Academic literature on the topic 'Power gyrator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Power gyrator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Power gyrator"

1

Martínez-García, Herminio, and Encarna García-Vilchez. "The Inclusion of Power Gyrator Topologies as Energy Processing Cells in Photovoltaic Solar Conversion." Renewable Energy and Power Quality Journal 19 (September 2021): 614–18. http://dx.doi.org/10.24084/repqj19.364.

Full text
Abstract:
This paper will provide a classification of high efficiency switching power-gyrator structures and their use as cells for energy processing in photovoltaic solar facilities. Having into account the properties of these topologies presented in the article, their inclusion in solar facilities allows increasing the performance of the whole installation. Therefore, the design, simulation and implementation of a Gtype power gyrator are carried out throughout the text. In addition, in order to obtain the maximum power from the photovoltaic solar panel, a maximum power point tracking (MPPT) is mandatory in the energy processing path. Therefore, the practical implementation carried out includes a control loop of the power gyrator in order to track the aforementioned maximum power point of the photovoltaic solar panel.
APA, Harvard, Vancouver, ISO, and other styles
2

Tippetts, John R. "Definition and properties of a Eulerian 3-terminal gyrator." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2056 (April 8, 2005): 957–74. http://dx.doi.org/10.1098/rspa.2004.1407.

Full text
Abstract:
The Eulerian 3-terminal gyrator is a hypothetical element whose novel features relate to systems dominated by dynamic forces. In mechanical linkages, turbomachines, flow networks and many other systems forces are proportional to the square of velocities. This square-law is fundamental in the Eulerian 3-terminal gyrator, unlike the linearity of the conventional gyrator. A gyrator embodies non-reciprocity and, without power loss, exchanges pressure-like and flow-like variables. The name derives from the gyroscope, for which torque and precession rate are linearly related if the gyro speed is constant, but this speed would have to vary to produce a square law relationship. Such so-called ‘internal modulation’ has been viewed askance in the definition of an ideal element. However, despite potential mathematical complexity, a neat definition follows from a coordinate transformation and mapping relating to 3-terminal elements. The resulting characteristics are well-behaved functions. Formulae are derived for the small-signal Z - and Y -parameters and these enable the non-reciprocity to be demonstrated. The large-signal characteristics are compared with those of a fluidic reverse flow diverter applied to process fluid handling. In general, the Eulerian gyrator is proposed as a natural prime element in analytical modelling because it builds in the modulation that must be applied to a linear gyrator in representing systems beyond the confines of electrical networks.
APA, Harvard, Vancouver, ISO, and other styles
3

Bello, Mark. "Compact, single-device gyrator attains “Highest ever reported” power-conversion efficiency." Scilight 2017, no. 13 (September 18, 2017): 130006. http://dx.doi.org/10.1063/1.5004991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Fengchuan, Yuejun Zheng, and Yunqi Fu. "Magnetic-Free Nonreciprocal Multifunction Device Based on Switched Delay Lines." Electronics 8, no. 8 (August 3, 2019): 862. http://dx.doi.org/10.3390/electronics8080862.

Full text
Abstract:
A magnetic-free multifunction nonreciprocal device based on switched delay lines (SDLs) has been proposed in this paper. It is constructed with two double balanced gyrators (DBGs) and four baluns, each pair of differential ports of the balun connect the ports at the same orientation of the two DBGs, respectively. Due to the asymmetry of the clock control signals acting on the switches, the time reversal symmetry of the transmission line between the Gilbert quad-switch-sets (GQSS) can be broken to achieve non-reciprocity. It can be used as a circulator, gyrator, or isolator by setting different control signals. The device has infinite working bandwidth in theory based on the SDLs. Common mode interference can be better suppressed by using differential transmission structures. Moreover, power capacity can be improved compared to the previous work. Then, experiments have been done to verify the device as a circulator. Broadband property and the anti-interference property have been verified.
APA, Harvard, Vancouver, ISO, and other styles
5

Premoli, A., and M. Storace. "Two-Port Ideal Power Transferitors: A Unified Introduction to Ideal Transformer and Gyrator." IEEE Transactions on Circuits and Systems II: Express Briefs 51, no. 8 (August 2004): 426–29. http://dx.doi.org/10.1109/tcsii.2004.832777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kubota, Kenichi, and Mitsuo Okine. "Realization of a multiport gyrator using current mirror circuits." Electrical Engineering in Japan 139, no. 4 (April 25, 2002): 41–47. http://dx.doi.org/10.1002/eej.1167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fahrenthold, E. P., and A. Wu. "Bond Graph Modeling of Continuous Solids in Finite Strain Elastic-Plastic Deformation." Journal of Dynamic Systems, Measurement, and Control 110, no. 3 (September 1, 1988): 284–87. http://dx.doi.org/10.1115/1.3152683.

Full text
Abstract:
The physical systems modeling theory of bond graphs may be employed to represent the hysteretic deformation of continuous solids infinite strain elastic-plastic deformation. Second and fourth order tensors represent stress power conjugate variables and transformer or gyrator moduli, respectively, with corresponding inner products generalizing the power flow and modulation calculations of scalar and vector bond graphs. Capacitors and resistors of a tensor type suitably represent strain energy storage, associated flow rules in plasticity, and other familiar concepts. An important application of this simulation technique arises in constitutive modeling studies of nonlinear materials.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Jitao, Zhen Wang, Qingfang Zhang, Hewei Zhao, Jie Wu, Jiagui Tao, Liying Jiang, and Lingzhi Cao. "Influence of shape on power conversion efficiency of Ni-Zn ferrite/piezoelectric magnetoelectric gyrator." Journal of Physics: Conference Series 1759 (January 2021): 012007. http://dx.doi.org/10.1088/1742-6596/1759/1/012007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhuang, Xin, Min Gao, Xiao Tang, Chung-Ming Leung, Junran Xu, Gopalan Srinivasan, Jiefang Li, Haosu S. Luo, and Dwight Viehland. "A Piezoelectric Mn-Doped PMN-PT/Metglas Magnetoelectric Gyrator: Enhanced Power Efficiency at Reduced Size." IEEE Sensors Journal 20, no. 2 (January 15, 2020): 752–59. http://dx.doi.org/10.1109/jsen.2019.2943144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blumenfeld, Alon, Alon Cervera, and Mor Mordechai Peretz. "Enhanced Differential Power Processor for PV Systems: Resonant Switched-Capacitor Gyrator Converter With Local MPPT." IEEE Journal of Emerging and Selected Topics in Power Electronics 2, no. 4 (December 2014): 883–92. http://dx.doi.org/10.1109/jestpe.2014.2331277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Power gyrator"

1

Cid-Pastor, Ángel. "Energy processing by means of power gyrators." Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/6337.

Full text
Abstract:
En aquesta tesi doctoral es presenta un mètode sistemàtic per a la síntesi de giradors de potència. A partir d'aquest mètode s'han generat i classificat diverses estructures giradores. Cadascun d'aquests giradors, que poden tenir característiques diferents, pot ser útil en diferents aplicacions.
Des d'un punt de vista circuital, es tracta d'una estructura de dos ports que es caracteritza per algun d'aquests dos grups d'equacions: 1) I1=gV2, I2=gV1 , 2) V1=rI2, V2=rI1, on I1, V1, i I2, V2 són els valors en contínua corresponents als valors de tensió i corrent als ports d'entrada i sortida respectivament, essent g (r) la conductància (resistència) del girador.
En aquesta tesi, les estructures giradores de potència s'han classificat en funció de com transformen una font d'excitació al port d'entrada en la seva representació dual al port de sortida. Segons aquesta classificació es poden distingir tres tipus de giradors: 1) girador de potència de tipus G, 2) girador de potència de tipus G amb corrent d'entrada controlada i 3) giradors de potència de tipus R. Les categories 1 i 2 són les dues possibles solucions de síntesi de les equacions (1), mentre que la categoria 3 correspon a la solució de síntesi de les equacions (2).
A més a més, no existeixen estudis sistemàtics on basant-se en les equacions de definició s'arribi finalment a una verificació experimental. En aquesta tesi es presenta el disseny i anàlisi dels giradors que s'han presentat. L'anàlisi cobreix exhaustivament l'estudi tant del comportament dinàmic com estàtic dels giradors presentats. Aquests giradors es poden considerar com estructures canòniques per al processat de potència.
A més a més, es presenten algunes funcions bàsiques del processat de potència realitzades amb giradors de potència. Com per exemple: conversió tensió-corrent, corrent-tensió, adaptació d'impedàncies i regulació de tensió.
Les característiques de cada girador depenen no només de la topologia convertidora sinó també del funcionament del control del convertidor. S'han investigat dos tècniques de control: el control en mode lliscant i el control no lineal basat en dinàmica zero. Per tant, les estructures giradores proposades poden treballar tant a freqüència constant com a freqüència variable.
Finalment s'han verificat les previsions teòriques mitjançant simulació i verificació experimental.
In this thesis, a systematic approach to the synthesis of power gyrators is presented. Based on this approach, several gyrator structures can be generated and classified. Each of these gyrators has its own features and is suitable of different applications.
From a circuit standpoint, a power gyrator is a two-port structure characterized by any of the following two set of equations: 1) I1=gV2, I2=gV1 , 2) V1=rI2, V2=rI1, where I1, V1, and I2, V2 are DC values of current and voltage at input and output ports respectively and g ( r ) is the gyrator conductance ( resistance ).
In this thesis, power gyrator structures are classified by the manner they transform an excitation source at the input port into its dual representation at the output port. Based on this classification, there exist three types of power gyrators: 1) power gyrators of type G, 2) power gyrators of type G with controlled input current and 3) power gyrators of type R. Categories 1 and 2 are the two possible synthesis solutions to the set of equations ( 1 ) while category 3 corresponds to the synthesis solution of ( 2 ).
Thus far, no systematic works have been done starting at the definition equations and ending at the experimental verification. In this thesis, the analysis and design for the disclosed power gyrators are presented. The analysis covers exhaustingly the study of both static and dynamic behavior of the reported power gyrators. These power gyrators presented can be considered as canonical structures for power processing.
Thus, some basic power processing functions done by the presented power gyrators are reported. Namely, voltage to current conversion, current to voltage conversion, impedance matching and voltage regulation.
The performance characteristics of a power gyrator depend not only on the circuit topology but also depend on the converter control operation.
Hence, two main control schemes are investigated, namely, sliding-mode control schemes and zero-dynamics-based PWM nonlinear control. Therefore, the proposed gyrator structures can operate indistinctly at constant or at variable switching frequency.
In addition, experimental and computer simulation results of the power gyrators presented are given in order to verify the theoretical predictions.
APA, Harvard, Vancouver, ISO, and other styles
2

Gonzalez, Dominguez Guadalupe Giselle. "Power-Invariant Magnetic System Modeling." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-9730.

Full text
Abstract:
In all energy systems, the parameters necessary to calculate power are the same in functionality: an effort or force needed to create a movement in an object and a flow or rate at which the object moves. Therefore, the power equation can generalized as a function of these two parameters: effort and flow, P = effort * flow. Analyzing various power transfer media this is true for at least three regimes: electrical, mechanical and hydraulic but not for magnetic. This implies that the conventional magnetic system model (the reluctance model) requires modifications in order to be consistent with other energy system models. Even further, performing a comprehensive comparison among the systems, each system's model includes an effort quantity, a flow quantity and three passive elements used to establish the amount of energy that is stored or dissipated as heat. After evaluating each one of them, it was clear that the conventional magnetic model did not follow the same pattern: the reluctance, as analogous to the electric resistance, should be a dissipative element instead it is an energy storage element. Furthermore, the two other elements are not defined. This difference has initiated a reevaluation of the conventional magnetic model. In this dissertation the fundamentals on electromagnetism and magnetic materials that supports the modifications proposed to the magnetic model are presented. Conceptual tests to a case study system were performed in order to figure out the network configuration that better represents its real behavior. Furthermore, analytical and numerical techniques were developed in MATLAB and Simulink in order to validate our model. Finally, the feasibility of a novel concept denominated magnetic transmission line was developed. This concept was introduced as an alternative to transmit power. In this case, the media of transport was a magnetic material. The richness of the power-invariant magnetic model and its similarities with the electric model enlighten us to apply concepts and calculation techniques new to the magnetic regime but common to the electric one, such as, net power, power factor, and efficiency, in order to evaluate the power transmission capabilities of a magnetic system. The fundamental contribution of this research is that it presents an alternative to model magnetic systems using a simpler, more physical approach. As the model is standard to other systems' models it allows the engineer or researcher to perform analogies among systems in order to gather insights and a clearer understanding of magnetic systems which up to now has been very complex and theoretical.
APA, Harvard, Vancouver, ISO, and other styles
3

"Energy processing by means of power gyrators." Universitat Politècnica de Catalunya, 2005. http://www.tesisenxarxa.net/TDX-0906105-140437/.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Power gyrator"

1

Dailey, Denton J. Electronics for Guitarists. 2nd ed. New York, NY: Springer New York, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Electronics for Guitarists. New York, USA: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Electronics for Guitarists, 2nd ed. New York: Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dailey, Denton J. Electronics for Guitarists. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Electronics for Guitarists. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Power gyrator"

1

Tatai, Ildiko, and Marian Greconici. "Optimization of the Power Transfer Control between the Ports of a Double Bridge DC – DC Power Converter Type Gyrator." In Soft Computing Applications, 209–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33941-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Szewczyk, Roman, Oleg Petruk, Michał Nowicki, Anna Ostaszewska-Liżewska, Aleksandra Kolano-Burian, Piotr Gazda, Adam Bieńkowski, Paweł Nowak, and Tomasz Charubin. "LTspice Implementation of Gyrator-Capacitor Magnetic Circuit Model Considering Losses and Magnetic Saturation for Transient Simulations of Switching Mode Power Supplies Utilizing Inductive Elements with Cores Made of Amorphous Alloys." In Advances in Intelligent Systems and Computing, 416–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74893-7_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Gyrator Circuit Model." In Wireless Power Transfer for Electric Vehicles and Mobile Devices, 67–97. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119329084.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Synthesis of a Power Gyrator Based on Sliding Mode Control of two Cascaded Boost Converters Using a Single Sliding Surface." In Power Systems and Smart Energies, 1–18. De Gruyter Oldenbourg, 2017. http://dx.doi.org/10.1515/9783110448412-001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Power gyrator"

1

dos Santos, Walbermark M., Henrique Rocha e Mamede, Adriano Ruseler, and Denizar C. Martins. "Paralleling of DAB converter using the gyrator theory." In 2013 Brazilian Power Electronics Conference (COBEP 2013). IEEE, 2013. http://dx.doi.org/10.1109/cobep.2013.6785134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Evzelman, Michael, and Sam Ben-Yaakov. "A Generic Model of a Gyrator Based APFC." In 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2009. http://dx.doi.org/10.1109/apec.2009.4802746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Qianhong, Ligang Xu, Xinbo Ruan, Siu Chung Wong, and Chi K. Tse. "Gyrator-Capacitor Simulation Model of Nonlinear Magnetic Core." In 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2009. http://dx.doi.org/10.1109/apec.2009.4802905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

dos Santos, Walbermark M., Henrique R. e Mamede, and Denizar C. Martins. "Paralleling of dab converter using the gyrator theory." In 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2014. http://dx.doi.org/10.1109/pedg.2014.6878666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Du, Weijing, Junming Zhang, Yang Zhang, Zhaoming Qian, and Fangzheng Peng. "Large signal stability analysis based on gyrator model with constant power load." In 2011 IEEE Power & Energy Society General Meeting. IEEE, 2011. http://dx.doi.org/10.1109/pes.2011.6039057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cid-Pastor, A., L. Martinez-Salamero, C. Alonso, G. Schweitz, and R. Leyva. "DC Power Gyrator versus DC Power Transformer for Impedance Matching of a PV Array." In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.4778675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cid-Pastor, Angel, Luis Martinez-Salamero, Corinne Alonso, Guy Schweitz, and Ramon Leyva. "DC Power Gyrator versus DC Power Transformer for Impedance Matching of a PV Array." In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.283129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mohanty, Bibhuprasad, Madhusmita Sahoo, and Badrinarayan Sahu. "Double color image encryption scheme using RGB pixel shuffling in Gyrator domain." In 2015 IEEE Power, Communication and Information Technology Conference (PCITC). IEEE, 2015. http://dx.doi.org/10.1109/pcitc.2015.7438139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martinez-Garcia, Herminio, and Antoni Grau-Saldes. "Versatility of power gyrator structures for energy processing in photovoltaic solar systems." In 2014 IEEE Emerging Technology and Factory Automation (ETFA). IEEE, 2014. http://dx.doi.org/10.1109/etfa.2014.7005205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martinez-Garcia, Herminio. "Power gyrator structures: Versatile cells for energy processing in photovoltaic solar facilities." In 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2014. http://dx.doi.org/10.1109/mwscas.2014.6908448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography