Academic literature on the topic 'Power gyrator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Power gyrator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Power gyrator"
Martínez-García, Herminio, and Encarna García-Vilchez. "The Inclusion of Power Gyrator Topologies as Energy Processing Cells in Photovoltaic Solar Conversion." Renewable Energy and Power Quality Journal 19 (September 2021): 614–18. http://dx.doi.org/10.24084/repqj19.364.
Full textTippetts, John R. "Definition and properties of a Eulerian 3-terminal gyrator." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2056 (April 8, 2005): 957–74. http://dx.doi.org/10.1098/rspa.2004.1407.
Full textBello, Mark. "Compact, single-device gyrator attains “Highest ever reported” power-conversion efficiency." Scilight 2017, no. 13 (September 18, 2017): 130006. http://dx.doi.org/10.1063/1.5004991.
Full textWu, Fengchuan, Yuejun Zheng, and Yunqi Fu. "Magnetic-Free Nonreciprocal Multifunction Device Based on Switched Delay Lines." Electronics 8, no. 8 (August 3, 2019): 862. http://dx.doi.org/10.3390/electronics8080862.
Full textPremoli, A., and M. Storace. "Two-Port Ideal Power Transferitors: A Unified Introduction to Ideal Transformer and Gyrator." IEEE Transactions on Circuits and Systems II: Express Briefs 51, no. 8 (August 2004): 426–29. http://dx.doi.org/10.1109/tcsii.2004.832777.
Full textKubota, Kenichi, and Mitsuo Okine. "Realization of a multiport gyrator using current mirror circuits." Electrical Engineering in Japan 139, no. 4 (April 25, 2002): 41–47. http://dx.doi.org/10.1002/eej.1167.
Full textFahrenthold, E. P., and A. Wu. "Bond Graph Modeling of Continuous Solids in Finite Strain Elastic-Plastic Deformation." Journal of Dynamic Systems, Measurement, and Control 110, no. 3 (September 1, 1988): 284–87. http://dx.doi.org/10.1115/1.3152683.
Full textZhang, Jitao, Zhen Wang, Qingfang Zhang, Hewei Zhao, Jie Wu, Jiagui Tao, Liying Jiang, and Lingzhi Cao. "Influence of shape on power conversion efficiency of Ni-Zn ferrite/piezoelectric magnetoelectric gyrator." Journal of Physics: Conference Series 1759 (January 2021): 012007. http://dx.doi.org/10.1088/1742-6596/1759/1/012007.
Full textZhuang, Xin, Min Gao, Xiao Tang, Chung-Ming Leung, Junran Xu, Gopalan Srinivasan, Jiefang Li, Haosu S. Luo, and Dwight Viehland. "A Piezoelectric Mn-Doped PMN-PT/Metglas Magnetoelectric Gyrator: Enhanced Power Efficiency at Reduced Size." IEEE Sensors Journal 20, no. 2 (January 15, 2020): 752–59. http://dx.doi.org/10.1109/jsen.2019.2943144.
Full textBlumenfeld, Alon, Alon Cervera, and Mor Mordechai Peretz. "Enhanced Differential Power Processor for PV Systems: Resonant Switched-Capacitor Gyrator Converter With Local MPPT." IEEE Journal of Emerging and Selected Topics in Power Electronics 2, no. 4 (December 2014): 883–92. http://dx.doi.org/10.1109/jestpe.2014.2331277.
Full textDissertations / Theses on the topic "Power gyrator"
Cid-Pastor, Ángel. "Energy processing by means of power gyrators." Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/6337.
Full textDes d'un punt de vista circuital, es tracta d'una estructura de dos ports que es caracteritza per algun d'aquests dos grups d'equacions: 1) I1=gV2, I2=gV1 , 2) V1=rI2, V2=rI1, on I1, V1, i I2, V2 són els valors en contínua corresponents als valors de tensió i corrent als ports d'entrada i sortida respectivament, essent g (r) la conductància (resistència) del girador.
En aquesta tesi, les estructures giradores de potència s'han classificat en funció de com transformen una font d'excitació al port d'entrada en la seva representació dual al port de sortida. Segons aquesta classificació es poden distingir tres tipus de giradors: 1) girador de potència de tipus G, 2) girador de potència de tipus G amb corrent d'entrada controlada i 3) giradors de potència de tipus R. Les categories 1 i 2 són les dues possibles solucions de síntesi de les equacions (1), mentre que la categoria 3 correspon a la solució de síntesi de les equacions (2).
A més a més, no existeixen estudis sistemàtics on basant-se en les equacions de definició s'arribi finalment a una verificació experimental. En aquesta tesi es presenta el disseny i anàlisi dels giradors que s'han presentat. L'anàlisi cobreix exhaustivament l'estudi tant del comportament dinàmic com estàtic dels giradors presentats. Aquests giradors es poden considerar com estructures canòniques per al processat de potència.
A més a més, es presenten algunes funcions bàsiques del processat de potència realitzades amb giradors de potència. Com per exemple: conversió tensió-corrent, corrent-tensió, adaptació d'impedàncies i regulació de tensió.
Les característiques de cada girador depenen no només de la topologia convertidora sinó també del funcionament del control del convertidor. S'han investigat dos tècniques de control: el control en mode lliscant i el control no lineal basat en dinàmica zero. Per tant, les estructures giradores proposades poden treballar tant a freqüència constant com a freqüència variable.
Finalment s'han verificat les previsions teòriques mitjançant simulació i verificació experimental.
In this thesis, a systematic approach to the synthesis of power gyrators is presented. Based on this approach, several gyrator structures can be generated and classified. Each of these gyrators has its own features and is suitable of different applications.
From a circuit standpoint, a power gyrator is a two-port structure characterized by any of the following two set of equations: 1) I1=gV2, I2=gV1 , 2) V1=rI2, V2=rI1, where I1, V1, and I2, V2 are DC values of current and voltage at input and output ports respectively and g ( r ) is the gyrator conductance ( resistance ).
In this thesis, power gyrator structures are classified by the manner they transform an excitation source at the input port into its dual representation at the output port. Based on this classification, there exist three types of power gyrators: 1) power gyrators of type G, 2) power gyrators of type G with controlled input current and 3) power gyrators of type R. Categories 1 and 2 are the two possible synthesis solutions to the set of equations ( 1 ) while category 3 corresponds to the synthesis solution of ( 2 ).
Thus far, no systematic works have been done starting at the definition equations and ending at the experimental verification. In this thesis, the analysis and design for the disclosed power gyrators are presented. The analysis covers exhaustingly the study of both static and dynamic behavior of the reported power gyrators. These power gyrators presented can be considered as canonical structures for power processing.
Thus, some basic power processing functions done by the presented power gyrators are reported. Namely, voltage to current conversion, current to voltage conversion, impedance matching and voltage regulation.
The performance characteristics of a power gyrator depend not only on the circuit topology but also depend on the converter control operation.
Hence, two main control schemes are investigated, namely, sliding-mode control schemes and zero-dynamics-based PWM nonlinear control. Therefore, the proposed gyrator structures can operate indistinctly at constant or at variable switching frequency.
In addition, experimental and computer simulation results of the power gyrators presented are given in order to verify the theoretical predictions.
Gonzalez, Dominguez Guadalupe Giselle. "Power-Invariant Magnetic System Modeling." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-9730.
Full text"Energy processing by means of power gyrators." Universitat Politècnica de Catalunya, 2005. http://www.tesisenxarxa.net/TDX-0906105-140437/.
Full textBooks on the topic "Power gyrator"
Dailey, Denton J. Electronics for Guitarists. 2nd ed. New York, NY: Springer New York, 2013.
Find full textBook chapters on the topic "Power gyrator"
Tatai, Ildiko, and Marian Greconici. "Optimization of the Power Transfer Control between the Ports of a Double Bridge DC – DC Power Converter Type Gyrator." In Soft Computing Applications, 209–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33941-7_20.
Full textSzewczyk, Roman, Oleg Petruk, Michał Nowicki, Anna Ostaszewska-Liżewska, Aleksandra Kolano-Burian, Piotr Gazda, Adam Bieńkowski, Paweł Nowak, and Tomasz Charubin. "LTspice Implementation of Gyrator-Capacitor Magnetic Circuit Model Considering Losses and Magnetic Saturation for Transient Simulations of Switching Mode Power Supplies Utilizing Inductive Elements with Cores Made of Amorphous Alloys." In Advances in Intelligent Systems and Computing, 416–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74893-7_37.
Full text"Gyrator Circuit Model." In Wireless Power Transfer for Electric Vehicles and Mobile Devices, 67–97. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119329084.ch5.
Full text"Synthesis of a Power Gyrator Based on Sliding Mode Control of two Cascaded Boost Converters Using a Single Sliding Surface." In Power Systems and Smart Energies, 1–18. De Gruyter Oldenbourg, 2017. http://dx.doi.org/10.1515/9783110448412-001.
Full textConference papers on the topic "Power gyrator"
dos Santos, Walbermark M., Henrique Rocha e Mamede, Adriano Ruseler, and Denizar C. Martins. "Paralleling of DAB converter using the gyrator theory." In 2013 Brazilian Power Electronics Conference (COBEP 2013). IEEE, 2013. http://dx.doi.org/10.1109/cobep.2013.6785134.
Full textEvzelman, Michael, and Sam Ben-Yaakov. "A Generic Model of a Gyrator Based APFC." In 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2009. http://dx.doi.org/10.1109/apec.2009.4802746.
Full textChen, Qianhong, Ligang Xu, Xinbo Ruan, Siu Chung Wong, and Chi K. Tse. "Gyrator-Capacitor Simulation Model of Nonlinear Magnetic Core." In 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2009. http://dx.doi.org/10.1109/apec.2009.4802905.
Full textdos Santos, Walbermark M., Henrique R. e Mamede, and Denizar C. Martins. "Paralleling of dab converter using the gyrator theory." In 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2014. http://dx.doi.org/10.1109/pedg.2014.6878666.
Full textDu, Weijing, Junming Zhang, Yang Zhang, Zhaoming Qian, and Fangzheng Peng. "Large signal stability analysis based on gyrator model with constant power load." In 2011 IEEE Power & Energy Society General Meeting. IEEE, 2011. http://dx.doi.org/10.1109/pes.2011.6039057.
Full textCid-Pastor, A., L. Martinez-Salamero, C. Alonso, G. Schweitz, and R. Leyva. "DC Power Gyrator versus DC Power Transformer for Impedance Matching of a PV Array." In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.4778675.
Full textCid-Pastor, Angel, Luis Martinez-Salamero, Corinne Alonso, Guy Schweitz, and Ramon Leyva. "DC Power Gyrator versus DC Power Transformer for Impedance Matching of a PV Array." In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.283129.
Full textMohanty, Bibhuprasad, Madhusmita Sahoo, and Badrinarayan Sahu. "Double color image encryption scheme using RGB pixel shuffling in Gyrator domain." In 2015 IEEE Power, Communication and Information Technology Conference (PCITC). IEEE, 2015. http://dx.doi.org/10.1109/pcitc.2015.7438139.
Full textMartinez-Garcia, Herminio, and Antoni Grau-Saldes. "Versatility of power gyrator structures for energy processing in photovoltaic solar systems." In 2014 IEEE Emerging Technology and Factory Automation (ETFA). IEEE, 2014. http://dx.doi.org/10.1109/etfa.2014.7005205.
Full textMartinez-Garcia, Herminio. "Power gyrator structures: Versatile cells for energy processing in photovoltaic solar facilities." In 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2014. http://dx.doi.org/10.1109/mwscas.2014.6908448.
Full text