To see the other types of publications on this topic, follow the link: Power system transient stability.

Dissertations / Theses on the topic 'Power system transient stability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Power system transient stability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hiskens, Ian A. "Energy functions, transient stability and voltage behaviour /." Online version, 1990. http://bibpurl.oclc.org/web/30417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karimishad, Amir. "Transient stability-constrained load dispatch, ancillary services allocation and transient stability assessment procedures for secure power system operation." University of Western Australia. Energy Systems Centre, 2008. http://theses.library.uwa.edu.au/adt-WU2009.0028.

Full text
Abstract:
[Truncated abstract] The present thesis is devoted to the development of new methods for transient stability-constrained optimal power flow, probabilistic transient stability assessment and security-constrained ancillary services allocation. The key objective of the thesis is to develop novel dispatch and assessment methods for power systems operation in the new environment of electricity markets to ensure power systems security, particularly transient stability. A new method for economic dispatch together with nodal price calculations which includes transient stability constraints and, at the same time, optimises the reference inputs to the Flexible AC Transmission System (FACTS) devices for maintaining power systems transient stability and reducing nodal prices is developed. The method draws on the sensitivity analysis of time-domain transient stability simulation results to derive a set of linearised stability constraints expressed in terms of generator active powers and FACTS devices input references. '...' The low computing time requirement of the two-point estimate method allows online applications, and the use of detailed power systems dynamic model for time-domain simulation which offers high accuracy. The two-point estimate method is integrated in a straightforward manner with the existing transient stability analysis tools. The integrated software facility has potential applications in control rooms to assist the system operator in decision making process based on instability risks. The software system when implemented on a cluster of processors also makes it feasible to re-assess online transient stability for any change in system configuration arising from switching control. The method proposed has been tested on a representative power system and validated using the Monte Carlo simulation. In conjunction with the energy market, by which forecasted load demand is met by generator dispatch, ancillary services are required in relation to control for secure system operation and power quality. The final part of the thesis has a focus on the key aspect of allocating these ancillary services, subject to an important constraint that the dispatch of the ancillary services will not impair the system security achieved in the load dispatch. With this focus and requirement, the thesis develops a new dispatch formulation in which the network security constraints are represented in the optimal determination of generator active power schedule and allocation of ancillary services. Contingencies considered include power demand variations at individual load nodes from the values specified for the current dispatch calculation. The required changes in generator active powers to meet the new load demands are represented by additional control variables in the new dispatch formulation which augment those variables in the traditional OPF dispatch calculation. Based on the Lagrange function which includes the extended set of security constraints, the formulation derives the optimality condition to be satisfied by the dispatch solution, together with the marginal prices for individual ancillary service providers and LMPs. The effects of the security constraints are investigated and discussed. Case studies for representative power systems are presented to verify the new dispatch calculation procedure.
APA, Harvard, Vancouver, ISO, and other styles
3

Anderson, Sharon Lee. "Reduced order power system models for transient stability studies." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09052009-040743/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yi. "Adaptive remedial action schemes for transient instability." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Dissertations/Fall2007/y_zhang_112707.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Parsons, Antony Cozart. "Automatic location of transient power quality disturbances /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheung, Siu-pan. "Direct transient stability margin assessment of power system with excitation control and SVC control /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1753706X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Bowen. "The impact of electric vehicles on power system transient stability." Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709884.

Full text
Abstract:
The penetration of the electric vehicle (EV) has increased rapidly in recent years mainly as a consequence of advances in both transportation and electricity sectors and in response to global pressure to reduce carbon emissions and limit fossil fuel consumption. Large-scale EV integration in power systems has modified the nature of the traditional electric load such that it should be controllable. Moreover, uncertain power sources and demand pose challenges in electricity transmission grid, leading to significant impact on power system security and stability. Therefore, it is timely that a comprehensive study of the impacts of large-scale EVs integration on power system stability is published. This thesis introduces EV development and typical global research and examines stochastic and intermittent issues which have parameterised in time, location, and magnitude. The work initially develops a flexible EV charging and discharging capacity forecasting model, which is suitable for different kinds of optimisation objects. Based on the proposed model, the main body of this work examines steady-state and transient stability analysis. In steady-state analysis, EV station siting and sizing and steady-state stability are considered. In transient stability analysis, an AC/DC converter-based EV station model has been proposed. EV connections and typical faults are discussed. Critical clearing time (CCT) and transient stability margin are used to assess transient stability by time-domain simulation. Two further topics, using local battery energy storage to meet local demand and application of an EV module for power system dispatch have been proposed as complementary applications for distribution networks and transmission grids.
APA, Harvard, Vancouver, ISO, and other styles
8

張小彬 and Siu-pan Cheung. "Direct transient stability margin assessment of power system with excitation control and SVC control." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31212979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parsi-Feraidoonian, Raiomand. "Application of catastrophe theory to transient stability analysis of multimachine power systems." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29723.

Full text
Abstract:
Transient stability analysis is an important part of power planning and operation. For large power systems, such analysis is very time consuming and expensive. Therefore, an online transient stability assessment will be required as these large power systems are operated close to their maximum limits. In this thesis swallowtail catastrophe is used to determine the transient stability regions. The bifurcation set represents the transient stability region in terms of power system transient parameters bounded by the transient stability limits. The system modelling is generalized in such, that the analysis could handle either one or any number of critical machines. This generalized model is then tested on a three-machine as well as a seven-machine system. The results of the stability analysis done with the generalized method is compared with the time solution and the results were satisfactory. The transient stability regions determined are valid for any changes in loading conditions and fault location. This method is a good candidate for on-line assessment of transient stability of power systems.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
10

Oztop, Celal. "Beforehand Obtaining A Safety Operation Condition By Using Daily Load Curves In Transient Stability And Graphical Software For Transient Stability Applications." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606457/index.pdf.

Full text
Abstract:
ABSTRACT In this thesis, relationship between two most important transient stability indices, critical clearing time and generator rotor angle is examined for one machine-infinite bus system and then extended to the multimachine case and is observed to be linear. By using the linear relationship between critical clearing time and generator rotor angle and utilizing the daily load curve, a new preventive method is proposed. The aim of this method is to make all critical clearing times longer than the relay and circuit breaker combination operation time. In the proposed method, desired critical clearing times are obtained by using on line system data and daily load curves. Then desired values are adjusted by generators output rescheduling and terminals voltage control Visual computer language is used for graphical and numerical solutions. Comprehension of one machine infinite bus system and multimachine system transient stability become easier.
APA, Harvard, Vancouver, ISO, and other styles
11

Rudraraju, Seetharama raju. "SMALL SIGNAL AND TRANSIENT STABILITY ANALYSIS OF MVDC SHIPBOARD POWER SYSTEM." MSSTATE, 2009. http://sun.library.msstate.edu/ETD-db/theses/available/etd-11052009-170217/.

Full text
Abstract:
Recent developments in high power rated Voltage Source Converters (VSCs) have resulted in their successful application in Multi-Terminal HVDC (MTDC) transmission systems and also have potential in the Medium Voltage DC (MVDC) distribution systems. This work presents the findings of stability studies carried out on a zonal MVDC architecture for the shipboard power distribution system. The stability study is confined to rotor angle stability of the power system, i.e. the transient and small signal stability analysis. The MTDC ring structure similar to MVDC shipboard power system was implemented in MATLAB/Simulink to look at the transient behavior of the MVDC system. Small signal stability analysis has been carried out with the help of Power System Toolbox (PST) for both MVAC as well as MVDC architectures. Later, Participation Analysis has been carried out to address the small signal instability in the case of MVAC architecture and methods for enhancement were also presented.
APA, Harvard, Vancouver, ISO, and other styles
12

SILVA, KARLA GUEDES CARNEIRO DA. "POWER SYSTEM TRANSIENT STABILITY ASSESSMENT USING THE EXTENDED EQUAL AREA CRITERION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8752@1.

Full text
Abstract:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Este trabalho analisa o desempenho do Critério das Áreas Iguais Estendido na avaliação da estabilidade transitória de sistemas de potência. O Critério das Áreas Iguais Estendido consiste em representar o sistema multimáquina por um sistema equivalente de duas máquinas, que é, em seguida, reduzido a um sistema máquina-barra infinita, no qual é aplicado o conhecido critério das áreas iguais. A evolução no tempo do sistema máquina-barra infinita resultante é aproximada por uma série de Taylor truncada. As medidas de estabilidade calculadas, através de expressões algébricas simples, são o tempo crítico de eliminação de falta e a margem de segurança. A análise da estabilidade é feita, portanto, sem procedimentos de tentativa e erro. Os resultados são comparados com os obtidos utilizando um programa convencional de estabilidade transitória.
This work evaluates the performance of the Extended Equal area Criterion for power system transient stability assessment. The Extended Equal Area Criterion consists in replacing the multimachine power system by an equivalent two machine system, which is further reduced to a one- machine-infinite-bus system. The well-know Equal Area Criterion is then applied to the latter system. The time evolution of the one-machine-infinite-bus system is approximated by a truncated Taylor s series. The stability measures are computed by simple algebraic expressions and the transient stability margin. These measures are computed by simple algebraic expressions and the stability analysis is performed without any trial and error procedures. The results are compared to those obtained using a conventional transient stability program.
APA, Harvard, Vancouver, ISO, and other styles
13

Cvetkovic, Milos. "Power-Electronics-Enabled Transient Stabilization of Power Systems." Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/344.

Full text
Abstract:
Transient stability of electric energy grids is defined as the ability of the power system to remain in synchronism during large disturbances. If the grid is not equipped with controllers capable of transiently stabilizing system dynamics, large disturbances could cause protection to trigger disconnecting the equipment and leading further to cascading system-wide blackouts. Today’s practice of tuning controllers generally does not guarantee a transiently stable response because it does not use a model for representing system-wide dynamic interactions. To overcome this problem, in this thesis we propose a new systems modeling and control design for provable transient stabilization of power systems against a given set of disturbances. Of particular interest are fast power-electronically-controlled Flexible Alternating Current Transmission System (FACTS) devices which have become a new major option for achieving transient stabilization. The first major contribution of this thesis is a framework for modeling of general interconnected power systems for very fast transient stabilization using FACTS devices. We recognize that a dynamic model for transient stabilization of power systems has to capture fast electromagnetic dynamics of the transmission grid and FACTS, in addition to the commonly-modeled generator dynamics. To meet this need, a nonlinear dynamic model of general interconnected electric power systems is derived using time-varying phasors associated with states of all dynamic components. The second major contribution of this thesis is a two-level approach to modeling and control which exploits the unique network structure and enables preserving only relevant dynamics in the nonlinear system model. This approach is fundamentally based on separating: a) internal dynamics model for ensuring stable local response of components; b) system-level model in terms of interaction variables for ensuring stability of the system when the components are interconnected. The two levels can be controlled separately which minimizes the need for communication between controllers. Both distributed and cooperative ectropy-based controllers are proposed to control the interaction-level of system dynamics. Proof of concept simulations are presented to illustrate and compare the promising performance of the derived controllers. Some of the most advanced FACTS industry installations are modeled and further generalized using our approach.
APA, Harvard, Vancouver, ISO, and other styles
14

Jiriwibhakorn, Somchat. "Transient stability assessment of power systems using neural networks." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chapman, Jeffrey W. (Jeffrey Wayne). "Power system control for large-disturbance stability : security, robustness and transient energy." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/39393.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.
Includes bibliographical references (p. 223-228).
by Jeffrey Wayne Chapman.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
16

WENG, CHIYUAN. "Transient Stability Analysis of Power Systems with Energy Storage." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1348453228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kong, Dechao. "Advanced HVDC systems for renewable energy integration and power transmission : modelling and control for power system transient stability." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4217/.

Full text
Abstract:
The first part is concerned with dynamic aggregated modelling of large offshore wind farms and their integration into power systems via VSC-HVDC links. The dynamic aggregated modelling of offshore wind farms including WT-DFIGs and WT-PMSGs are proposed to achieve effective representations of wind farms in terms of computational time and simulation accuracy for transient stability analysis. Modelling and control of VSC-HVDC systems for integration of offshore wind farms are investigated. Comparisons of two control schemes of rectifier-side converter are carried out to evaluate their dynamic performance for integration of these offshore wind farms in terms of transient stability. The second part is to address the advanced transmission systems with innovative HVDC configurations. Feasibility studies of updated schemes of monoplolar CSC-HVDC link with support of monopolar VSC-HVDC link as the hybrid bipolar CSC/I{VDC system is carried out to deal with two key issues of CSC-HVDC. Small-signal modelling of MTDC grids is investigated and parameter optimisation of PI controller of converters in MTDC grids is carried out using PSO method based on small-signal models of the system at multiple operating points to obtain optimised parameters of PI controllers to improve dynamic performance of MTDC grids at multiple operating points.
APA, Harvard, Vancouver, ISO, and other styles
18

Mihirig, Ali Mohamed. "Transient stability analysis of multimachine power systems by catastrophe theory." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/29022.

Full text
Abstract:
Transient stability analysis is an important part of power system planning and operation. For large power systems, such analysis is very demanding in computation time. On-line transient stability assessment will be necessary for secure and reliable operation of power systems in the near future because systems are operated close to their maximum limits. In the last two decades, a vast amount of research work has been done in the area of fast transient stability assessment by direct methods. The major difficulties associated with direct methods are the limitations in the power system model, determination of transient stability regions and adaptation to changes in operating conditions. In this thesis catastrophe theory is used to determine the transient stability regions. Taylor series expansion is used to find the energy balance equation in terms of clearing time and system transient parameters. The energy function is then put in the form of a catastrophe manifold from which the bifurcation set is extracted. The bifurcation set represents the transient stability region in terms of the power system transient parameters bounded by the transient stability limits. The transient stability regions determined are valid for any changes in loading conditions and fault location. The transient stability problem is dealt with in the two dimensions of transient stability limits and critical clearing times. Transient stability limits are given by the bifurcation set and the critical clearing times are calculated from the catastrophe manifold equation. The method achieves a breakthrough in the modelling problem because the effects of exciter response, flux decay and systems damping can all be included in the transient stability analysis. Numerical examples of one-machine infinite-bus and multi-machine power systems show very good agreement with the time solution in the practical range of first swing stability analysis. The method presented fulfills all requirements for on-line assessment of transient stability of power systems.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
19

Al, Marhoon Hussain Hassan. "A Practical Method for Power Systems Transient Stability and Security." ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/114.

Full text
Abstract:
Stability analysis methods may be categorized by two major stability analysis methods: small-signal stability and transient stability analyses. Transient stability methods are further categorized into two major categories: numerical methods based on numerical integration, and direct methods. The purpose of this thesis is to study and investigate transient stability analysis using a combination of step-by-step and direct methods using Equal Area Criterion. The proposed method is extended for transient stability analysis of multi machine power systems. The proposed method calculates the potential and kinetic energies for all machines in a power system and then compares the largest group of kinetic energies to the smallest groups of potential energies. A decision based on the comparison can be made to determine stability of the power system. The proposed method is used to simulate the IEEE 39 Bus system to verify its effectiveness by comparison to the results obtained by pure numerical methods.
APA, Harvard, Vancouver, ISO, and other styles
20

Zadehkhost, Sajjad. "Efficient algorithms to expedite transient stability analysis of power systems." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52816.

Full text
Abstract:
With rapid increase in complexity of modern power systems, there is a strong need for better computational tools to ensure the reliable operation of electrical grids. These tools need to be accurate, computationally efficient, and capable of using advanced measurement devices. In this context, transient stability assessment (TSA) is an important study that determines system’s dynamic security margins following a major disturbance. The TSA consists of a set of differential-algebraic equations (DAEs), which are typically solved using time-domain simulation (TDS) approach. While being very accurate, the TDS requires significant computational resources when applied to practical power systems. This problem becomes more significant in transient stability monitoring (TSM), wherein the computational performance of the TDS is typically the bottleneck. This research is to investigate available challenges in the TSM applications and develop new algorithms to help realizing a practical monitoring tool for transient stability studies. The thesis focuses on three research thrusts: i) dynamic reduction of power system to reduce problem size; ii) advanced computation approaches to expedite the TDS method; iii) integration of PMU measurements into the TSM. Initially, a new adaptive aggregation algorithm for dynamic reduction is proposed, wherein parameters of generators and structure of transmission network are considered to aggregate coherent generators and create a reduced-order system. Also, a new criterion is defined to monitor validity of the constructed reduced system. It is shown that the proposed technique is more accurate than traditional aggregation methods. To expedite the TDS approach, this thesis presents two new integration techniques, which are called Multi-Decomposition Approach (MDA) and Successive Linearization and Integration Technique (SLIT). In these methods, the nonlinear DAEs are decomposed into a series of linear subsystems, which participate in approximating actual solution. It is demonstrated that sequential and parallel versions of the MDA and SLIT are faster than state-of-the-art integration techniques. Finally, a dynamic state estimator based on Extended Kalman Filter is developed to convert the PMU measurements into a set of state variables suitable for transient stability studies. Computer studies show that the proposed framework provides accurate results in highly disturbed power systems with fairly low PMU sampling rates.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
21

Elkington, Katherine. "On the Use of Wind Power for Transient Stability Enhancement of Power Systems." Thesis, KTH, Elektriska energisystem, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118931.

Full text
Abstract:
This report deals with the impact of doubly fed induction generators on the stability of a power system. The impact was quantified by means of detailed numerical simulations. The report contains a full description of the simulation, and details of the small signal analysis performed to analyse the system. Before the simulation results are presented, a foundation is laid, explaining the theory required to understand the models used and the calculations performed in the simulation. The derivation of a model of a doubly fed induction generator is presented, along with a description of the model of a synchronous generator. These are used in the simulation and analysis of a multi-machine power system, consisting of both of these types of generators. An explanation of how dynamic simulations of power systems can be performed is also put forward. This is useful, not only for understanding the simulation performed for this report, but as a guide to performing simulations of this type. This is true also for a description of linearisation and small signal analysis contained in this report. The software package MATLAB is used to perform the simulations, and the small signal analysis. Since the method described in this report is very general, it can be used to perform similar power system simulations for other power systems, and with other software. Numerical simulations reveal that the addition of doubly fed generators, such as those in wind parks, to a power system improves the response of the system after small disturbances, but can worsen it after larger disturbances.
APA, Harvard, Vancouver, ISO, and other styles
22

Llamas, Armando. "Assessment of direct methods in power system transient stability analysis for on-line applications." Diss., Virginia Polytechnic Institute and State University, 1992. http://hdl.handle.net/10919/49933.

Full text
Abstract:
The advent of synchronized phasor measurements allows the problem of real time prediction of instability and control to be considered. The use of direct methods for these on-line applications is assessed. The classical representation of a power system allows the use of two reference frames: Center of angle and one machine as reference. Formulae allowing transition between the two reference frames are derived. It is shown that the transient energy in both formulations is the same, and that line resistances do not dampen system oscillations. Examples illustrating the mathematical characterization of the region of attraction, exit point, closest u.e.p. and controlling u.e.p. methods are presented. Half-dimensional systems (reduced-order systems) are discussed. The general expression for the gradient system which accounts for transfer conductances is derived without making use of the infinite bus assumption. Examples illustrating the following items are presented: a) Effect of the linear ray approximation on the potential energy (inability to accurately locate the u.e.p.’s); b) Comparison of Kakimoto’s and Athay’s approach for PEBS crossing detection; c) BCU method and; d) One·parameter transversality condition. It is illustrated that if the assumption of the one-parameter transversality condition is not satisfied, the PEBS and BCU methods may give incorrect results for multi-swing stability. A procedure to determine if the u.e.p. found by the BCU method lies on the stability boundary of the original system is given. This procedure improves the BCU method for off~line applications when there is time for a hybrid approach (direct and conventional), but it does not improve it for on-line applications due to the following: a) It is time consuming and b) If it finds that the u.e.p. does not belong to the stability boundary it provides no information concerning the stability/instability of the system. l
Ph. D.
incomplete_metadata
APA, Harvard, Vancouver, ISO, and other styles
23

Gonzalez-Torres, Juan Carlos. "Transient stability of high voltage AC-DC electric transmission systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS041.

Full text
Abstract:
Les nouvelles politiques adoptées par les autorités nationales ont encouragé pendant les dernières années l'intégration à grande échelle des systèmes d'énergie renouvelable (RES). L'intégration à grande échelle des RES aura inévitablement des conséquences sur le réseau de transport d'électricité tel qu'il est conçu aujourd'hui, car le transport de l'électricité massif sur de longues distances pourrait amener les réseaux de transport à fonctionner près de leurs limites, réduisant ainsi leurs marges de sécurité. Des systèmes de transport d’électricité plus complexes seront donc nécessaires.Dans ce scénario, les systèmes de transmission à Courant Continu Haute Tension (HVDC) constituent la solution la plus intéressante pour le renforcement et l'amélioration des réseaux à Courant Alternatif (AC) existants, non seulement en utilisant des configurations point à point, mais aussi dans des configurations multi-terminales. L'introduction des systèmes HVDC aboutira à terme à un réseau électrique hybride haute tension AC/DC, qui doit être analysé comme un système unique afin de mieux comprendre les interactions entre le réseau AC et le réseau DC.Cette thèse porte sur l'analyse de la stabilité transitoire des systèmes de transmission électrique hybrides AC/DC. Plus particulièrement, deux questions ont été abordées: Quel est l'impact d'un défaut du réseau DC sur la stabilité transitoire du réseau AC? Comment est-il possible de se servir des systèmes de transmission DC en tant qu'actionneurs afin d'améliorer la stabilité transitoire AC ?Dans la première partie de ce travail, les modèles mathématiques du réseau hybride AC/DC sont décrits ainsi que les outils nécessaires à l'analyse du système en tenant compte de sa nature non linéaire. Ensuite, une analyse approfondie de la stabilité transitoire du réseau électrique dans le cas particulier d'un court-circuit dans le réseau DC et l'exécution des stratégies de protection correspondantes sont effectuées. En complément, des indicateurs de stabilité et des outils pour dimensionner les futurs réseaux de la MTDC afin de respecter les contraintes des stratégies de protection existantes sont proposés.La deuxième partie de la thèse porte sur les propositions de commande pour la modulation des références de puissance des systèmes de transmission HVDC dans le but d'améliorer la stabilité transitoire du système AC connecté à ce réseau DC. Tout d'abord, nous axons notre étude sur le contrôle non linéaire des liaisons HVDC point à point dans des liaisons hybrides AC/DC. La compensation rapide des perturbations de puissance, l'injection de puissance d'amortissement et l'injection de puissance de synchronisation sont identifiées comme des mécanismes par lesquels les systèmes HVDC peuvent améliorer les marges de stabilité des réseaux AC.Enfin, une stratégie de contrôle pour l'amélioration de la stabilité transitoire par injection de puissance active dans par un réseau MTDC est proposée. Grâce à la communication entre les stations, la commande décentralisée proposée injecte la puissance d'amortissement et de synchronisation entre chaque paire de convertisseurs en utilisant uniquement des mesures au niveau des convertisseurs. L'implémentation proposée permet d'utiliser au maximum la capacité disponible des convertisseurs en gérant les limites de puissance d'une manière décentralisée
The new policy frameworks adopted by national authorities has encouraged the large scale-integration of Renewable Energy Systems (RES) into bulk power systems. The large-scale integration of RES will have consequences on the electricity transmission system as it is conceived today, since the transmission of bulk power over long distances could lead the existing transmission systems to work close to their limits, thus decreasing their dynamic security margins. Therefore more complex transmissions systems are needed.Under this scenario, HVDC transmission systems raise as the most attractive solution for the reinforcement and improvement of existing AC networks, not only using point-to-point configurations, but also in a Multi-Terminal configuration. The introduction of HVDC transmission systems will eventually result in a hybrid high voltage AC/DC power system, which requires to be analyzed as a unique system in order to understand the interactions between the AC network and the DC grid.This thesis addresses the transient stability analysis of hybrid AC/DC electric transmission systems. More in particular, two questions sought to be investigated: What is the impact of a DC contingency on AC transient stability? How can we take advantage of the of DC transmission systems as control inputs in order to enhance AC transient stability?In the first part of this work, the mathematical models of the hybrid AC/DC grid are described as well as the necessary tools for the analysis of the system taking into account its nonlinear nature. Then, a thorough analysis of transient stability of the power system in the particular case of a DC fault and the execution of the corresponding protection strategies is done. As a complement, stability indicators and tools for sizing future MTDC grids in order to respect the constraints of existing protection strategies are proposed.The second part of the thesis addresses the control proposals for the modulation of power references of the HVDC transmission systems with the purpose of transient stability enhancement of the surrounding AC system. Firstly, we focus our study in the nonlinear control of point-to-point HVDC links in hybrid corridors. Fast power compensation, injection of damping power and injection of synchronizing power are identified as the mechanisms through which HVDC systems can improve stability margins.Finally, a control strategy for transient stability enhancement via active power injections of an MTDC grid is proposed. Using communication between the stations, the proposed decentralized control injects damping and synchronizing power between each pair of converters using only measurements at the converters level. The proposed implementation allows to fully use the available headroom of the converters by dealing with power limits in a decentralized way
APA, Harvard, Vancouver, ISO, and other styles
24

Farantatos, Evangelos. "A predictive out-of-step protection scheme based on PMU enabled distributed dynamic state estimation." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45863.

Full text
Abstract:
Recent widespread blackouts have indicated the need for more efficient and accurate power system monitoring, control and protection tools. Power system state estimation, which is the major tool that is used nowadays for providing the real-time model of the system, has significant biases resulting mainly from the complexity and geographic spread and separation of an electric power system. Synchrophasor technology is a promising technology that has numerous advantages compared to conventional metering devices. PMUs provide synchronized measurements, where synchronization is achieved via a GPS clock which provides the synchronizing signal with accuracy of 1 μsec. As a result, the computed phasors have a common reference (UTC time) and can be used in local computations, thus distributing the state estimation process. The first part of the work presents a PMU enabled dynamic state estimator (DSE) that can capture with high fidelity the dynamics of the system and extract in real time the dynamic model of the system. The described DSE is performed in a decentralized way, on the substation level based on local measurements which are globally valid. The substation based DSE uses data from relays, PMUs, meters, FDRs etc in the substation only, thus avoiding all issues associated with transmission of data and associated time latencies. This approach enables very fast DSE update rate which can go up to more than 60 executions per second. The distributed state estimation architecture that synchrophasor technology enables, along with the fast sampling rate and the accuracy of the measurements that PMUs provide, enable the computation of the real-time dynamic model of the system and the development of numerous power system applications for more efficient control and protection of the system. In the second part of the work, a transient stability monitoring scheme is presented that utilizes the information given by the dynamic state estimation and enables real-time monitoring of the transient swings of the system and characterizes the stability of the system in real time. In particular, the real-time dynamic model of the system, as given by the DSE, is utilized to evaluate the system's energy function based on Lyapunov's direct method and extract stability properties from the energy function. The two major components of the scheme are a) the calculation of the center of oscillations of the system and b) the derivation of an equivalent, reduced sized model which is used for the calculation of the potential and kinetic energy of the system based on which the stability of the system is determined. Finally, as an application of the transient stability monitoring scheme, an energy based out-of-step protection scheme is proposed. The energy of the generator is continuously monitored and if it exceeds a predefined threshold then instability is asserted and a trip signal can be sent to the generator. The major advantage of the scheme is that the out-of-step condition is predicted before its occurrence and therefore relays can act much faster than today's technology. The scheme is compared to presently available state of the art out-of-step protection schemes in order to verify its superiority.
APA, Harvard, Vancouver, ISO, and other styles
25

Al, Marhoon Hussain Hassan. "Adaptive Online Transient Stability Assessment of Power Systems for Operational Purposes." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2036.

Full text
Abstract:
Online stability assessment is an important problem that has not been solved completely yet. The purpose of this research is to tackle online transient stability assessment. Currently, most utility companies use step-by-step integration in order to set protective equipment so that they effectively work for critical contingencies. However, there are times an unforeseen contingency may occur which may cause the system to transit and the protective equipment to misoperate and does not isolate the disturbed part of the system. This research introduces a method that automatically determines a group of generators that participate in system separation and hence transient instability. The method consists of four phases: modeling and simulation, critical machines identification, online transient stability assessment, and critical clearing time calculation. In the modeling and simulation phase, the power system is built and the generators’ rotor angles and speeds are captured. In the critical machines identification phase, the average instantaneous rotor accelerating powers, coherency measures, the during-fault rotor angles and speeds characteristics, and the pre- and post-fault rotor angles are used to identify the Severely Disturbed Group (SDG) of machines. The results of this phase are used to calculate the kinetic energy of the SDG and potential energy of another (or possibly the same) group of generators. Utilization and success of the proposed method will be documented using results from the IEEE 39-Bus test system. Each step of each phase will be demonstrated as needed. The proposed method is compared to step-by-step integration and two direct methods. The suitability of the proposed method for operation will be shown in cases where the Y-Bus matrix and rotor angles and speeds are given. The proof of concept of the proposed method was used in simulating the test system and encouraging results of the simulation were published in ‎[1] and ‎[2]. The proof of concept is the foundation of the method proposed in this dissertation to determine transient stability of large-scale power systems.
APA, Harvard, Vancouver, ISO, and other styles
26

Roberts, Lewis George Wilson. "Parametric analysis of transient stability in power systems using classical models." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702145.

Full text
Abstract:
This thesis aims to strengthen the bridge between mathematical and practical research into the transient stability of power systems. Literature that exploits the mathematical parallels between models for transient dynamics in power systems and the phenomenon of synchronisation in complex networks is explored. However, it is contended that research at the intersection of complex systems and power system stability can limit its applications to practical issues in power engineering. This thesis focuses on the measurement of transient stability in power systems in terms of a traditional stability metric for short-circuit faults on a power network, the critical clearing time (CCT). The CCT provides an upper bound on the duration of a short circuit on a power network before it is removed - cleared - by the action of protection mechanisms to isolate the faulted circuit such that the system will regain synchrony once the fault is cleared. Approaches that use energetic methods for assessing the transient stability of a power system are extended by developing metrics that can measure stability trends for different scenarios in a power system via the numerical continuation of equilibrium configurations under the variation of system parameters. An analytical CCT (ACCT) approximation is derived from this energetic framework in order to capture trends in stability with respect to a system parameter. The performance of the ACCT is compared to more accurate computations of CCT that use slower numerical simulation techniques. Attention is given to how well the ACCT approximation can capture stability trends under variation of key network design parameters such as load admittance and generator inertia. It is found for a two-machine infinite bus (TMIB) system that load parameter values that can improve stability can be identified using the ACCT. Also, the general dependence of a fault's CCT on the inertia of a generator in a TMIB power system is identifiable using the ACCT. For power systems with stationary generator inertia values, a method to provide a contingency analysis of fault locations is proposed. The method ranks the locations of short-circuit faults by their CCT; the more severe a fault the shorter its CCT. It is found in a TMIB system that the ACCT can identify the general location of severe faults under different inertia scenarios. It is shown that in larger power systems, energetic methods can be used to accurately identify the locations of faults with short CCTs. These results, together with relevant literature are used to suggest possible strategies to monitor transient stability within modern power systems.
APA, Harvard, Vancouver, ISO, and other styles
27

Vidalinc, Antoine Jr. "On-Line Transient Stability Analysis of a Multi-Machine Power System Using the Energy Approach." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36842.

Full text
Abstract:
This thesis investigates and develops a direct method for transient stability analysis using the energy approach [1] and the Phasor Measurement Units (PMUs). The originality of this new method results from a combination of a prediction of the post-fault trajectory based on the PMUs and the Transient Energy Function of a multimachine system. Thanks to the PMUs, the weakness of the direct methods, which is the over-simplification of the generator model, is overcome. This new method consists of fitting a curve to the data of the post-fault path provided by PMUs and identifying the controlling unstable equilibrium point (c.u.e.p.). Two second-order linear models have been estimated and evaluated from a prediction viewpoint. These are a polynomial function and an auto-regressive model. These parameters have been estimated by means of the least-squares estimator. They have been compared to the model proposed by Y. Ohura et al. [6], which has been upgraded into an iterative algorithm. The post-fault trajectory is predicted until the exit point located on the Potential Energy Boundary Surface (p.e.b.s.) is reached. In order to detect with efficiency this exit point and to find the c.u.e.p., it is proposed a combination of the so called "Ball-Drop" method [22] and an improved version of the Shadowing method. These combined procedures give accurate results when they are compared to the step-by-step method, which directly integrates the differential equations using a fourth-order Runga-Kutta method. The simulations have been carried out on a 3-machine system and on the 10-machine New-England power system.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
28

Kurt, Burcak. "Impact Of High-level Distributed Generation Penetration On The Transmission System Transient Stability." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12611199/index.pdf.

Full text
Abstract:
This thesis investigates the impact of high-level penetration of distributed generation especially from the renewable energy sources on the transient stability of the transmission system. Distributed generation is a source of electric power connected to the distribution network or on the consumer side. It is expected that distributed generation grows significantly by the increasing environmental concerns and deregulation in the market. As soon as the increasing penetration level, distributed generation starts to influence the distribution system as well as the transmission system. To investigate the impact of distributed generation with different penetration levels on the transmission system transient stability, simulation scenarios are created and simulations are run on the basis of these scenarios by the implementation of the different distributed generation technologies to the &ldquo
New England&rdquo
test system. Stability indicators are observed to assess the impact on the transient stability. Results are presented throughout the thesis and the impact of the different distributed generation technologies and the different penetration levels on the transient stability is discussed by comparing the stability indicators.
APA, Harvard, Vancouver, ISO, and other styles
29

Kontos, Adamos C. "Construction of boundary matched equivalents for off-line lead-flow-type studies and transient stability analysis." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/13697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kanchanaharuthai, Adirak. "Small-Signal Stability, Transient Stability and Voltage Regulation Enhancement of Power Systems with Distributed Renewable Energy Resources." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1321988036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Chen. "Renewable Energy Integrated Power System Stability Assessment with Validated System Model Based on PMU Measurements." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/101015.

Full text
Abstract:
Renewable energy is playing an increasingly significant role in power system operation and stability assessment with its numerous penetration expansion. This is not only brought by its uncertain power output and inverter-based equipment structures but also its operation characteristics like Low Voltage Ride Through (LVRT). It is thus necessary to take these characteristics into consideration and further to find more adaptive schemes to implement them for more effective analysis and safer power system operation. All the aforementioned is based on the accurate identification of the system fundamental information. In this dissertation, a systematic approach is proposed to find the valid system model by estimating the transmission line parameters in the system with PMU measurements. The system transient stability assessment is conducted based on this validated model. The constrained stability region is estimated with Lyapunov functions family based method in the center of angles reference frame considering renewables LVRT as operation limits. In order to integrate the LVRT constraints, a polytopic inner approximation mechanism is introduced to linearize and organize the transformed constraints in state space, which brings much scalability to the whole process. From the voltage stability perspective, an approach to adaptively adjust LVRT settings of the renewable energy sources in the system is formulated to guarantee the system load margin and thus the voltage security. A voltage prediction method is introduced for critical renewable energy sources identification. Estimation methods based on interpolation and sensitivities are developed and conducted for saving computation effort brought by continuation power flows. Multiple test cases are studied utilizing the proposed approaches and results are demonstrated.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
32

Koo, Ja Yong. "System and IC level analysis of electrostatic discharge (ESD) and electrical fast transient (EFT) immunity and associated coupling mechanisms." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Koo_09007dcc80557c11.pdf.

Full text
Abstract:
Thesis (Ph. D.)--Missouri University of Science and Technology, 2008.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed August 21, 2008) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
33

Choi, Wonbae. "Dynamic phasor modeling of type 3 wind turbine generators for large-scale power system transient stability studies." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/63007.

Full text
Abstract:
The wind power penetration has been increasing significantly, and this trend is likely to continue. As wind power penetration levels increase, interconnecting large-scale wind power plants (WPPs) into the existing power system has become a critical issue. Therefore, appropriate wind turbine generator models are required to conduct transient stability (TS) studies. While it is possible to construct detailed and accurate models of manufacturer-specific wind turbine generators in electromagnetic transient (EMT) simulators, such models are not suitable for large-scale transient stability studies due to their high computational complexity. The Western Electricity Coordinating Council (WECC) Renewable Energy Modeling Task Force (REMTF) is working towards developing generic wind turbine generator models that would be applicable for a range of general purpose system-level studies. However, such the generic models are typically over-simplified and not able to predict some of the phenomena, e.g. the unbalanced disturbance which is easily captured by the EMT simulations. In this research, a numerically-efficient model for the doubly-fed induction generator (DFIG) is developed that can predict steady state, balanced and unbalanced disturbances, and is sufficiently generic. The new DFIG model is based on the dynamic-phasor (DP) based machine models, which have been recently developed for the EMT simulators and can work with fairly large time-steps (up to several milliseconds) approaching that of the TS program solution. The WPP models have been implemented in MATLAB/Simulink® to assess the improved accuracy and computational efficiency. The new DP-based DFIG model is tested in a single machine infinite bus case and a two-area four-machine network to validate the model’s responses to balanced and unbalanced conditions of the grid. The accuracy of new DFIG model is shown to be significantly better compared to traditional TS models, which is achieved at a slightly increased computational cost. The result of this research will provide more accurate dynamic phasor based models of WPP for TS analysis. Since TS programs are widely used by utilities over the world, the new DP-based DFIG model will contribute to more reliable and accurate studies. This, in turn, will enable more reliable integration of large-scale WPPs into the existing and expanding power grids.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
34

Mishra, Chetan. "Studying the Impact of Solar Photovoltaic on Transient Stability of Power Systems using Direct Methods." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/81090.

Full text
Abstract:
The increasing penetration of inverter based renewable generation in the form of solar photo-voltaic (PV) or wind has introduced numerous operational challenges and uncertainties. Among these challenges, one of the major ones is the impact on the transient stability of the grid. On the other hand, the direct methods for transient stability assessment of power systems have also fairly evolved over the past 30 years. These set of techniques inspired from the Lyapunov's direct method provide a clear insight into the system stability changes with a changing grid. The most attractive feature of these types of techniques is the heavy reduction in the computational burden by cutting down on the simulation time. These advancements were still aimed at analyzing the stability of a non-linear autonomous dynamical system and the existing power system perfectly fits that definition. Due to the changing renewable portfolio standards, the power system is undergoing serious structural and performance alterations. The whole idea of power system stability is changing and there is a major lack of work in the field of direct methods in keeping up with these changes. This dissertation aims at employing the pre-existing direct methods as well as developing new techniques to visualize and analyze the stability of a power system with an added subset of complexities introduced by PV generation.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
35

Guo, Tingyan. "On-line identification of power system dynamic signature using PMU measurements and data mining." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/online-identification-of-power-system-dynamic-signature-using-pmu-measurements-and-data-mining(989938d4-c236-48a7-a653-17326937f5b4).html.

Full text
Abstract:
This thesis develops a robust methodology for on-line identification of power system dynamic signature based on incoming system responses from Phasor Measurement Units (PMUs) in Wide Area Measurement Systems (WAMS). Data mining techniques are used in the methodology to convert real-time monitoring data into transient stability information and the pattern of system dynamic behaviour in the event of instability. The future power system may operate closer to its stability limit in order to improve its efficiency and economic value. The changing types and patterns of load and generation are resulting in highly variable operating conditions. Corrective control and stabilisation is becoming a potentially viable option to enable safer system operation. In the meantime, the number of WAMS projects and PMUs is rising, which will significantly improve the system situational awareness. The combination of all these factors means that it is of vital importance to exploit a new and efficient Transient Stability Assessment (TSA) tool in order to use real-time PMU data to support decisions for corrective control actions. Data mining has been studied as the innovative solution and considered as promising. This work contributes to a number of areas of power systems stability research, specifically around the data driven approach for real-time emergency mode TSA. A review of past research on on-line TSA using PMU measurements and data mining is completed, from which the Decision Tree (DT) method is found to be the most suitable. This method is implemented on the test network. A DT model is trained and the sensitivity of its prediction accuracy is assessed according to a list of network uncertainties. Results showed that DT is a useful tool for on-line TSA for corrective control approach. Following the implementation, a generic probabilistic framework for the assessment of the prediction accuracy of data mining models is developed. This framework is independent of the data mining technique. It performs an exhaustive search of possible contingencies in the testing process and weighs the accuracies according to the realistic probability distribution of uncertain system factors, and provides the system operators with the confidence level of the decisions made under emergency conditions. After that, since the TSA for corrective control usually focuses on transient stability status without dealing with the generator grouping in the event of instability, a two-stage methodology is proposed to address this gap and to identify power system dynamic signature. In this methodology, traditional binary classification is used to identify transient stability in the first stage; Hierarchical Clustering is used to pre-define patterns of unstable dynamic behaviour; and different multiclass classification techniques are investigated to identify the patterns in the second stage. Finally, the effects of practical issues related to WAMS on the data mining methodologies are investigated. Five categories of issues are discussed, including measurement error, communication noise, wide area signal delays, missing measurements, and a limited number of PMUs.
APA, Harvard, Vancouver, ISO, and other styles
36

Chan, Teck-Wai. "Proximity-to-Separation Based Energy Function Control Strategy for Power System Stability." Queensland University of Technology, 2003. http://eprints.qut.edu.au/15840/.

Full text
Abstract:
The issue of angle instability has been widely discussed in the power engineering literature. Many control techniques have been proposed to provide the complementary synchronizing and damping torques through generators and/or network connected power apparatus such as FACTs, braking resistors and DC links. The synchronizing torque component keeps all generators in synchronism while damping torque reduces oscillations and returns the power system to its pre-fault operating condition. One of the main factors limiting the transfer capacity of the electrical transmission network is the separation of the power system at weak links which can be understood by analogy with a large spring-mass system. However, this weak-links related problem is not dealt with in existing control designs because it is non-trivial during transient period to determine credible weak links in a large power system which may consist of hundreds of strong and weak links. The difficulty of identifying weak links has limited the performance of existing controls when it comes to the synchronization of generators and damping of oscillations. Such circumstances also restrict the operation of power systems close to its transient stability limits. These considerations have led to the primary research question in this thesis, "To what extent can the synchronization of generators and damping of oscillations be maximized to fully extend the transient stability limits of power systems and to improve the transfer capacity of the network?" With the recent advances in power electronics technology, the extension of transfer capacity is becoming more readily achievable. Complementary to the use of power electronics technology to improve transfer capacity, this research develops an improved control strategy by examining the dynamics of the modes of separation associated with the strong and weak links of the reduced transmission network. The theoretical framework of the control strategy is based on Energy Decomposition and Unstable Equilibrium Points. This thesis recognizes that under extreme loadings of the transmission network containing strong and weak links, weak-links are most likely to dictate the transient stability limits of the power system. We conclude that in order to fully extend the transient stability limits of power system while maximizing the value of control resources, it is crucial for the control strategy to aim its control effort at the energy component that is most likely to cause a separation. The improvement in the synchronization amongst generators remains the most important step in the improvement of the transfer capacity of the power system network.
APA, Harvard, Vancouver, ISO, and other styles
37

Bu, Siqi. "Probabilistic small-signal stability analysis and improved transient stability control strategy of grid-connected doubly fed induction generators in large-scale power systems." Thesis, Queen's University Belfast, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580121.

Full text
Abstract:
Growing numbers of large-scale wind farms have been recently established and connected to conventional power grid. With the rising level of penetration, the impact of wind power sources on the grid has extended from simple power quality problems to power grid security and stability, frequency and peak regulation, and economic dispatch issues. Therefore, it has significant theoretical and practical values to comprehensively investigate the effect of grid-connected wind power sources on the power system stability. In order to study the influence of considerable stochastic characteristic of wind power generation, probabilistic analysis of power system small-signal stability has been implemented. An analytical method of probabilistic analysis based on Gram-Charlier expansion is proposed to deal with the stochastic uncertainty and spatial correlation of multiple grid-connected wind power sources. Results of probabilistic stability analysis of the example power system demonstrate that the stochastic fluctuation of wind power generation certainly affects small-signal stability of the power system especially in a stressed load condition. Probabilistic stability changes significantly with the variation of wind power penetration level. Focusing on the examination of mechanism of terminal voltage dip during the grid fault, this thesis then develops an improved flux magnitude and angle control (IFMAC) strategy to enhance the grid fault ride-through (FRT) capability of grid-connected doubly fed induction generators (DFIGs). It is indicated by analysis that the significant increase of DFIG power angle stimulated by grid faults during the transient is the essential reason of DFIG voltage dip. IF MAC scheme is proposed with the aim to control the DFIG power angle. The theoretical analysis has also illustrated that the surrounding power system may benefit prominently in terms of transient stability margin by applying the proposed control strategy. Simulation results of the example system have validated the effectiveness and robustness of IF MAC controller in different operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
38

Maitra, Arindam. "A generic approach to network modeling for harmonic analysis." Diss., Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-03272002-133910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Krakowski, Vincent. "Intégration du renouvelable et stratégie de déploiement du réseau électrique : réconciliation d'échelles spatio-temporelles dans des exercices prospectifs de long terme." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM025/document.

Full text
Abstract:
Les systèmes électriques évoluent actuellement vers l'intégration d'une production moins carbonée, éventuellement plus locale. Afin d’explorer les évolutions possibles de ces systèmes sur le long terme, l’exercice prospectif s’appuyant sur des modèles est un outil précieux. Cependant, pour être pertinent, il doit réconcilier des phénomènes spatiaux et temporels à des échelles variées. Ainsi, le fonctionnement du système électrique repose sur un équilibre offre – demande à chaque instant. Afin de corriger les fluctuations de la production ou de la consommation qui surviennent nécessairement, les gestionnaires de réseau mettent en place un certain nombre de régulations dont les durées d’activation sont de l’ordre de quelques secondes à quelques heures. A des échelles de temps encore plus fines le système électrique présente une robustesse interne : le réseau électrique créé un couplage électromagnétique entre les machines synchrones qui leur permet de mutualiser leur inertie respective. Cette inertie, qui constitue une réserve d’énergie cinétique, est instantanément disponible pour faire face aux fluctuations. Pour que les scénarios de long terme proposés ne soient pas en contradiction avec les exigences de robustesse du système électrique, qui permettront son opération, il est nécessaire que l’évaluation de cette robustesse soit intégrée à la modélisation prospective. Dans ce travail, nous proposons un indicateur, calculable au sein des études de prospective, qui évalue la stabilité d’un système électrique, c’est- à-dire son aptitude à revenir au synchronisme suite à une perturbation. Cet indicateur repose sur une description agrégée du réseau de transport et traduit le couplage électromagnétique apporté par le réseau. Associé au modèle bottom-up de la famille MARKAL/TIMES décrivant le système électrique français, cet indicateur de synchronisme et un indicateur quantifiant la réserve cinétique disponible, nous permet d’évaluer les conséquences de la pénétration du renouvelable, notamment sur la robustesse du système électrique
Power systems are currently facing several issues in order to evolve and integrate less carbon-heavy, and potentially more local, production. Prospective model-based analysis is a precious tool for exploring the possible long-term developments of these systems and comparing their advantages and disadvantages. However, to ensure relevance, it is important to reconcile the spatial and temporal phenomena that occur at various scales. Power system management depends on constantly maintaining a complex supply- demand balance. Meeting this challenge requires anticipating demand variations and power plant availability, combined with regulation systems to resolve remaining discrepancies. These regulations are activated in from a few seconds up to several hours. On shorter timescales, power systems show inherent robustness: the power grid creates an electromagnetic coupling between synchronous machines allowing them to share their inertia. This inertia, which takes the form of kinetic energy, is instantaneously available to face natural demand or supply fluctuations. To ensure that proposed long-term scenarios are consistent with the robustness requirements of power systems, which enable their management, this robustness must be assessed using prospective modeling. In this work, we propose an indicator, calculable within prospective studies, which assesses power system stability, namely its ability to return to synchronism after a perturbation. This indicator is based on an aggregated description of the transportation power grid and describes the electromagnetic coupling brought by the power grid. When combined with a bottom-up model from the MARKAL/TIMES family describing the French power system, this synchronism indicator, along with another indicator quantifying the available kinetic reserve, enables us to assess the consequences of renewable penetration, especially in terms of power system robustness
APA, Harvard, Vancouver, ISO, and other styles
40

Parchure, Abhineet Himanshu. "Towards Three-Phase Dynamic Analysis of Large Electric Power Systems." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/54574.

Full text
Abstract:
This thesis primarily focuses on studying the impact of Distributed Generation (DG) on the electromechanical transients in the electric grid (distribution, transmission or combined transmission and distribution (TandD) systems) using a Three Phase Dynamics Analyzer (hereafter referred to as TPDA). TPDA includes dynamic models for electric machines, their controllers, and a three-phase model of the electric grid, and performs three-phase dynamic simulations without assuming a positive sequence network model. As a result, TPDA can be used for more accurate investigation of electromechanical transients in the electric grid in the presence of imbalances. At present, the Electromagnetic Transient Program (EMTP) software can be used to perform three-phase dynamic simulations. This software models the differential equations of the entire electric network along with those of the machines. This calls for solving differential equations with time constants in the order of milliseconds (representing the fast electric network) in tandem with differential equations with time constants in the order of seconds (representing the slower electromechanical machines). This results in a stiff set of differential equations, making such an analysis extremely time consuming. For the purpose of electromechanical transient analysis, TPDA exploits the difference in the order of time constants and adopts phasor analysis of the electric network, solving differential equations only for the equipment whose dynamics are much slower than those of the electric network. Power Flow equations are solved using a graph trace analysis based approach which, along with the explicit partitioned method adopted in TPDA, can eventually lead to the use of distributed computing that will further enhance the speed of TPDA and perhaps enable it to perform dynamic simulation in real time . In the work presented here, first an overview of the methodology behind TPDA is provided. A description of the object oriented implementation of TPDA in C++/C# is included. Subsequently, TPDA is shown to accurately simulate power system dynamics of balanced networks by comparing its results against those obtained using GE-PSLF®. This is followed by an analysis that demonstrates the advantages of using TPDA by highlighting the differences in results when the same problem is analyzed using a three-phase network model with unbalances and the positive sequence network model as used in GE-PSLF®. Finally, the impact of rapidly varying DG generation is analyzed, and it is shown that as the penetration level of DG increases, the current and voltage oscillations throughout the transmission network increase as well. Further, rotor speed deviations are shown to grow proportionally with increasing DG penetration.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
41

Nasri, Amin. "On the Dynamics and Statics of Power System Operation : Optimal Utilization of FACTS Devicesand Management of Wind Power Uncertainty." Doctoral thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154576.

Full text
Abstract:
Nowadays, power systems are dealing with some new challenges raisedby the major changes that have been taken place since 80’s, e.g., deregu-lation in electricity markets, significant increase of electricity demands andmore recently large-scale integration of renewable energy resources such aswind power. Therefore, system operators must make some adjustments toaccommodate these changes into the future of power systems.One of the main challenges is maintaining the system stability since theextra stress caused by the above changes reduces the stability margin, andmay lead to rise of many undesirable phenomena. The other important chal-lenge is to cope with uncertainty and variability of renewable energy sourceswhich make power systems to become more stochastic in nature, and lesscontrollable.Flexible AC Transmission Systems (FACTS) have emerged as a solutionto help power systems with these new challenges. This thesis aims to ap-propriately utilize such devices in order to increase the transmission capacityand flexibility, improve the dynamic behavior of power systems and integratemore renewable energy into the system. To this end, the most appropriatelocations and settings of these controllable devices need to be determined.This thesis mainly looks at (i) rotor angle stability, i.e., small signal andtransient stability (ii) system operation under wind uncertainty. In the firstpart of this thesis, trajectory sensitivity analysis is used to determine themost suitable placement of FACTS devices for improving rotor angle sta-bility, while in the second part, optimal settings of such devices are foundto maximize the level of wind power integration. As a general conclusion,it was demonstrated that FACTS devices, installed in proper locations andtuned appropriately, are effective means to enhance the system stability andto handle wind uncertainty.The last objective of this thesis work is to propose an efficient solutionapproach based on Benders’ decomposition to solve a network-constrained acunit commitment problem in a wind-integrated power system. The numericalresults show validity, accuracy and efficiency of the proposed approach.

The Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively.QC 20141028

APA, Harvard, Vancouver, ISO, and other styles
42

Wu, Xiaohe. "OPTIMAL UPFC CONTROL AND OPERATIONS FOR POWER SYSTEMS." Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4462.

Full text
Abstract:
The content of this dissertation consists of three parts. In the first part, optimal control strategies are developed for Unified Power Flow Controller (UPFC) following the clearance of fault conditions. UPFC is one of the most versatile Flexible AC Transmission devices (FACTs) that have been implemented thus far. The optimal control scheme is composed of two parts. The first is an optimal stabilization control, which is an open-loop 'Bang' type of control. The second is an suboptimal damping control, which consists of segments of 'Bang' type control with switching functions the same as those of a corresponding approximate linear system. Simulation results show that the proposed control strategy is very effective in maintaining stability and damping out transient oscillations following the clearance of the fault. In the second part, a new power market structure is proposed. The new structure is based on a two-level optimization formulation of themarket. It is shown that the proposed market structure can easily find the optimal solutions for the market while taking factors such as demand elasticity into account. In the last part, a mathematical programming problem is formulated to obtain the maximum value of the loadibility factor, while the power system is constrained by steady-state dynamic security constraints. Aniterative solution procedure is proposed for the problem, and the solution gives a slightly conservative estimate of the loadibility limit for the generation and transmission system.
Ph.D.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical and Computer Engineering
APA, Harvard, Vancouver, ISO, and other styles
43

Guimaraes, Geraldo C. "Computer methods for transient stability analysis of isolated power generation systems with special reference to prime mover and induction motor modelling." Thesis, University of Aberdeen, 1990. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU028173.

Full text
Abstract:
This thesis aims to establish computer methods for the transient stability analysis of electric power systems which operate isolated from the large interconnected system. A typical isolated system is characterized by a compact network in which the size of the load is relatively large when compared to the total, installed generation capacity. The stability problems are thus more severe for this system than for the grid-type system. This results in the need for more accurate representations for the system components in the computer studies. This work considers particularly the prime mover and the induction motor modelling. The accurate modelling for turbo-charged diesel engines and single shaft gas turbines is considered first due to the significative presence of these types of prime movers in the isolated systems. The quasi-steady approach is adopted in the development of these models. The induction motor modelling is then dealt with and an accurate model which accounts for the deep-bar effects and includes the stator transients is presented. In addition, this work also investigates the possibility of substituting all these detailed models by simple, reduced models in the computer simulations since the latter pose less problem in assembling the necessary data than the former ones. Furthermore, some theoretical aspects for the representation of synchronous machines, automatic voltage regulators and transformers are included in the thesis. Some insight on the numerical integration method used in the stability program - the Trapezoidal implicit - is also given in the text with the advantages and disadvantages being stated. Several studies are shown in the thesis which aim firstly to compare the various models for prime mover and induction motor representations and secondly to test the complete simulation package when dealing with stability analyses of typical isolated systems.
APA, Harvard, Vancouver, ISO, and other styles
44

Prokop, Ondřej. "Analýza provozu uzlu sítě po připojení jaderného bloku velkého výkonu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242013.

Full text
Abstract:
The thesis deals with the analysis of the grid node operation after the connection the nuclear unit. The aim of the master´s thesis is to describe the influence of network´s faults to a nuclear unit. Thesis is dealing with three fundamental problems. An influence of short circuits and power imbalance on the synchronous generator of nuclear power plant and its operation of the island network. The thesis is focused especially on the nuclear unit. However, in the case of any failure in the network, it´s necessary to check other units and their protections in the test system because unit failure could cause the disintegration of the power network. For the purposes of the simulation a test system of the power network has been developed. The test system was optimized in the LUG software, which is used to calculate the power network. Transient simulations are performed in the MODES software. Single faults are configured with scenarios. Results are generated into output files. Analysis of influence network´s faults on the synchronous generator of nuclear power plants. The ability of the synchronous generator to restore the primary steady state or hold the new steady state during changes in operating parameters of the network is one of the important parts of the safe and reliable operation of the power network. During the short circuit the damped transient actions occur. With the extension of the short circuit duration, the amplitude of the transient action increases. The risk of the stability loss of a synchronous generator increases. Therefore, the critical clearing time of a short circuit is being defined, which is the time when there is not any loss of stability. Critical clearing time of research generator is sufficient to turn off the short circuit with the help of its protection (the worst case is 0,8 s). For example, by comparison with the hydroelectric power plant, the critical clearing time is much longer. Models of other power plants have been designed with high reliability so in the case of these faults, it doesn’t cause the disintegration of the power network. Creation of island grid is characterized by strong current surges. Units must be resistant to these surges. In the island grid fast changes of the electrical parameters often occurs. Therefore, units must respond to these changes as quickly as possible and in the broadest limits. For this purpose an island operation regulator is being used. In the case of surplus island grid in steam power plants a dump condenser can be used. This is an important ability of steam power plants because the units are able to react quickly to changes of electrical parameters in island grid. The main result of this thesis is the behavior of the nuclear power plant during various faults in the power network. Researched generator of the nuclear power plant is highly stable against faults in the power network based on the findings. The results allow to continue in this topic with real network and real unit of nuclear power plant.
APA, Harvard, Vancouver, ISO, and other styles
45

Alamo, Ana Cecilia Moreno. "Fluxo de potência ótimo com restrições de estabilidade." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-28092015-091735/.

Full text
Abstract:
Neste trabalho, as restrições de estabilidade transitória são incorporadas ao problema de Fluxo de Potência Ótimo (FPO) por meio da aproximação de equações diferenciais do problema de estabilidade por um conjunto de equações algébricas provenientes de procedimentos de integração numérica. Uma contribuição original desta dissertação é a proposição de um procedimento de otimização multi-passos que minimiza problemas de convergência e acelera o processo computacional. O procedimento de otimização proposto foi testado com sucesso num sistema pequeno de 3 geradores, tendo as potências geradas como variáveis de controle.
In this work, transient stability constraints are incorporated into the Optimal Power Flow (OPF) problem by approximating differential equations constraints by a set of equivalent algebraic equations originated from numerical integration procedures. A contribution of this dissertation is the proposal of a multi-step optimization procedure, which minimizes convergence problems and speeds up computation. The proposed optimization procedure was successfully tested on a small 3-machine power system, having the generated powers as control variables.
APA, Harvard, Vancouver, ISO, and other styles
46

Oliveira, Cl?vis B?sco Mendon?a. "Desenvolvimento de modelos no programa digSILENT powerfactoryTM para o estudo de estabilidade transit?ria em sistemas el?tricos de pot?ncia com aerogerador." Universidade Federal do Rio Grande do Norte, 2006. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15394.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:55:57Z (GMT). No. of bitstreams: 1 ClovisBMO.pdf: 4499915 bytes, checksum: b3ed589a5cb7e5f7a1b113d606f615e2 (MD5) Previous issue date: 2006-02-20
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
This work presents a description of models development at DigSILENT PowerFactoryTM program for the transient stability study in power systems with wind turbine. The main goal is to make available means to use a dynamic simulation program in power systems, widely published, and utilize it as a tool that helps in programs results evaluations used for this intent. The process of simulations and analyses results starts after the models setting description phase. The results obtained by the DigSILENT PowerFactoryTM and ATP, program chosen to the validation also international recognized, are compared during this phase. The main tools and guide lines of PowerFactoryTM program use are presented here, directing these elements to the solution of the approached problem. For the simulation it is used a real system which it will be connected a wind farm. Two different technologies of wind turbines were implemented: doubly-fed induction generator with frequency converter, connecting the rotor to the stator and to the grid, and synchronous wind generator with frequency converter, interconnecting the generator to the grid. Besides presenting the basic conceptions of dynamic simulation, it is described the implemented control strategies and models of turbine and converters. The stability of the wind turbine interconnected to grid is analyzed in many operational conditions, resultant of diverse kinds of disturbances
Este trabalho apresenta uma descri??o do desenvolvimento de modelos no programa DigSILENT PowerFactoryTM voltados ao estudo de estabilidade transit?ria em sistemas de pot?ncia com aerogerador. O objetivo ? disponibilizar meios para se utilizar um programa de simula??o din?mica em sistemas de pot?ncia, amplamente divulgado, e utiliz?-lo como uma ferramenta que auxilie na avalia??o dos resultados de programas usados para este fim. Ap?s a fase de descri??o da montagem dos modelos inicia-se o processo de simula??o e an?lise dos resultados. ? durante esta fase que s?o comparados os resultados do DigSILENT PowerFactoryTM com os resultados obtidos com o ATP, programa escolhido para avalia??o, tamb?m com reconhecimento internacional. S?o apresentadas as principais ferramentas e diretrizes do uso do programa PowerFactoryTM, direcionando tais elementos ? solu??o do problema formulado. Para simula??o, utiliza-se uma rede real, na qual ser? introduzido um parque e?lico. Dois tipos de tecnologias de gera??o e?lica foram implementadas: aerogerador de indu??o duplamente excitado com conversor de freq??ncia, conectando o rotor ao estator e ? rede, e aerogerador s?ncrono com conversor de freq??ncia, interligando o gerador ? rede. Al?m de apresentar os conceitos b?sicos de simula??o din?mica, descrevem-se as estrat?gias de controle implementadas e os modelos de turbinas e conversores. A estabilidade do aerogerador interligado ? rede ? avaliada em diversas condi??es operacionais, resultante de variados tipos de perturba??es
APA, Harvard, Vancouver, ISO, and other styles
47

Gonçalves, Marcos José. "Estabilização de sistemas de energia elétrica em regime transitório na presença de dispositivos FACTS." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/154039.

Full text
Abstract:
Submitted by MARCOS JOSÉ GONÇALVES null (marcosjg@ig.com.br) on 2018-05-22T03:01:06Z No. of bitstreams: 1 Tese Marcos Jose Goncalves FINAL.pdf: 1783203 bytes, checksum: d48ee12e54924878e9c6e28de57fb570 (MD5)
Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-05-22T12:09:34Z (GMT) No. of bitstreams: 1 goncalves_mj_dr_ilha.pdf: 1783203 bytes, checksum: d48ee12e54924878e9c6e28de57fb570 (MD5)
Made available in DSpace on 2018-05-22T12:09:34Z (GMT). No. of bitstreams: 1 goncalves_mj_dr_ilha.pdf: 1783203 bytes, checksum: d48ee12e54924878e9c6e28de57fb570 (MD5) Previous issue date: 2017-11-28
Este trabalho apresenta um estudo sobre o controle de Sistema de Energia Elétrica (SEE) com vistas à melhoria da estabilidade transitória por meio da atuação de dispositivos FACTS, neste momento considerando os compensadores em derivação (SVC) e em série (TCSC). Propõe-se a inclusão, em dispositivos pré-existentes, a incorporação de um controle adicional visando atuação em face de transitórios eletromecânicos. A influência dos dispositivos sobre a capacidade de sincronização entre os pares de máquinas, avaliada por meio do fator de efeito é inserida na atuação dinâmica/transitória do sistema. A evolução da trajetória pós-falta do sistema é considerada em relação às fronteiras da chamada Região de Sincronização Positiva (RSP) e simulações foram realizadas usando os sistemas-teste Simétrico de duas áreas e New England para Lei de Controle proposta e conclui-se que esta é efetiva na melhoria da estabilidade transitória do Sistema de Energia Elétrica e, com aprimoramentos, poderá ser incluída em procedimentos de operação em tempo real.
The power system transient stability control is approached by means of FACTS devices, and at this first step the SVC and TCSC devices are considered. A certain device acts upon each pair of machines by means of their synchronization capability which is affected by the corresponding transfer admittance as repeated by the FACTS device. This influence is taken into account by means of a parameter named Effect Factor. The boundaries of a region surrounding the stable equilibrium point named Positive Stability Region are used as reference for critical trajectories and the control action intend to reverse the tendency of the trajectory of leaving this region. In view of the shown tested cases the results are very promising since the proposed control has conduced to improvements in fault critical clearing times and so it has potential to be included in online operation procedures.
APA, Harvard, Vancouver, ISO, and other styles
48

Johansson, Nicklas. "Aspects on Dynamic Power Flow Controllers and Related Devices for Increased Flexibility in Electric Power Systems." Doctoral thesis, KTH, Elektriska maskiner och effektelektronik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-37823.

Full text
Abstract:
This thesis studies different aspects of Flexible AC Transmission System (FACTS) devices which are used to improve the power transfer capability and increase the controllability in electric power systems. In the thesis, different aspects on the usage and control of Dynamic Power Flow Controllers (DPFC) and related FACTS devices are studied. The DPFC is a combination of a Phase Shifting Transformer (PST) and a Thyristor Switched Series Capacitor (TSSC)/Thyristor Switched Series Reactor (TSSR). The thesis proposes and studies a new method, the Ideal Phase-Shifter (IPS) method, for selection and rating of Power Flow Controllers (PFC) in a power grid. The IPS method, which is based on steady-state calculations, is proposed as a first step in the design process for a PFC. The method uses the Power controller plane, introduced by Brochu et al in 1999. The IPS method extends the usage of decoupling methods in the Power controller plane to a power system of arbitrary size. The IPS method was in the thesis used to compare the ratings of different PFC:s required to improve the power transfer capability in two test systems. The studied devices were here the PST, the TSSC/TSSR and the DPFC. The thesis treats control of ideal Controlled Series Capacitors (CSC), TCSC, TSSC/TSSR, and DPFC. The goals of the FACTS controllers which are developed are Power Oscillation Damping (POD), fast power flow control, and transient stability improvement in the power system. New adaptive control strategies for POD and power flow control are proposed and studied in different models of power systems by time-domain simulations. A strategy for transient stability improvement is also proposed and studied. Additionally, different methods for study of Subsynchronous Resonance (SSR), which is associated with series compensation in power systems, are investigated. Here, four of the most common methods for frequency scanning to determine the electrical damping of subsynchronous oscillations in a power grid are studied. The study reveals significant differences of the electrical damping estimates of the studied standard methods when applied to a four-machine test system.
QC 20110819
APA, Harvard, Vancouver, ISO, and other styles
49

Sohn, Alexandre Prodóssimo. "Estudos de estabilidade de sistemas elétricos de potência na presença de diferentes modelos de unidades eólicas." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18154/tde-18032014-132419/.

Full text
Abstract:
Diante da crescente penetração da energia elétrica gerada por unidades eólicas no sistema elétrico de inúmeros países, a presente dissertação de mestrado investiga os problemas de estabilidade transitória, para geradores síncronos, de estabilidade de tensão, para geradores síncronos e aerogeradores e de estabilidade de velocidade, para aerogeradores, em sistemas de transmissão de energia elétrica, frente a grandes perturbações. São estabelecidas comparações entre os diferentes comportamentos dinâmicos de cada tipo de unidade eólica, referentes aos tipos A, B, C e D. Também, são verificados os efeitos de contingências aplicadas a sistemas teste, na presença de sistemas de geração convencionais dotados de geradores síncronos e parques eólicos compostos pelos tipos de unidades eólicas citadas, a fim de verificar a relação entre os diferentes sistemas de geração. As simulações realizadas contemplam aspectos dinâmicos de modelos genéricos de aerogeradores. São estudadas as partes constituintes de aerogeradores, realizadas as modelagens e discutidos os métodos de controle usuais. As principais características dos modelos genéricos de unidades eólicas, assim como os respectivos diagramas de bloco para cada modelo são apresentados. As simulações são realizadas no programa computacional PSS/E, cujos modelos, já validados, representam aerogeradores reais de fabricantes distintos. É observado que as diferentes características dos modelos de unidades eólicas e as estratégias de controle empregadas para atenuar os efeitos negativos de contingências impostas ao sistema, influenciam significativamente o perfil da tensão e o fluxo de potência na rede elétrica. Este fato é refletido em diferentes respostas dos sistemas de geração. As unidades eólicas mostram-se resistentes à perderem a estabilidade e apresentam-se capazes de estabilizar um sistema elétrico de potência, devido aos mecanismos de controle de velocidade e potência dos mesmos. A violação da curva LVRT mostra-se a principal causa da desconexão de aerogeradores da rede elétrica. Verifica-se neste trabalho que os aerogeradores somente tornam-se instáveis quando os geradores síncronos perdem o sincronismo, ou quando o controle do torque aerodinâmico é desconsiderado.
Considering the growing penetration of electrical energy generated by wind turbines in the power system of numerous countries, the present masters dissertation investigates the problems of transient stability, for synchronous generators, voltage stability, for synchronous generators and aerogenerators, and velocity stability, for aerogenerators, in transmission systems, before large disturbances. Comparisons are made between the different dynamic behaviors of each type of wind energy conversion system, namely types A, B, C and D. The effects of contingencies in some test systems in the presence of wind farms with different types of aerogenerators and conventional synchronous generators are verified, whose aim of the simulations is to analyze the relation between the different generation systems. The simulations performed contemplate dynamic aspects of generic models of wind turbines. The components of wind turbines are studied, the modeling of these components is elaborated and the usual control methods are discussed. The main characteristics of generic wind models and the diagram blocks are presented. The simulations were performed in software PSS/E, whose models already validated, represent real machines. The different characteristics of aerogenerator models and the control strategies employed to mitigate the negative consequences, from several contingencies, significantly influence the voltage profile and the power flow network. This fact implies in different responses of generation systems. It is verified that wind generators are very robust to perturbations and contribute to the stabilization of synchronous generators in a power system, increasing the average critical clearing times. Unstable modes related to the acceleration of the wind generator rotor are hardly ever observed due to the existing mechanisms of control of speed and generated power. It is observed that violation of the LVRT curve is the main cause of disconnection of wind turbines from the grid and it consists of the main cause of power system collapse triggered by problems in this type of generators.
APA, Harvard, Vancouver, ISO, and other styles
50

Nazareno, Ivo Sechi. "Mecanismo de instabilidade devido a grandes perturbações em sistemas elétricos de potência modelados por equações algébrico-diferenciais." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-16112009-152004/.

Full text
Abstract:
Nesta pesquisa são analisados os mecanismos que levam um sistema elétrico de potência (SEP) à instabilidade proveniente de uma perturbação de grande porte e as formas de se avaliar diretamente a margem de estabilidade desse sistema quando o mesmo é modelado preservando a estrutura da rede de transmissão. O sistema foi matematicamente modelado por um conjunto de equações algébrico-diferenciais (EAD), que permite modelagens mais compreensivas da carga e da rede e possibilita melhor avaliação da estabilidade de um sistema quando comparado com o modelo de equações diferenciais ordinárias (EDO) utilizado tradicionalmente para o estudo de estabilidade transitória. A avaliação direta da margem de estabilidade do sistema de potência modelado por conjuntos de EAD foi realizada usando métodos diretos de análise com base no conceito de ponto de equilíbrio instável de controle (PEIC). Tais métodos permitem a obtenção da margem deforma local e rápida, sem requerer a integração numérica de equações diferenciais do modelo pós-falta. No entanto, existem alguns problemas abertos para se alcançar a completa fundamentação do método PEIC para modelos de EAD. Assim, neste estudo dá-se um passo nesta direção, mostrando que as definições existentes de PEIC e de outros pontos de interesse podem ser falhas, principalmente quando a trajetória de falta do sistema alcança superfícies singulares. Neste sentido, são propostos a correção destas definições e um método direto de detecção do PEIC. O método proposto é adequado para análise direta de estabilidade angular e de tensão de curto-termos devido a grandes perturbações e capaz de fornecer corretos tempos críticos de abertura e a identificação dos mecanismos de instabilização do sistema de EAD, mesmo quando as trajetórias do sistema alcançam superfícies singulares.
This thesis addresses to the mechanisms that lead an electric power system to instability due to large disturbances and to the methods to assess directly the stability margin when the system is modeled preserving the network structure. The system is modeled by a set of differential-algebraic equations (DAE) that permits more comprehensive models for the load and network and provides a better stability margin assessment when compared to the model of ordinary differential equations (ODE) traditionally used for transient stability analysis. The direct assessment of the stability margin was realized using direct methods based on the controlling unstable equilibrium point (CUEP) concept and permits to assess the margin in a local and fast manner, without requires the time integration of the post-fault system differential equations. Nevertheless, some open problems remain to be solved in order to provide a complete foundation of the CUEP method for DAE power system models. In this research a further step is given in this direction, showing that the existent definitions for the CUEP and other interest points may fail, mainly when the fault-on trajectory reaches singular surfaces. In this sense, it is proposed the correction of these definitions and a new CUEP method that is adequate to the angular and voltage short-term direct stability assessment due to large disturbances; capable to provide precise critical clearing times and the identification of the instability mechanisms for the DAE modeled power system, even in the presence of singular surfaces.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography