Academic literature on the topic 'Power processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Power processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Power processing"
Moraes, Carlos H. V. de, Maurilio P. Coutinho, Germano Lambert-Torres, and Luiz Eduardo Borges da Silva. "Real Intelligent Alarm Processing Implementations in Power Control Centers." International Journal of Computer and Electrical Engineering 6, no. 2 (2014): 95–100. http://dx.doi.org/10.7763/ijcee.2014.v6.801.
Full textTAKAHASHI, Ryo, Shun-ichi AZUMA, Mikio HASEGAWA, Hiroyasu ANDO, and Takashi HIKIHARA. "Power Processing for Advanced Power Distribution and Control." IEICE Transactions on Communications E100.B, no. 6 (2017): 941–47. http://dx.doi.org/10.1587/transcom.2016ebn0005.
Full textScheidegger, R., W. Santiago, K. E. Bozak, L. R. Pinero, and A. Birchenough. "(Invited) High Power SiC Power Processing Unit Development." ECS Transactions 69, no. 11 (October 2, 2015): 13–19. http://dx.doi.org/10.1149/06911.0013ecst.
Full textAlarcon-Rojo, A. D., H. Janacua, J. C. Rodriguez, L. Paniwnyk, and T. J. Mason. "Power ultrasound in meat processing." Meat Science 107 (September 2015): 86–93. http://dx.doi.org/10.1016/j.meatsci.2015.04.015.
Full textMatsumoto, Yuki, Tomoya Tanaka, Koji Sonoda, Kensuke Kanda, Takayuki Fujita, and Kazusuke Maenaka. "Low Power ECG Processing ASIC." IEEJ Transactions on Sensors and Micromachines 134, no. 5 (2014): 108–13. http://dx.doi.org/10.1541/ieejsmas.134.108.
Full textLei Wang and N. R. Shanbhag. "Low-power MIMO signal processing." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 11, no. 3 (June 2003): 434–45. http://dx.doi.org/10.1109/tvlsi.2003.812367.
Full textMarshall, Larry, and Gabriel Kra. "The Processing Power of Light." Optics and Photonics News 13, no. 3 (March 1, 2002): 38. http://dx.doi.org/10.1364/opn.13.3.000038.
Full textMATSUMOTO, YUKI, TOMOYA TANAKA, KOJI SONODA, KENSUKE KANDA, TAKAYUKI FUJITA, and KAZUSUKE MAENAKA. "Low-Power ECG Processing ASIC." Electronics and Communications in Japan 99, no. 4 (March 16, 2016): 13–20. http://dx.doi.org/10.1002/ecj.11778.
Full textSchmid Mast, Marianne, Mahshid Khademi, and Tristan Palese. "Power and social information processing." Current Opinion in Psychology 33 (June 2020): 42–46. http://dx.doi.org/10.1016/j.copsyc.2019.06.017.
Full textSPIRIDONOV, VALERY. "COHERENT SIGNALS PROCESSING BY ANALOG LOGICAL ELEMENTS." International Journal of Wavelets, Multiresolution and Information Processing 05, no. 02 (March 2007): 333–50. http://dx.doi.org/10.1142/s0219691307001781.
Full textDissertations / Theses on the topic "Power processing"
Gandu, Kondalarao. "Power processing for electrostatic microgenerators." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/6995.
Full textJayasooriya, Sriyani Dhammika. "High power ultrasound in meat processing /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19070.pdf.
Full textFarag, Emad N. "VLSI low-power digital signal processing." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22199.pdf.
Full textGuo, Yan. "Real-time parallel processing for power applications." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41602.
Full textThe Multiprocessor Controller, built around three fixed-point digital signal processors(DSPs), has been used in real-time parallel processing to control a voltage-source type pulse-width-modulated power converter. In a pole-placement control strategy with a state observer, the converter has been stabilized with its dc link capacitance reduced by a factor of as much as 120, thus making the converter a potentially practical device for High Voltage direct current transmission.
The Extensible Modular Multiprocessor System consists of modules which can be easily added in a mesh architecture to provide more computing power. Each module consists of one or two autonomous processing units (PUs) and the supporting control/interface circuits. A prototype of three modules (five floating-point DSPs) has been built and used in parallel processing to simulate a small power system with two turbo-generators operating in real time as a Transient Network Analyzer(TNA).
The power system equations are partitioned by using a new method in which the system is modeled as an interconnection of functional blocks. The power system is simulated by an interconnection of DSP modules, with one module simulating one block. The results of elaborate tests demonstrate the correctness of: (a) the new partitioning method, and (b) the design and operation of the Extensible Modular Multiprocessor System. The results further show that the new partitioning method together with the Extensible Modular Multiprocessor System form a promising approach to digitize the Transient Network Analyzer.
Cid-Pastor, Ángel. "Energy processing by means of power gyrators." Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/6337.
Full textDes d'un punt de vista circuital, es tracta d'una estructura de dos ports que es caracteritza per algun d'aquests dos grups d'equacions: 1) I1=gV2, I2=gV1 , 2) V1=rI2, V2=rI1, on I1, V1, i I2, V2 són els valors en contínua corresponents als valors de tensió i corrent als ports d'entrada i sortida respectivament, essent g (r) la conductància (resistència) del girador.
En aquesta tesi, les estructures giradores de potència s'han classificat en funció de com transformen una font d'excitació al port d'entrada en la seva representació dual al port de sortida. Segons aquesta classificació es poden distingir tres tipus de giradors: 1) girador de potència de tipus G, 2) girador de potència de tipus G amb corrent d'entrada controlada i 3) giradors de potència de tipus R. Les categories 1 i 2 són les dues possibles solucions de síntesi de les equacions (1), mentre que la categoria 3 correspon a la solució de síntesi de les equacions (2).
A més a més, no existeixen estudis sistemàtics on basant-se en les equacions de definició s'arribi finalment a una verificació experimental. En aquesta tesi es presenta el disseny i anàlisi dels giradors que s'han presentat. L'anàlisi cobreix exhaustivament l'estudi tant del comportament dinàmic com estàtic dels giradors presentats. Aquests giradors es poden considerar com estructures canòniques per al processat de potència.
A més a més, es presenten algunes funcions bàsiques del processat de potència realitzades amb giradors de potència. Com per exemple: conversió tensió-corrent, corrent-tensió, adaptació d'impedàncies i regulació de tensió.
Les característiques de cada girador depenen no només de la topologia convertidora sinó també del funcionament del control del convertidor. S'han investigat dos tècniques de control: el control en mode lliscant i el control no lineal basat en dinàmica zero. Per tant, les estructures giradores proposades poden treballar tant a freqüència constant com a freqüència variable.
Finalment s'han verificat les previsions teòriques mitjançant simulació i verificació experimental.
In this thesis, a systematic approach to the synthesis of power gyrators is presented. Based on this approach, several gyrator structures can be generated and classified. Each of these gyrators has its own features and is suitable of different applications.
From a circuit standpoint, a power gyrator is a two-port structure characterized by any of the following two set of equations: 1) I1=gV2, I2=gV1 , 2) V1=rI2, V2=rI1, where I1, V1, and I2, V2 are DC values of current and voltage at input and output ports respectively and g ( r ) is the gyrator conductance ( resistance ).
In this thesis, power gyrator structures are classified by the manner they transform an excitation source at the input port into its dual representation at the output port. Based on this classification, there exist three types of power gyrators: 1) power gyrators of type G, 2) power gyrators of type G with controlled input current and 3) power gyrators of type R. Categories 1 and 2 are the two possible synthesis solutions to the set of equations ( 1 ) while category 3 corresponds to the synthesis solution of ( 2 ).
Thus far, no systematic works have been done starting at the definition equations and ending at the experimental verification. In this thesis, the analysis and design for the disclosed power gyrators are presented. The analysis covers exhaustingly the study of both static and dynamic behavior of the reported power gyrators. These power gyrators presented can be considered as canonical structures for power processing.
Thus, some basic power processing functions done by the presented power gyrators are reported. Namely, voltage to current conversion, current to voltage conversion, impedance matching and voltage regulation.
The performance characteristics of a power gyrator depend not only on the circuit topology but also depend on the converter control operation.
Hence, two main control schemes are investigated, namely, sliding-mode control schemes and zero-dynamics-based PWM nonlinear control. Therefore, the proposed gyrator structures can operate indistinctly at constant or at variable switching frequency.
In addition, experimental and computer simulation results of the power gyrators presented are given in order to verify the theoretical predictions.
Zaidi, Syed Izhar Hussain. "Power Efficient Signal Processing in Reconf0igurable Computing." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520204.
Full textEbrahimian, Mohammad Reza. "Power system operations : state estimation distributed processing /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textRamadass, Yogesh Kumar. "Energy processing circuits for low-power applications." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/63026.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 199-205).
Portable electronics have fueled the rich emergence of new applications including multi-media handsets, ubiquitous smart sensors and actuators, and wearable or implantable biomedical devices. New ultra-low power circuit techniques are constantly being proposed to further improve the energy efficiency of electronic circuits. A critical part of these energy conscious systems are the energy processing and power delivery circuits that interface with the energy sources and provide conditioned voltage and current levels to the load circuits. These energy processing circuits must maintain high efficiency and reduce component count for the final solution to be attractive from an energy, size and cost perspective. The first part of this work focuses on the development of on-chip voltage scalable switched capacitor DC-DC converters in digital CMOS processes. The converters are designed to deliver regulated scalable load voltages from 0.3V up to the battery voltage of 1.2V for ultra-dynamic voltage scaled systems. The efficiency limiting mechanisms of these on-chip DC-DC converters are analyzed and digital circuit techniques are proposed to tackle these losses. Measurement results from 3 test-chips implemented in 0.18pm and 65nm CMOS processes will be provided. The converters are able to maintain >75% efficiency over a wide range of load voltage and power levels while delivering load currents up to 8mA. An embedded switched capacitor DC-DC converter that acts as the power delivery unit in a 65nm subthreshold microcontroller system will be described. The remainder of the thesis deals with energy management circuits for battery-less systems. Harvesting ambient vibrational, light or thermal energy holds much promise in realizing the goal of a self-powered system. The second part of the thesis identifies problems with commonly used interface circuits for piezoelectric vibration energy harvesters and proposes a rectifier design that gives more than 4X improvement in output power extracted from the piezoelectric energy harvester. The rectifier designs are demonstrated with the help of a test-chip built in a 0.35pm CMOS process. The inductor used within the rectifier is shared efficiently with a multitude of DC-DC converters in the energy harvesting chip leading to a compact, cost-efficient solution. The DC-DC converters designed as part of a complete power management solution achieve efficiencies of greater than 85% even in the micro-watt power levels output by the harvester. The final part of the thesis deals with thermal energy harvesters to extract electrical power from body heat. Thermal harvesters in body-worn applications output ultra-low voltages of the order of 10's of milli-volts. This presents extreme challenges to CMOS circuits that are powered by the harvester. The final part of the thesis presents a new startup technique that allows CMOS circuits to interface directly with and extract power out of thermoelectric generators without the need for an external battery, clock or reference generators. The mechanically assisted startup circuit is demonstrated with the help of a test-chip built in a 0.35pm CMOS process and can work from as low as 35mV. This enables load circuits like processors and radios to operate directly of the thermoelectric generator without the aid of a battery. A complete power management solution is provided that can extract electrical power efficiently from the harvester independent of the input voltage conditions. With the help of closed-loop control techniques, the energy processing circuit is able to maintain efficiency over a wide range of load voltage and process variations.
by Yogesh Kumar Ramadass.
Ph.D.
Denning, Paul Michael. "High power laser surface processing of hydroxyapatite." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399182.
Full textNisar, Muhammad Mudassar. "Robust low-power signal processing and communication algorithms." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33872.
Full textBooks on the topic "Power processing"
Rinearson, Peter. Word processing power with Microsoft Word. 3rd ed. Redmond, Wash: Microsoft Press, 1989.
Find full textLasala, Jennifer De. WordPerfect power: Word processing made easy. 2nd ed. Blue Ridge Summit, PA: Windcrest, 1991.
Find full textRinearson, Peter. Word processing power with Microsoft Word. Bellevue, Wash: Microsoft Press, 1985.
Find full textRinearson, Peter. Word processing power with microsoft word. Bellevue [Wash.]: Microsoft, 1985.
Find full textHaddad, Sandro A. P., and Wouter A. Serdijn. Ultra Low-Power Biomedical Signal Processing. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9073-8.
Full textKamrul Islam, Syed, and Mohammad Rafiqul Haider. Sensors and Low Power Signal Processing. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-79392-4.
Full textRinearson, Peter. Word processing power with Microsoft Word. 2nd ed. Redmond, Wash: Microsoft Press, 1986.
Find full textIslam, Syed Kamrul. Sensors and low power signal processing. New York: Springer, 2010.
Find full textDave, Greely, and Sawyer Ben, eds. MP3 power! with Winamp. Cincinnati, Ohio: Muska & Lipman, 1999.
Find full textBook chapters on the topic "Power processing"
Greenberg, Ira, Dianna Xu, and Deepak Kumar. "Expressive Power of Data." In Processing, 149–85. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-4465-3_5.
Full textRiley, Ronald, Brian Schott, Joseph Czarnaski, and Sohil Thakkar. "Power-Aware Acoustic Processing." In Information Processing in Sensor Networks, 566–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36978-3_38.
Full textChonavel, Thierry. "Power Spectrum of WSS Processes." In Statistical Signal Processing, 23–29. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0139-0_3.
Full textYılmaz, Gürkan, and Catherine Dehollain. "Wireless Power Transfer." In Analog Circuits and Signal Processing, 23–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49337-4_3.
Full textMonticelli, A. "Network Topology Processing." In State Estimation in Electric Power Systems, 143–59. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4999-4_6.
Full textYoung, David J., and James R. McDonald. "Alarm processing." In Intelligent knowledge based systems in electrical power engineering, 119–54. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6387-7_7.
Full textKoranne, Sandeep. "The Power Processing Element (PPE)." In Practical Computing on the Cell Broadband Engine, 17–34. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0308-2_2.
Full textLoyal, Steven, and Stephen Quilley. "Processing Asylum Seekers." In State Power and Asylum Seekers in Ireland, 95–112. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91935-5_5.
Full textSamani, Afshin. "Power Spectrum." In An Introduction to Signal Processing for Non-Engineers, 39–53. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429263330-6.
Full textGan, Woon Siong. "Convolution, Correlation, and Power Spectral Density." In Signal Processing and Image Processing for Acoustical Imaging, 21–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-5550-8_6.
Full textConference papers on the topic "Power processing"
Zhou, Quming, Lin Zhong, and Kartik Mohanram. "Power signal processing." In the 2007 international symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1283780.1283816.
Full text"Power-aware signal processing." In 2006 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. IEEE, 2006. http://dx.doi.org/10.1109/isscc.2006.1696026.
Full textMetcalf, Kenneth J. "Thermionic power system power processing and control." In Proceedings of the ninth symposium on space nuclear power systems. AIP, 1992. http://dx.doi.org/10.1063/1.41804.
Full textPapirla, Veera, Aarul Jain, and Chaitali Chakrabarti. "Low power robust signal processing." In the 14th ACM/IEEE international symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1594233.1594308.
Full textSansen, Willy, Christian Enz, Boris Murmann, and Philip Mok. "Low-power analog signal processing." In 2012 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2012. http://dx.doi.org/10.1109/isscc.2012.6176923.
Full textLiu, Chang, Deyu Li, Yue Zheng, and Brad Lehman. "Modular differential power processing (mDPP)." In 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2017. http://dx.doi.org/10.1109/compel.2017.8013345.
Full textBeyer, Eckhard, Patrick Herwig, Stephan Hunze, Andrés-Fabián Lasagni, Matthias Lütke, Achim Mahrle, Steffen Nowotny, Jens Standfuß, and Sebastian Thieme. "High-power laser materials processing." In ICALEO® 2012: 31st International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2012. http://dx.doi.org/10.2351/1.5062443.
Full textHasler, P. "Low-power programmable signal processing." In Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05). IEEE, 2005. http://dx.doi.org/10.1109/iwsoc.2005.83.
Full textGebotys, C. H., and R. J. Gebotys. "Power minimization in heterogeneous processing." In Proceedings of HICSS-29: 29th Hawaii International Conference on System Sciences. IEEE, 1996. http://dx.doi.org/10.1109/hicss.1996.495478.
Full textLambert-Torres, G., E. F. Fonseca, M. P. Coutinho, and R. Rossi. "Intelligent Alarm Processing." In 2006 International Conference on Power System Technology. IEEE, 2006. http://dx.doi.org/10.1109/icpst.2006.321758.
Full textReports on the topic "Power processing"
Castellano, Cosmo, Karen Solsky, John Ivory, and Jim Graham. Power Aware Signal Processing Environment (PASPE) for PAC/C. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada412245.
Full textBonn, R., J. Ginn, J. Zirzow, and G. Sittler. Superior Valley photovoltaic power processing and system controller evaluation. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/177399.
Full textJensen, Klavs F. Microchemical Systems for Fuel Processing and Conversion to Electrical Power. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada469898.
Full textAdhinarayanan, Vignesh. Performance, power, and energy of in-situ and post-processing visualization. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1222685.
Full textDagenais, M. High Speed, Low Power Non-Linear Optical Signal Processing in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada159054.
Full textThangaraj, Jayakar C. Compact, High-Power Superconducting Electron Linacs as Irradiators for Materials and Radiation Processing. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1565932.
Full textThangaraj, Jayakar Tobin. Compact, High-Power Superconducting Electron Linacs as Irradiators for Materials and Radiation Processing. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1570212.
Full textMoir, R. W. Flibe Coolant Cleanup and Processing in the HYLIFE-II Inertial Fusion Energy Power Plant. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/15006180.
Full textLockhart, W. Data processing unit and power system for the LANL REM instrument package. Final report. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/72976.
Full textPenetrante, B. M., M. C. Hsiao, and J. N. Bardsley. Power consumption and byproducts in electron beam and electrical discharge processing of volatile organic compounds. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/231371.
Full text