dels giradors presentats. Aquests giradors es poden considerar com estructures canòniques per al processat de potència.
A més a més, es presenten algunes funcions bàsiques del processat de potència realitzades amb giradors de potència. Com per exemple: conversió tensió-corrent, corrent-tensió, adaptació d'impedàncies i regulació de tensió.
Les característiques de cada girador depenen no només de la topologia convertidora sinó també del funcionament del control del convertidor. S'han investigat dos tècniques de control: el control en mode lliscant i el control no lineal basat en dinàmica zero. Per tant, les estructures giradores proposades poden treballar tant a freqüència constant com a freqüència variable.
Finalment s'han verificat les previsions teòriques mitjançant simulació i verificació experimental.
In this thesis, a systematic approach to the synthesis of power gyrators is presented. Based on this approach, several gyrator structures can be generated and classified. Each of these gyrators has its own features and is suitable of different applications.
From a circuit standpoint, a power gyrator is a two-port structure characterized by any of the following two set of equations: 1) I1=gV2, I2=gV1 , 2) V1=rI2, V2=rI1, where I1, V1, and I2, V2 are DC values of current and voltage at input and output ports respectively and g ( r ) is the gyrator conductance ( resistance ).
In this thesis, power gyrator structures are classified by the manner they transform an excitation source at the input port into its dual representation at the output port. Based on this classification, there exist three types of power gyrators: 1) power gyrators of type G, 2) power gyrators of type G with controlled input current and 3) power gyrators of type R. Categories 1 and 2 are the two possible synthesis solutions to the set of equations ( 1 ) while category 3 corresponds to the synthesis solution of ( 2 ).
Thus far, no systematic works have been done starting at the definition equations and ending at the experimental verification. In this thesis, the analysis and design for the disclosed power gyrators are presented. The analysis covers exhaustingly the study of both static and dynamic behavior of the reported power gyrators. These power gyrators presented can be considered as canonical structures for power processing.
Thus, some basic power processing functions done by the presented power gyrators are reported. Namely, voltage to current conversion, current to voltage conversion, impedance matching and voltage regulation.
The performance characteristics of a power gyrator depend not only on the circuit topology but also depend on the converter control operation.
Hence, two main control schemes are investigated, namely, sliding-mode control schemes and zero-dynamics-based PWM nonlinear control. Therefore, the proposed gyrator structures can operate indistinctly at constant or at variable switching frequency.
In addition, experimental and computer simulation results of the power gyrators presented are given in order to verify the theoretical predictions.
Elliott, Alwyn David Thomas. "Power electronic interfaces for piezoelectric energy harvesters." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/39965.
Full textKuang, Chen, Jin Ying, and Li Yumin. "Energy Crisis : wind Power Market in China." Thesis, Högskolan Kristianstad, Sektionen för hälsa och samhälle, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-10865.
Full textKromlidis, S. "Battery energy storage for power quality improvement." Thesis, University of Manchester, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556320.
Full textYu, Chuying. "Dielectric materials for high power energy storage." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/24852.
Full textFu, Hailing. "Rotational energy harvesting for low power electronics." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/59031.
Full textRamadass, Yogesh Kumar. "Energy processing circuits for low-power applications." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/63026.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 199-205).
Portable electronics have fueled the rich emergence of new applications including multi-media handsets, ubiquitous smart sensors and actuators, and wearable or implantable biomedical devices. New ultra-low power circuit techniques are constantly being proposed to further improve the energy efficiency of electronic circuits. A critical part of these energy conscious systems are the energy processing and power delivery circuits that interface with the energy sources and provide conditioned voltage and current levels to the load circuits. These energy processing circuits must maintain high efficiency and reduce component count for the final solution to be attractive from an energy, size and cost perspective. The first part of this work focuses on the development of on-chip voltage scalable switched capacitor DC-DC converters in digital CMOS processes. The converters are designed to deliver regulated scalable load voltages from 0.3V up to the battery voltage of 1.2V for ultra-dynamic voltage scaled systems. The efficiency limiting mechanisms of these on-chip DC-DC converters are analyzed and digital circuit techniques are proposed to tackle these losses. Measurement results from 3 test-chips implemented in 0.18pm and 65nm CMOS processes will be provided. The converters are able to maintain >75% efficiency over a wide range of load voltage and power levels while delivering load currents up to 8mA. An embedded switched capacitor DC-DC converter that acts as the power delivery unit in a 65nm subthreshold microcontroller system will be described. The remainder of the thesis deals with energy management circuits for battery-less systems. Harvesting ambient vibrational, light or thermal energy holds much promise in realizing the goal of a self-powered system. The second part of the thesis identifies problems with commonly used interface circuits for piezoelectric vibration energy harvesters and proposes a rectifier design that gives more than 4X improvement in output power extracted from the piezoelectric energy harvester. The rectifier designs are demonstrated with the help of a test-chip built in a 0.35pm CMOS process. The inductor used within the rectifier is shared efficiently with a multitude of DC-DC converters in the energy harvesting chip leading to a compact, cost-efficient solution. The DC-DC converters designed as part of a complete power management solution achieve efficiencies of greater than 85% even in the micro-watt power levels output by the harvester. The final part of the thesis deals with thermal energy harvesters to extract electrical power from body heat. Thermal harvesters in body-worn applications output ultra-low voltages of the order of 10's of milli-volts. This presents extreme challenges to CMOS circuits that are powered by the harvester. The final part of the thesis presents a new startup technique that allows CMOS circuits to interface directly with and extract power out of thermoelectric generators without the need for an external battery, clock or reference generators. The mechanically assisted startup circuit is demonstrated with the help of a test-chip built in a 0.35pm CMOS process and can work from as low as 35mV. This enables load circuits like processors and radios to operate directly of the thermoelectric generator without the aid of a battery. A complete power management solution is provided that can extract electrical power efficiently from the harvester independent of the input voltage conditions. With the help of closed-loop control techniques, the energy processing circuit is able to maintain efficiency over a wide range of load voltage and process variations.
by Yogesh Kumar Ramadass.
Ph.D.
Gutierrez, Manuel S. M. Massachusetts Institute of Technology. "An energy buffer for constant power loads." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111914.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 111-113).
Constant power loads (CPLs) are a class of loads steadily increasing in use. They are present whenever a load is regulated to maintain constant output power, such as with LED drivers in high quality lighting that is impervious to input fluctuations. Because CPLs exhibit a negative incremental input impedance, they pose stability concerns in DC and AC systems. This thesis presents a power converter for a constant power LED bulb that presents a favorable input impedance to the grid. The use of an energy buffer allows the converter to draw variable power in order to resemble a resistive load, while the output consumes constant power. A switched-mode power supply consisting of a cascaded boost and buck converter accomplishes this by storing energy in the boost stage output capacitor. Experimental results demonstrate that the converter exhibits a resistive input impedance at frequencies over 0.5 Hz while maintaining constant power to the LED load.
by Manuel Gutierrez.
S.M.
Fahy, Nina J. (Nina Jane). "Pumping up : Russian energy and national power." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/43193.
Full textIncludes bibliographical references.
Russia has organized its energy industry similarly to a vertically integrated energy corporation. Not only does Russia possess vast oil and gas reserves, it also has capabilities at every step in the production chain. The execution of Russian energy strategy is incredibly intricate and flows from all points including the state, firms, suppliers, degrees of ownership and transit locales. This work reviews five important aspects of Russia's vertical integration strategy. Firstly, Russia is brining the domestic industry under state control. Secondly, it has pushed out particular types of foreign investment in order to gain control of domestic reserves, their monetization and the development of important projects. Thirdly, Russia seeks to keep resource rich states in its near abroad in its sphere of influence in order to keep their supply within its grasp. Fourthly, it manages relations with neighboring states in possession of transit infrastructure to keep supply routes open to markets. Lastly, it invests abroad in order to increase market presence, cut out middlemen, and further build production chains. Russia expects to strengthen its international position, both economically and geopolitically by undertaking this strategy of vertical integration.
by Nina J. Fahy.
S.M.
Dini, Michele <1986>. "Nano-Power Integrated Circuits for Energy Harvesting." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6947/.
Full textGholizad, Babak <1980>. "Superconducting Technology for Power and Energy Management." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7279/.
Full textVolkov, A. N., and E. U. Sayenko. "Alternative sources of energy. Wind-power engineering." Thesis, Видавництво СумДУ, 2006. http://essuir.sumdu.edu.ua/handle/123456789/8554.
Full textTritschler, Simon J. "High-Power Energy Scavenging for Portable Devices." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1278695219.
Full textDas, Debosmita. "Advanced power electronics for hybrid energy systems." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1412940298.
Full textEdwards, Jacob N. "Thermal energy storage for nuclear power applications." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/36238.
Full textDepartment of Mechanical and Nuclear Engineering
Hitesh Bindra
Storing excess thermal energy in a storage media that can later be extracted during peak-load times is one of the better economical options for nuclear power in future. Thermal energy storage integration with light water-cooled and advanced nuclear power plants is analyzed to assess technical feasibility of different storage media options. Various choices are considered in this study; molten salts, synthetic heat transfer fluids, and packed beds of solid rocks or ceramics. In-depth quantitative assessment of these integration possibilities are then analyzed using exergy analysis and energy density models. The exergy efficiency of thermal energy storage systems is quantified based on second law thermodynamics. The packed bed of solid rocks is identified as one of the only options which can be integrated with upcoming small modular reactors. Directly storing thermal energy from saturated steam into packed bed of rocks is a very complex physical process due to phase transformation, two phase flow in irregular geometries and percolating irregular condensate flow. In order to examine the integrated physical aspects of this process, the energy transport during direct steam injection and condensation in the dry cold randomly packed bed of spherical alumina particles was experimentally and theoretically studied. This experimental setup ensures controlled condensation process without introducing significant changes in the thermal state or material characteristics of heat sink. Steam fronts at different flow rates were introduced in a cylindrical packed bed and thermal response of the media was observed. The governing heat transfer modes in the media are completely dependent upon the rate of steam injection into the system. A distinct differentiation between the effects of heat conduction and advection in the bed were observed with slower steam injection rates. A phenomenological semi-analytical model is developed for predicting quantitative thermal behavior of the packed bed and understanding physics. The semi-analytical model results are compared with the experimental data for the validation purposes. The steam condensation process in packed beds is very stable under all circumstances and there is no effect of flow fluctuations on thermal stratification in packed beds. With these experimental and analytical studies, it can be concluded that packed beds have potential for thermal storage applications with steam as heat transfer fluid. The stable stratification and condensation process in packed beds led to design of a novel passive safety heat removal system for advanced boiling water reactors.
Moser, Clemens. "Power management in energy harvesting embedded systems." Aachen Shaker, 2009. http://d-nb.info/994883013/04.
Full textSmilek, Jan. "Energy Harvesting Power Supply for MEMS Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-386765.
Full textRosario, Leon Christopher. "Power and energy management of multiple energy storage systems in electric vehicles." Thesis, Cranfield University, 2008. http://dspace.lib.cranfield.ac.uk/handle/1826/2992.
Full textGuduru, Giridhar Reddy. "Management of energy and power using renewable energy sources based on ZigBee." Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10004167.
Full textThe energy and power used at various areas like households and industries is increasing gradually due to many reasons and there is a need to sustain it. This project introduces a method to reduce the energy used in a household by considering the energy sources and the amount of energy used by the appliances concurrently. Modules are used to measure and check the energy utilized by the appliances using ZigBee. Energy is generated on a conventional basis using three sources: solar panel, wind mill and conventional power. An inverter and a battery are used to connect these sources to a grid. When a device is connected, the units of power consumed are computed and shown on the LCD using LPC2148 microcontroller. The output of the battery is connected to the controller, which shows the voltage of the battery and also selects the best source to be used. Modules use a 5V supply and the controller uses 3.3V power supply. Voltage is controlled with the help of a 7805 voltage regulator and the output of transformer is revised by a rectifier.
Rosario, L. C. "Power and energy management of multiple energy storage systems in electric vehicles." Thesis, Cranfield University, 2008. http://hdl.handle.net/1826/2992.
Full textBarton, John P. "A probabilistic method of modelling energy storage in electricity systems with intermittent renewable energy." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/9727.
Full textGuoan, Christopher M. "Ground-based high energy power beaming in support of spacecraft power requirements." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FGuoan.pdf.
Full textThesis Advisor(s): Sherif Michaels. "June 2006." Includes bibliographical references (p. 119-124). Also available in print.