Dissertations / Theses on the topic 'Power Factor Correction (PFC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Power Factor Correction (PFC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Xie, Manjing. "Digital Control for Power Factor Correction." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/34258.
Full textMaster of Science
Grote, Tobias [Verfasser]. "Digital control for interleaved boost power factor correction (PFC) rectifiers / Tobias Grote." Paderborn : Universitätsbibliothek, 2014. http://d-nb.info/105184813X/34.
Full textGamboa, Gustavo. "REALIZATION OF POWER FACTOR CORRECTION AND MAXIMUM POWER POINT TRACKING FOR LOW POWER WIND TURBINES." Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4283.
Full textM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Lee, Moonhyun. "Digital-Based Zero-Current Switching (ZCS) Control Schemes for Three-Level Boost Power-Factor Correction (PFC) Converter." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99694.
Full textDoctor of Philosophy
Electronic-based devices and loads have been essential parts of modern society founded on rapid advancements of information technologies. Along with the progress, power supplying and charging of electronic products become routinized in daily lives, but still remain critical requisites for reliable operations. In many power-electronics-based supplying systems, ac-dc power-factor correction (PFC) circuits are generally located at front-end to feed back-end loads from universal ac-line sources. Since PFC stages have a key role in regulating ac-side current quality and dc-side voltage control, the importance of PFC performances cannot be emphasized enough from entire system point of view. Thus, advanced control schemes for PFC converters have been developed in quantity to achieve efficient operations and competent power qualities such as high power factor, low harmonic distortions and low electromagnetic interferences (EMI) noises. In this dissertation, a sort of PFC topologies named three-level boost (TLB) converter is chosen for target topology. Based on inherent three-level waveform capability of the topology, multiple zero-current switching (ZCS) control schemes are proposed. Compared to many conventional two-level PFC topologies, TLB PFC can provide additional degree-of-freedom to current modulation. The increased control flexibility can realize improvements of various waveform qualities including peak current stress, switching frequency range, harmonics and EMI amplitude. From the experimental results in this dissertation, improvements of waveform qualities in TLB PFC with the proposed schemes are verified with comparison to two-level current control schemes; in terms of efficiency, the results show that TLB PFC with the proposed schemes can have similar converter efficiency with conventional two-level boost converter in spite of increased component counts in the topology. Further, the proposed three-level control schemes can be utilized in adjustable forms to accomplish different control objectives depending on system characteristics and applications. In each chapter of this dissertation, a novel control scheme is proposed and explained with details of operation principle, key equations and digital implementation method. All the effectiveness of proposals and analyses are validated by a proper set of experimental results with a TLB PFC prototype.
Koh, Hyunsoo. "Modeling and Control of Single Switch Bridgeless SEPIC PFC Converter." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/34125.
Full textMaster of Science
Yilmaz, Hasan. "Design, Application And Comparison Of Single Stage Flybackand Sepic Pfc Ac/dc Converters For Power Led Lighting Application." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615097/index.pdf.
Full textsingle stage Flyback converter having different configuration from the traditional Flyback and single stage SEPIC converter is investigated. The study involves analysis, circuit design, performance comparisons and implementation. The study covers LEDs
their developments, characteristics and state-of-art in this new technology. The circuits are investigated by means of computer simulations. Operating principles and operating modes are studied along with design calculations. After applying prototypes in laboratory, the simulation results and theoretical analyses are confirmed. The single stage Flyback converter has high voltage input (220-240 Vac), and the output feeds up to 216 HB-LEDs, with the ratings of 24 V, 3.25 A with 90 W. The single stage SEPIC converter with universal input (80-265 Vac) has an output that feeds 21 power LEDs, with 67 V, 0.30 and 20 W ratings.
Muhammad, Khairul Safuan Bin. "Design and Practical Implementation of Bridgeless Boost PFC Rectifier With Zero-Current Switching And Fault-Tolerant Operation." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14309.
Full textDamasceno, Daniel da Motta Souto. "Metodologia de projeto de conversores boost para correção de fator de potência apliocada a sistemas ininterruptos de energia." Universidade Federal de Santa Maria, 2006. http://repositorio.ufsm.br/handle/1/8539.
Full textEsta Dissertação de Mestrado apresenta uma metodologia de projeto para o conversor boost operando como estágio retificador de entrada em uma fonte de alimentação ininterrupta. Essa metodologia se baseia em definir, através de um conjunto de freqüências de comutação e ondulações de corrente, o ponto de minimização do volume do conversor considerando o volume do indutor, do filtro de interferência eletromagnética conduzida e dos dissipadores. Assim, é desenvolvido ao longo desse trabalho o projeto de cada elemento mencionado estudando o impacto do uso de diferentes materiais magnéticos, topologias de filtro de entrada e tecnologias de semicondutores. Inicialmente é projetado o controlador e desenvolvida a estrutura de simulação do conversor. Em um segundo momento é projetado o indutor boost para uma determinada elevação de temperatura. A seguir é projetado o filtro de interferência eletromagnética analisando o impacto de diferentes topologias. Também são projetados os dissipadores que garantem a operação dos semicondutores dentro dos limites de temperatura estabelecidos pelos fabricantes. Por fim, é formalizada a metodologia baseada nos projetos anteriores, pela qual, fazendo uso dos procedimentos e equações fornecidos, torna-se possível definir o ponto de minimização do volume do conversor.
Pham, Thi Thuy Linh. "Contribution à l’étude de nouveaux convertisseurs sécurisés à tolérance de panne pour systèmes critiques à haute performance. Application à un PFC Double- Boost 5 Niveaux." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0095/document.
Full textThis work is an exploration and an evaluation of new variants of multi-level AC/DC topologies (PFC) considering their global reliability and availability: electrical safety with an internal failure and post-failure operation. They are based on a non-differential AC and centre tap connection that led to symmetrical arrangement cells in series. These topologies permit an intrinsic active redundancy between cells in a same group and a segregation capability between the two symmetrical groups of cells. More again, they are modular and they can be paralleled and derived to any number of levels. Only single low-voltage (600V) transistor pear cell is used avoiding the short-circuit risk due to an unwanted control signal. Comparisons, taking into account losses, distribution losses, rating and stresses (overvoltage and over-temperature) during the post-operation are presented. Results highlight the proposed 5-level Double-Boost Flying Capacitor topology. This one was patented at the beginning of thesis, as a solution with the best compromise. On the theoretical side, we show that the reliability calculation based only on a "first fault occurrence" criterion is inadequate to really describe this type of topology. The inclusion of fault tolerance capability is needed to evaluate the overall reliability law (i.e. including a second failure). The adaptation of theoretical models with constant failure rate including overvoltage and over-temperature dependencies exhibit an increasing of the reliability over a short time. This property is an advantage for embedded systems with monitoring condition. Local detection and rapid diagnosis of an internal failure were also examined in this work. Two methods are proposed firstly, by a direct flying caps monitoring and secondly, by a realtime and digital synchronous demodulation of the input sampled voltage at the switching frequency (magnitude and phase). Both techniques have been integrated on FPGA and DSP frame and evaluated on a AC230V-7kW DC800V – 31kHz lab. set-up. We put forward the interest of the second method which only uses one input voltage sensor. Finally, we propose in this dissertation a new generic X-level PFC Vienna using, in 5-level version, half transistors and drivers for identical input frequency and levels. At the cost of a slight increase of losses and density losses, this topology appears very attractive for the future. A preliminary lab. set-up and test were also realized and presented at the end of the thesis
Wang, Chuanyun. "Investigation on Interleaved Boost Converters and Applications." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/28635.
Full textPh. D.
JÃnior, Josà Ailton LeÃo Barboza. "A Double boost converter with PFC and series/parallel input connection for uninterrupted power system." Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16257.
Full textThis work presents a study of a Double Boost AC-DC Converter with power factor correction and dual input voltage operation capability via a selector switch. Such converter can be applied to on-line uninterruptible power supplies with dual voltage input characteristics, this way avoiding the usage of a low frequency autotransformer. The studied structure is composed by two AC-DC classical boost converters, in which for input voltage of 110 Vac both its inputs are connected in parallel, and, for 220 Vac, they are connected in series. The control strategy is based in the average current mode control applied to both converters, in order to provide the power factor correction and output voltage regulation. Simulation and experimental results for 2.4 kW are presented, and so are validate the theoretical study and design. Connecting the inputs in parallel and series, the results were satisfactory and the converter operated properly.
Hertz, Erik M. "Thermal and EMI Modeling and Analysis of a Boost PFC Circuit Designed Using a Genetic-based Optimization Algorithm." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/34234.
Full textMaster of Science
Zientarski, Jonatan Rafael Rakoski. "Análise, modelagem e validação experimental de uma metodologia para o projeto do indutor em conversores Boost PFC." Universidade Federal de Santa Maria, 2009. http://repositorio.ufsm.br/handle/1/8464.
Full textThis work presents the development of a methodology for design of inductor in singlephase PFC boost converters operating in CCM mode in agreement with international standards IEC 61000-3-2 and CISPR 22. Such converters are used in front-end modules of information technology equipment. This methodology is based on the investigation of the relationship among magnetic volume; switching frequency and input current ripple of the converter, presented in previous work and extended to allow the optimization of inductors with three magnetic materials: Kool Mμ, Molypermalloy and High-Flux. An analysis of some constructive characteristics of the inductors is performed, such as, magnetic materials and most appropriate type of winding, taking into account factors that can determine the lowest volume of the inductor, such as winding and magnetic losses, the flux density, and conducted electromagnetic interference (EMI). In construction of the inductors, it is discussed the use of single-layer winding, presenting their main haracteristics, advantages when seeking the reduction of conducted EMI, and considering the disadvantage of increasing of volume that this type winding may cause. An algorithm for this methodology is developed, that uses models able to estimate the differential mode conducted EMI for frequencies up to 30 MHz, as well the temperature rise of boost inductor by simulating the input current of the converter, considering soft saturation characteristics of magnetic materials and the use of commercial cores. Additionally, it is performed an experimental validation of the developed algorithm by construction of prototypes that uses three selected materials and operate at three different points of operation.
Este trabalho apresenta o desenvolvimento de uma metodologia de projeto do indutor em conversores boost PFC CCM monofásicos de acordo com as normas internacionais IEC 61000-3-2 e CISPR 22. Tais conversores são utilizados como estágio de entrada em fontes de equipamentos da tecnologia da informação. A metodologia é baseada na investigação da dependência existente entre o volume dos elementos magnéticos com a freqüência de comutação e a ondulação da corrente de entrada nestes conversores. O trabalho dá continuidade a trabalhos anteriores, ampliando a análise para a otimização de indutores de três materiais magnéticos: Kool Mμ, Molypermalloy e High-Flux. É realizada uma análise de algumas características construtivas destes indutores, entre elas, os materiais magnéticos mais apropriados e o tipo de enrolamento utilizado levando-se em consideração fatores que permitem a redução do volume do indutor, como as perdas magnéticas e nos enrolamentos, a densidade de fluxo magnético e a interferência eletromagnética (EMI) conduzida. Na implementação dos indutores, é discutida a utilização de enrolamentos de única camada, apresentando suas principais características, as vantagens de sua utilização quando se busca a redução da EMI conduzida, e considerando-se a desvantagem do aumento de volume do indutor que este tipo de enrolamento pode causar. Um algoritmo é desenvolvido para esta metodologia, no qual são utilizados modelos capazes de estimar a EMI conduzida DM para freqüências de até 30 MHz, assim como a elevação da temperatura do indutor, por meio de uma simulação da corrente de entrada do conversor que considera os efeitos da saturação suave dos materiais magnéticos e a utilização de núcleos com dimensões comerciais. É também realizada a validação experimental deste algoritmo, por meio da construção de protótipos que utilizam indutores dos três materiais escolhidos e operam em três pontos de operação distintos.
Unal, Teoman. "Design Of A Single-phase Full-bridge Diode Rectifier Power Factor Corrector Educational Test System." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12608148/index.pdf.
Full textPham, Thi Thuy Linh. "Contribution à l'étude de nouveaux convertisseurs sécurisés à tolérance de panne pour systèmes critiques à haute performance. Application à un PFC Double- Boost 5 Niveaux." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2011. http://tel.archives-ouvertes.fr/tel-00656620.
Full textWu, Jia. "Implementation of a 100kW Soft-Switched DC Bus Regulator Based on Power Electronics Building Block Concept." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/32468.
Full textMaster of Science
Longo, Gaetano. "Analisi e simulazione di uno stadio power factor corrector per un alimentatore industriale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textBaisden, Andrew Carson. "Modeling and Characterization of Power Electronic Converters with an Integrated Transmission-Line Filter." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/33188.
Full textMaster of Science
Holub, Miroslav. "DC-DC měnič pro palubní dobíjení elektromobilu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-401968.
Full textEleyele, Abidemi Oluremilekun. "Isolated Single-Stage Interleave Resonant PFC Rectifier with Active and Novel Passive Output Ripple Cancellation Circuit." Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423117.
Full textReymond, Cédric. "Conception d'une structure innovante de convertisseur AC-DC de type Totem-pole avec correction du facteur de puissance : application aux chargeurs de batteries des véhicules électriques." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4015.
Full textGovernments empower states over the environment with implementation of solution to clean up the electricity production sources. In 2020, 20% of the produced energy will be generated by renewable energies. However, theses green energies are occasional and require a huge storage capacitance for the local smart grids management. This solution puts two new issues: the necessity of having a bidirectional converter and the inrush currents management. To facilitate the study of these problems, the thesis suggests binding through a power balance, the performances of the current limiter on an innovative topology converter. This analysis highlight an alternative solution of inrush current strategy in energy conversion. Finally, a novel control circuit for SCRs/Triacs components will be proposed and characterized for landing one of the constraints linked to the converter reversibility
Ozturk, Salih Baris. "Direct torque control of permanent magnet synchronous motors with non-sinusoidal back-EMF." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2728.
Full textAmarasinghe, Kanishka A. "Resonance mode power supplies with power factor correction." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/23672.
Full textYeh, Thomas. "Analysis of power factor correction converters /." Online version of thesis, 1992. http://hdl.handle.net/1850/11220.
Full textQian, Jinrong. "Advanced Single-Stage Power Factor Correction Techniques." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30773.
Full textPh. D.
Jiang, Yimin. "Development of advanced power factor correction techniques." Diss., Virginia Polytechnic Institute and State University, 1994. http://hdl.handle.net/10919/53609.
Full textPh. D.
Williams, David. "Active power decoupling for a boost power factor correction circuit." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59145.
Full textApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
Niezrecki, Christopher. "Power factor correction and power consumption characterization of piezoelectric actuators." Thesis, Virginia Tech, 1992. http://hdl.handle.net/10919/42619.
Full textMaster of Science
Zhang, Jindong. "Advanced Integrated Single-Stage Power Factor Correction Techniques." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/26480.
Full textPh. D.
Chan, Weng Hong. "Harmonic reduction and power factor correction in low power supply system." Thesis, University of Macau, 2002. http://umaclib3.umac.mo/record=b1445817.
Full textTan, Benjamin H. "A Novel Arc Welding Power Supply with Improved Power Factor Correction." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2199.
Full textSaasaa, Raed. "A single-stage interleaved resonant power factor correction converter." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59199.
Full textApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
George, Mark S. "Power factor correction using a boost quasi-resonant converter." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/41901.
Full textA steady-state analysis of a quasi-resonant zero current boost converter is performed in its application to a single-phase power factor correction circuit. The known closed-form expressions are used to design the boost converter and the multiloop control circuit. The operating characteristics are simulated by using PSPICE and are experimentally verified. Considerations for a practical design are based upon hardware operating at a maximum of 1 megahertz, with a 115 VRMS input, 200 VDC and 100 watt output.
Master of Science
Clark, Colin William. "Digital control techniques for power quality improvements in power factor correction applications." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42799.
Full textBarbosa, Peter Mantovanelli. "Three-Phase Power Factor Correction Circuits for Low-Cost Distributed Power Systems." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/28651.
Full textPh. D.
Ahmed, Saeed. "Controlled on-time power factor correction circuit with input filter." Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-11072008-063637/.
Full textKalpaktsoglou, Dimitrios. "Power factor correction for stand-alone wave energy conversion buoys." Thesis, University of Newcastle Upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519591.
Full textZhang, Jindong. "Study and Improvement of Single-Stage Power Factor Correction Techniques." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36938.
Full textMaster of Science
Zhou, Chen. "Design and analysis of an active power factor correction circuit." Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/53729.
Full textMaster of Science
Lord, Edward Michael. "Single-stage power factor correction converter topologies for low power off-line applications." Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/15234.
Full textZhao, Yiqing. "Single Phase Power Factor Correction Circuit with Wide Output Voltage Range." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/35764.
Full textMaster of Science
Durrani, Yamin Qaisar. "Analysis of silicon carbide based semiconductor power devices and their application in power factor correction." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2573.
Full textChen, Chuen-Shiu, and 陳春旭. "The design of zero-voltage-transition(ZVT) power factor correction(PFC) circuit." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/16706264659421257343.
Full textXu, Xiaojun. "Next generation power factor correction (PFC) based on silicon carbide (SiC) power devices and new control strategy." 2008. http://www.lib.ncsu.edu/theses/available/etd-11262008-173420/unrestricted/etd.pdf.
Full textChen, Chi-Lin, and 陳契霖. "Triple Loop Modulation (TLM) for High Reliability and Efficiency in Power Factor Correction (PFC) System." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/85164771988645998761.
Full text國立交通大學
電控工程研究所
100
In general power applications, the power factor correction techniques is the one of key techniques in power saving applications and can make AC power more efficient. The PFC has slow system response because it has low one third or one sixth bandwidth smaller than 20 Hz. The low bandwidth is designed to reject AC interference of 60Hz coupling which could deteriorate system reliability in case of output load transient. This dissertation proposes the triple loop modulation (TLM) in PFC system to improve as fast transient response. When system is in steady state, system stability can be guaranteed by low-frequency compensation pole without being affected by TLM. When output loading changes, the TLM can automatically adjust the bandwidth to increase or decrease inductor current rapidly and reduce transient response time. The mathematical analysis is deduced. This PFC chip is fabricated in VIS 0.5um 500V/40V ultra high voltage LDMOS process. Measurement results show that this PFC system with TLM in transient response is twofold faster than conventional PFC design with output load variation from 20W to 90W and the undershoot voltage is half of traditional PFC. When loading changes from 20W to 90W, the PFC with TLM in transient response is twofold faster than conventional PFC design and the overshoot voltage is about half of traditional PFC.
"Accurate Estimation of Core Losses for PFC Inductors." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.55521.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2019
Brolund, Andreas. "Evaluation of power quality and common design concept for AC-DC converters in aircraft." Thesis, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-337969.
Full textGau, Yu-Jun, and 高鈺鈞. "Low Cost Simple Power Factor Correction." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/5uw96v.
Full text遠東科技大學
電機工程研究所
107
This thesis proposes a low-cost simple power factor correction converter architecture. Since the commercially available power factor correctors are upgraded to 400V without lower voltage, considering the low-voltage equipment can be used, it is proposed to achieve high-efficiency circuits at low cost. This article uses the IC ICE2PCS02 in continuous conduction mode as the correction IC for this power factor corrector. This circuit simulates the boost converter simulation in the case of input 70-130Vac boost to output 200V for three different load cases. At half load, the efficiency can reach 94-95% or more. When it is fully loaded, its efficiency can reach 98-99%, effectively achieving a low-cost and high-efficiency structure.
Fan, Yang-Dian, and 范揚典. "Comparator Implemented Digital Power Factor Correction Rectifier." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/fe7tu6.
Full text國立高雄科技大學
電機工程系
107
Power factor correction rectifier (PFC) is the front end of most computer power supplies. Due to the climate change, high efficiency over wide load range is highly demanded in PFCs. This drives digital controller to replace analog controller. Analog to digital converters (ADC) are the essential parts for all digital powers. Some previous researches replace the ADC with a comparator and a counter for measuring the DC value of a rippled signal. Comparator based control does not only reduces system cost, but also eliminates the sampling error of the ADC. For those signals with small ripple, the comparator based digital controller injects extra analog ripple on signal feedback for signal sensing. However, in digital PFC, system operation point varies along the line voltage. The fixed analog ripple injection can only be optimized for one operating point. Therefore, a digital ripple injection is introduced in this paper. Instead of using analog circuits to generate analog ripple, a digital to analog converter (DAC) and a low pass filter can generate filtered digital ripple signal as the ripple inject. Based on digital ripple injection, a 500 watt digital PFC is implemented experimentally.
Huang, Kuan-Ju, and 黃冠儒. "Development of a Digital Meter with Power Factor Correction Correction Capability." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/d8q927.
Full text國立臺北科技大學
自動化科技研究所
105
The thesis proposed a digital meter with power factor correction capability when the measured signal contains harmonic components. By using resistor voltage divider circuit and current clamp, the input voltage and current are transferred to small voltage signals which can be processed by the microprocessor. These voltage and current waveform are digitized through an analog-to-digital convertor (ADC). Fast Fourier Transform (FFT) is applied. The Hanning Window and frequency interpolation algorithm is used to correct the voltage and current signals. As the front-end circuit may introduce phase shift, phase compensation calculation is required. Accurate RMS voltage, RMS current, active power, reactive power, apparent power, power factor and frequency can be calculated. When measured signal contains harmonic components, the THD is calculated and is used to correct the power factor calculation. The final measurement results are displayed on the LCD and transmitted through the UART. Calibration procedure is also developed to simplify the calibration process. All of the calibration parameters are stored in nonvolatile memory.