Dissertations / Theses on the topic 'Power to gas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Power to gas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aguilar, Ricardo Jose. "Ultra-low power microbridge gas sensor." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43723.
Full textBartlett, Michael. "Developing Humidified Gas Turbine Cycles." Doctoral thesis, KTH, Chemical Engineering and Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3437.
Full textAs a result of their unique heat recovery properties,Humidified Gas Turbine (HGT) cycles have the potential todeliver resource-effective energy to society. The EvaporativeGas Turbine (EvGT) Consortium in Sweden has been studying thesetypes of cycles for nearly a decade, but now stands at acrossroads, with commercial demonstration remaining. Thisthesis binds together several key elements for the developmentof humidified gas turbines: water recovery and air and waterquality in the cycle, cycle selection for near-term, mid-sizedpower generation, and identifying a feasible niche market fordemonstration and market penetration. Moreover, possiblesocio-technical hinders for humidified gas turbine developmentare examined.
Through modelling saltcontaminant flows in the cycle andverifying the results in the pilot plant, it was found thathumidification tower operation need not endanger the hot gaspath. Moreover, sufficient condensate can be condensed to meetfeed water demands. Air filters were found to be essential tolower the base level of contaminant in the cycle. This protectsboth the air and water stream components. By capturing airparticles of a similar size to the air filters, the humidifieractually lowers air stream salt levels. Measures to minimisedroplet entrainment were successful (50 mg droplets/kg air) andmodels predict a 1% blow down from the water circuit issufficient. The condensate is very clean, with less than 1 mg/lalkali salts and easily deionised.
Based on a core engine parameter analysis for three HGTcycle configurations and a subsequent economic study, asteam-cooled steam injected cycle complemented with part-flowhumidification is recommended for the mid-size power market.This cycle was found to be particularly efficient at highpressures and turbine inlet temperatures, conditions eased bysteam cooling and even intercooling. The recommended HGT cyclegives specific investment costs 30- 35% lower than the combinedcycles and cost of electricity levels were 10-18% lower.Full-flow intercooled EvGT cycles give high performances, butseem to be penalised by the recuperator costs, while stillbeing cheaper than the CC. District heating is suggested as asuitable niche market to commercially demonstrate the HGTcycle. Here, the advantages of HGT are especially pronounceddue their very high total efficiencies. Feasibility prices forelectricity were up to 35% lower than competing combinedcycles. HGT cycles were also found to effectively include wasteheat sources.
Keywords:gas turbines, evaporative gas turbines,humidification, power generation, combined heat and powergeneration.
Chen, Shang-Liang. "The effects of gas composition and rippled power on laser gas cutting." Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333679.
Full textArmillei, Claudio. "Modellazione di sistemi energetici Power to Gas." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13360/.
Full textTagner, Nikita, and Arian Abedin. "Thermodynamic model for power generating gas turbines." Thesis, KTH, Energiteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170917.
Full textGas turbines are used for a variety of purposes ranging from power generation to aircraft engines. Their performance is dependent on ambient conditions such as temperature and pressure. Gas turbine manufacturers often provide certain parameters like power output and exhaust mass flow at well-defined standard conditions, usually referred to as ISO-conditions. Due to the aforementioned dependency, it is necessary for buyers to be able to predict gas turbine performance at their chosen site of operation. In this study, a thermodynamic model for power generating gas turbines has been constructed. It predicts the power output at full load for varying ambient temperature and pressure. The constructed model has been compared with performance data taken from Siemens own models for varying temperatures. No performance data for varying pressures could be obtained. The constructed model is consistent with the Siemens models within certain temperature intervals, which differ depending on the size of the gas turbine. For smaller gas turbines, the interval where the constructed model is consistent is greater than for larger gas turbines.
Leung, Tommy (Tommy Chun Ting). "Coupled natural gas and electric power systems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98547.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 235-240).
Scarce pipeline capacity in regions that rely on natural gas technologies for electricity generation has created volatile prices and reliability concerns. Gas-fired generation firms uniquely operate as large consumers in the gas market and large producers in the electricity market. To explore the effects of this coupling, this dissertation investigates decisions for firms that own gas-fired power plants by proposing a mixed-integer linear programming model that explicitly represents multi-year pipeline capacity commit- ments and service agreements, annual forward capacity offers, annual maintenance schedules, and daily fuel purchases and electricity generation. This dissertation's primary contributions consist of a detailed representation of a gas-fired power-plant owner's planning problem; a hierarchical application of a state-based dimensionality reduction technique to solve the hourly unit commitment problem over different tem- poral scales; a technique to evaluate a firm's forward capacity market offer, including a probabilistic approach to evaluate the risk of forced outages; a case study of New England's gas-electricity system; and an exploration of the applicability of forward capacity markets to reliability problems for other basic goods.
by Tommy Leung.
Ph. D.
Zavadil, Jan. "Sezónní akumulace využívající technologii power-to-gas." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417449.
Full textOjha, Abhi. "Coupled Natural Gas and Electric Power Systems." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78666.
Full textMaster of Science
Al-Hamdan, Qusai Zuhair Mohammed. "Design criteria and performance of gas turbines in a combined power and power (CPP) plant for electrical power generation." Thesis, University of Hertfordshire, 2002. http://hdl.handle.net/2299/14041.
Full textPapadopoulos, Tilemachos. "Gas turbine cycles for intermediate load power generation." Thesis, Cranfield University, 2005. http://dspace.lib.cranfield.ac.uk/handle/1826/10718.
Full textBashadi, Sarah (Sarah Omer). "Using auxiliary gas power for CCS energy needs in retrofitted coal power plants." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59667.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 93-96).
Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90% capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the gas turbine (GT) with heat recovery steam generator (HRSG), gas turbine with HRSG and back pressure steam turbine, and natural gas boiler with back pressure steam turbine. The capital cost of the MEA unit is estimated using the Aspen Icarus Process Evaluator, and the capital cost of the external GT plants are estimated using the Thermoflow Plant Engineering and Cost Estimator. The gas turbine options are found to lead to electricity costs similar to integration, but their performance is highly sensitive to the price of natural gas and the economic impact of integration. Using a GT with a HRSG only has a lower capital cost but generates less excess electricity than the GT with HRSG and back pressure steam turbine. In order to generate enough steam for the reboiler, a significant amount of excess power was produced using both gas turbine configurations. This excess power could be attractive for coal plants located in regions with increasing electricity demand. An alternate capture plant scenario where a greater demand for power exists relative to steam is also considered. The economics of using auxiliary plant power improve slightly under this alternate energy profile scenario, but the most important factors affecting desirability of the auxiliary plant retrofit remain the cost of natural gas, the full cost of integration, and the potential for sale of excess electricity.
by Sarah Bashadi.
S.M.in Technology and Policy
Bloemhof, Barbara Lynn Mestelman Stuart. "Market power and the sale of Ontario residential natural gas: An institutional analysis and a laboratory experiment." *McMaster only, 2004.
Find full textUvwie, Patrick Awaciere. "Nigeria's gas flaring reduction : economic viability of power generation using flared gas / P.A. Uvwie." Thesis, North-West University, 2008. http://hdl.handle.net/10394/3697.
Full textAustrem, Inger. "The exergy efficiency of hydrogen-fired gas power plants." Thesis, Norwegian University of Science and Technology, Industrial Ecology Programme, 2003. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1427.
Full textThe work includes an exergy analysis of the steam reforming process for conversion of natural gas to hydrogen rich gas for use in hydrogen-fired gas power plant. Based on the analysis two sustainability indicators were calculated, the exergetic efficiency and the renewability fraction. The same analysis has been performed for a system using auto thermal reformer (Zvolinschi, Kjelstrup, Bolland and van der Kooi 2002) instead of steam reformer, and the results were compared in order to find the better system of the two based on the indicators. The system using an auto thermal reformer had the best exergetic efficiency, and the renewability fraction was 0 for both systems. One should be aware of insecurities in the results, mainly related to assumptions and limitations with respect to the simulation process.
The two indicators were proposed by Zvolinschi et. al, as a contribution to the introduction of exergy analysis as a tool for industrial ecology. It was concluded that this will be a useful contribution, especially when using system boundaries that include the closure of material cycles. Then one can also calculate the third indicator proposed by Zvolinschi et al., namely the environmental efficiency.
Hayko, Robert Kory. "Systems approach to natural gas analysis for power generation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ30858.pdf.
Full textYakah, Noah. "Heat Exchanger Design for Solar Gas-Turbine Power Plant." Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107277.
Full textTsoutsanis, Elias. "Performance adaptation of gas turbines for power generation applications." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/5614.
Full textSpelling, James. "Hybrid Solar Gas-Turbine Power Plants : A Thermoeconomic Analysis." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121315.
Full textHållbar energiförsörjning är för närvarande en av de viktigaste frågorna förmänskligheten. Koncentrerad solenergi är nu etablerad som en tillförlitlig källaav förnybar energi. Den reglerbara karaktären hos tekniken gör den specielltintressant för uppbyggnaden av ett framtida koldioxidsnålt elsystem.Kostnaden för elektricitet från nuvarande termiska solkraftverk är hög trottsflera decennier av utveckling. Ett genombrått på tekniknivå krävs för att drivaned kostnaderna. Sol-gasturbiner är ett av de mest lovande alternativen, somger en ökad verkningsgrad samtidigt som vattenkonsumtionen reducerasdrastiskt. Sol-gasturbintekniken gör det möjligt att blandköra solenergi ochandra bränslen för att möta efterfrågan vid alla tidpunkter, en attraktiv aspekt iförhållande till alternativa lösningar.Uppbyggnaden av första generationens kommersiella hybrida solgasturbinkraftverkförsvåras dock av bristen på etablerade och standardiseradekraftverkskonfigurationer. Dessa ger planeraren ett stort antal valmöjlighetersom underlag för beslutsfattande. Termoekonomiska studier har genomförtsför ett flertal olika kraftverkskonfigurationer, däribland kraftverk med enkelcykel, kombikraftverk samt möjligheten att utnyttja termisk energilagring.Pareto-optimala konfigurationer har identifierats med hjälp av multiobjektsoptimeringför att belysa balansen mellan kostnader och utsläpp.Analysen av det enkla hybrida sol-gasturbinkraftverket visade attelektricitetskostnaden hållits på en låg nivå, men att den möjliga minskningen avkoldioxidutsläpp är relativt liten. Dessutom identifierades en inre balans mellanatt bibehålla en hög verkningsgrad hos konfigurationen och en hög andelsolenergi i produktionen. Andelen av solenergi i gasturbinen överskred aldrig63% på årlig bas, även med optimerade kraftverkskonfigurationer.Två förbättringar föreslås för att övervinna begränsningarna hos kraftverk medenkel cykel: integration av termisk energilagring samt nyttjande avkombikraftverkskonfigurationer. Termisk energilagring tillåter en ökad andelsolenergi i driften och reducerar koldioxidutsläppen drastiskt, medan denytterligare cykeln hos kombikraftverket reducerar elektricitetskostnaden.Kombinationen av dessa förbättringar ger den bästa prestandan, med enreduktion av koldioxidutsläppen på upp till 34% och reducerade elektricitetskostnaderpå upp till 22% i jämförelse med andra kombinationer avkonventionella kraftverkskonfigurationer.
QC 20130503
AVELLAR, VINICIUS PIMENTA DE. "TRANSIENT MODELLING OF INDUSTRIAL GAS TURBINE FOR POWER GENERATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16332@1.
Full textAs turbinas a gás são equipamentos de vital importância para o setor industrial, fornecendo trabalho e calor para diversos setores, do transporte aos sistemas de cogeração. A crescente necessidade de geração de energia elétrica confiável tem incentivado o projeto de turbinas a gás industriais, inclusive no Brasil, que operam com vários combustíveis como o diesel, gás natural, álcool e de combustíveis de baixo poder calorífico. Para melhor monitorar e controlar estes motores, uma análise completa da previsão de funcionamento em regime transitório é necessária. Durante o regime transitório das turbinas a gás industriais (heavy-duty), o sistema de controle deve manter os limites de certos parâmetros, tais como a temperatura na entrada da turbina e a velocidade de rotação do eixo, no seu valor nominal. Além disso, o tempo de resposta necessário para o sistema de controle atuar deve ser o mais breve possível para garantir uma operação de qualidade, segura e confiável. A temperatura de entrada da turbina, que é um parâmetro muito importante no desempenho de uma turbina a gás, é limitada pela resistência mecânica do material das pás da turbina. A velocidade de rotação do eixo deve permanecer constante, devido à ligação ao sistema elétrico, que não pode suportar altas flutuações de freqüência. Este trabalho tem como motivação o incremento da capacidade de simulação de um modelo computacional existente, incorporando, para este fim, rotinas de sistemas de controle. Como resultado, o novo modelo é capaz de simular qualquer condição de funcionamento de turbinas a gás industriais, em regime permanente e transitório controlado. Os resultados obtidos pelo programa computacional se mostraram fiéis ao comportamento real da máquina. Além disso, mostraram a flexibilidade do modelo ao lidar com diferentes condições de operação.Um programa computacional capaz de simular o desempenho transitório controlado de turbinas a gás é de extrema relevância para o desenvolvimento de softwares que auxiliam os operadores destes equipamentos. Dentre estes, estão os sistemas de monitoramento e diagnóstico dos equipamentos em questão.
Gas turbine engines are a vital part of today’s industry, providing both work and heat for several industry sectors, from transportation to cogeneration systems. The growing need for reliable electricity has encouraged the design of stationary gas turbines, including in Brazil, which operates on multiple fuels such as diesel, natural gas and low calorific fuels. To better monitor and control these engines, a complete analysis for prediction of transient operation is required. During transient operation of heavy duty gas turbines, the control system must keep the limits of certain parameters, such as turbine inlet temperature (TIT) and the rotational shaft speed within their design range. Moreover, the time required for the control system to react should be as short as possible to guarantee a safe and reliable operation. The turbine inlet temperature, which is a very important parameter in the performance of a gas turbine, is limited by the turbine blades material mechanical resistance. Furthermore, the rotational speed should remain constant due to the electric grid connection, which cannot withstand high frequency fluctuations. This work is motivated by the need to increase the ability of a computer model to simulate the performance of industrial gas turbines, incorporating, for this purpose, control system routines. As a result, the new model will be able to simulate any operating condition of industrial gas turbines, in both steady state and transient. The results obtained by the computer program proved to be faithful to the actual behavior of the engine. Furthermore, they showed the flexibility of the model to deal with different operating conditions. A computer program capable of simulating the transient performance of gas turbines is very important for the development softwares to help operators of such equipment. In addition, it could be used in on-line intelligent diagnostic program.
Norring, Robert. "Optimum utilization of fission power with gas core reactors." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0004060.
Full textHosseini, Seyed. "State estimation of integrated power and gas distribution networks." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/109819/.
Full textPALMIERI, ALESSANDRO. "Gas Turbine Power Generators, Innovative Sliding Mode Load Controller." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1049110.
Full textDalili, Farnosh. "Humidification in Evaporative Power Cycles." Doctoral thesis, KTH, Chemical Engineering and Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3469.
Full textEvaporative gas turbine cycles (EvGT) show an exceptionalexhaust heat recovery potential, which makes them a strongcompetitor to other advanced gas turbine cycles, especiallyfrom small to intermediate sizes. Evaporative gas turbines aredistinguished by humidifying the working fluid beforecombustion at temperatures below the boiling point of water;and the heat required for evaporation of water is partly takenout of the exhaust gas. Thus, humidification is a key operationin these cycles. This thesis investigates, both theoreticallyand experimentally, two alternative approaches tohumidification: the packed-bed humidification tower and thetubular humidifier. Both these equipments involvecountercurrent contact between water and the working fluid.Humidifier design criteria are developed and criticalparameters such as flooding, wetting rate and entrainment arediscussed. The experimental parts were carried out on thepacked-bed tower in the EvGT pilot plant, and on a tubularhumidifier test rig especially erected for this purpose. Thetheoretical models were confirmed by the experiments.
The height of a transfer unit, necessary for designingpacked beds, was calculated for the packing employed in theEvGT pilot plant. It was found that the data provided by themanufacturer may be used with minor corrections.
The tubular test rig operated satisfactorily delivering hothumid air. The theoretical models coincided well with theexperimental results, verifying the design criteria developedhere. The heat transfer calculations indicated that mostresistance to heat transfer is on the exhaust gas side. Thus, asurface extended tube (Sunrod) was used in the test rig. Itcould be concluded that the tubular humidifier is a strongalternative to the packed-bedtower, especially in smallhigh-pressure gas turbines.
Furthermore, the importance of the non-ideality of theair-water vapor mixture in modeling evaporative cycles wasfirst highlighted in this work. Through applying realthermodynamic properties of air-water vapor mixtures in cyclecalculations, it was found that the compressed air contains ahigher amount of moisture than indicated by the ideal gasmixture model. This affects the design of the heat recoverysystem and cannot be neglected.
Key words:evaporative gas turbine, indirect-fired gasturbine, humidification, packed bed, tubular humidifier,evaporator, saturator.
Tao, Fengfeng. "Advanced High-Frequency Electronic Ballasting Techniques for Gas Discharge Lamps." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/25978.
Full textPh. D.
Markovic, Dejan. "Induced currents in gas pipelines due to nearby power lines." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060807.155002/index.html.
Full textKarlsson, Linnéa. "Kombinera vindkraftsproduktion med vätgastillverkning : En studie om lönsamheten i processen Power to Gas to Power." Thesis, Mittuniversitetet, Avdelningen för ekoteknik och hållbart byggande, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-41962.
Full textThere must always be a balance between production and consumption in an electric power system. If the balance is not maintained, the entire system could collapse and it would affect everything that is powered by electricity. Wind power has increased sharply in Sweden and is expected to continue to increase. Wind power is weather dependent production, which means that it is not possible to plan the exact production volume. This can cause problems with the electric power system and the balance becomes difficult to maintain. Wind power does not always produce electricity when demand exists. This creates a need for energy storage to meet the demand for electricity. Energy storage in the form of hydrogen has its advantages in that the hydrogen gas has a high energy content and can be stored for a long time. The purpose of this work is to investigate the potential for Mullberg's wind power farm to combine wind power generation with hydrogen production from a profitability perspective. A tool in Excel was made to calculate the electricity generation costs for the wind power farm, the hydrogen production costs for the electrolysers and the electricity generation costs for the hydrogen turbine. The result showed that a large part of the electricity generated from Mullberg's wind farm is not profitable, that electricity prices are lower than the electricity production cost. Hydrogen production with the electrolysers proved to be profitable as the cost of producing one kilo of hydrogen gas was lower than the reference value obtained from Vätgas Sverige. The conclusion that could be drawn is that hydrogen gas turbines should not be used to produce electricity from hydrogen as electricity generation costs become too high to match the electricity price.
2020-05-06
Boltyanskiy, Boris. "Operation of the heat and power complex Alatyr to power Russian oil and gas facilities." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264245.
Full textB. Boltyansky Drift av värme- och kraftkomplexet Alatyr till makten Ryska olje- och gasanläggningar, Masters uppläggning, 2017 - 102 sidor, 26 tabeller, 30 figurer Handledare Prof. VG Kucherov, doktorsexamen, kandidatexamen för teknisk vetenskap, institutionen för termodynamik och termisk motorer. Arbetet innehåller följande. En beräkning av värmekraftkomplexets värmeoch kraftkomplex Alatyrs värmekomplex. En övervägning av olika system för användning av Rankine organiska cykeln var integrerad i Alatyr värme- och kraftkomplexet i syfte att öka energieffektiviteten. Slutsatser om möjligheten att använda värme- och kraftkomplexet Alatyr. Slutsatser om möjligheten att integrera den organiska Rankine-cykeln. Ekonomisk jämförelse av värme- och kraftkomplexet Alatyr med liknande anläggningar på den distribuerade kraftproduktionsmarknaden. Ekonomisk analys av jämförelsen av energiblock av HPC Alatyr med liknande konstruktioner från andra länder.
Herraiz, Palomino Laura. "Selective exhaust gas recirculation in combined cycle gas turbine power plants with post-combustion carbon capture." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/23460.
Full textQureshi, Suhail Aftab. "Calculation of fast transients in gas insulated substations." Thesis, University of Manchester, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363514.
Full textSullivan, Dustin L. Kovaleski Scott D. "Laser target triggering of gas switches." Diss., Columbia, Mo. : University of Missouri--Columbia, 2008. http://hdl.handle.net/10355/5670.
Full textLietz, Franziska [Verfasser]. "Rechtlicher Rahmen für die Power-to-Gas-Stromspeicherung / Franziska Lietz." Baden-Baden : Nomos Verlagsgesellschaft mbH & Co. KG, 2017. http://d-nb.info/1160322422/34.
Full textGillie, Mary. "Operation and regulation of a 'virtual wind/gas' power plant." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405322.
Full textBasurto, M. T. "Study of fuel cell and gas turbine hybrid power systems." Thesis, Cranfield University, 2002. http://dspace.lib.cranfield.ac.uk/handle/1826/10514.
Full textBellgren, Sofia, and Isabel Sondén. "Coupling of Nuclear Power Generation with Greenhouse Gas Capture Technology." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297557.
Full textXiao, Hua. "Combustion of green fuels for power generation in gas turbine." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/111951/.
Full textHu, Yukun. "CO2 capture from oxy-fuel combustion power plants." Licentiate thesis, KTH, Energiprocesser, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48666.
Full textQC 20111123
Fendt, Sebastian [Verfasser]. "Experimental Investigation of a Combined Biomass-to-Gas/ Power-to-Gas Concept for the Production of Synthetic Natural Gas (SNG) / Sebastian Fendt." München : Verlag Dr. Hut, 2020. http://d-nb.info/1219475491/34.
Full textGibrael, Nemir, and Hamse Hassan. "HYDROGEN-FIRED GAS TURBINE FOR POWER GENERATION WITH EXHAUST GAS RECIRCULATION : Emission and economic evaluation of pure hydrogen compare to natural gas." Thesis, Mälardalens högskola, Framtidens energi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42306.
Full textKandamby, Naminda Harisinghe. "Mathematical modelling of gasifier fuelled gas turbine combustors." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267305.
Full textBerry, David A. "Investigation of hot gas desulfurization utilizing a transport reactor." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=500.
Full textTitle from document title page. Document formatted into pages; contains vi, 101 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 82-85).
Anosike, Nnamdi Benedict. "Technoeconomic evaluation of flared natural gas reduction and energy recovery using gas-to-wire scheme." Thesis, Cranfield University, 2013. http://dspace.lib.cranfield.ac.uk/handle/1826/8625.
Full textBortot, Baptiste. "Gas for Balancing of Variable Power Generation : A Systemic Case Study." Thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-144860.
Full textSmith, P. J. "Predicting hot corrosion rates under coal fired combined cycle power plant conditions." Thesis, Cranfield University, 1994. http://dspace.lib.cranfield.ac.uk/handle/1826/10512.
Full textWahlers, Kristen H. "Persuasive Power: Rhetoric of Risk in Sustainability in the Nuclear Power Lobby." Ohio University Honors Tutorial College / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1619214247007766.
Full textMonereo, Cuscó Oriol. "Gas sensors based on carbon nanofibers: a low power consumption approach." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400488.
Full textEl objetivo principal de esta tesis es la caracterización de las nanofibras de carbono (CNFs) como material reactivo para sensores resistivos de gas para aplicaciones de bajo consumo. Primero, las propiedades eléctricas, mecánicas y respuesta a luz y gases de las CNFs fueron evaluadas para comprobar la aplicabilidad del material sensor (O. Monereo et al., 2013, Flexible sensor based on carbon nanofibers with multifunctional sensing features). Posteriormente, la respuesta del sensor a gases fue estudiada con modulación de temperatura (S. Claramunt et al., 2013, Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres). En este punto, una caracteritzación más detallada de la respuesta del sensor a gases modulados con temperatura se realizó con O2, H2O, NO2 y NH3. A continuación, el uso de la metodología de auto-calentamiento continuo (O. Monereo et al., 2015, Self-heating effects in large arrangements of randomly oriented carbon nanofibers: Application to gas sensors) y pulsado (O. Monereo et al., 2016, Self-heating in pulsed mode for signal quality improvement: application to carbon nanostructures-based sensors) han sido probados como formas energéticamente eficientes para modular la respuesta de sensores basados en grandes matrices de CNFs. Entre los beneficios encontrados, consta una mejora de la estabilidad, especificidad, la modulación del tiempo de detección; todo añadiendo la simplificación de la fabricación. Finalmente, el origen del fenómeno de auto-calentamiento en CNFs fue estudiado en detalle (O. Monereo et al., 2016, Localized self-heating in large arrays of 1D nanostructures). Además, la aplicabilidad de la metodología fue también probada en nanotubos de carbono, óxido de grafeno reducido y nanohilos de óxido de zinc. Finalmente, el uso de luz ultraviolada y visible ha sido estudiado como a energías alternativas para la modulación de los sensores de gases de CNFs.
Russ, Matthias. "Elaboration of Thermo-Economic Models of Solar Gas-Turbine Power Plants." Thesis, KTH, Energiteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-72483.
Full textTsoudis, Evangelos. "Technoeconomic Environmental and Risk Analysis of Marine Gas Turbine Power Plants." Thesis, Cranfield University, 2008. http://hdl.handle.net/1826/3535.
Full textKennaugh, Richard Juan. "Stability of a plasma in a noble gas magnetohydrodynamic power generator." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335847.
Full textKaldahl, Jonas Aase, and Kristoffer Ingebrigtsen. "Sequential investment in gas fired power plants : A real options analysis." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for industriell økonomi og teknologiledelse, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25908.
Full textTanaka, Shinji S. M. Massachusetts Institute of Technology. "Acoustic and thermal packaging of small gas turbines for portable power." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/51648.
Full textIncludes bibliographical references (p. 201-203).
To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with gas turbine generator units in the 1 kW range. The compact and small-scale architecture of the portable gas turbine engine poses major challenges in the acoustic treatment that is required to attenuate the broadband and tonal noise of the high-speed turbomachinery. The challenge in the thermal management is the relatively large required cooling mass flow and the short flow mixing length, constrained by package size considerations. The objective is to conceive a proof-of-concept engine package with exhaust temperatures of 60 °C and a noise signature below 50 dBA at a distance of 7 m. Various liner materials and configurations were investigated in an anechoic chamber using a modular silencer test rig. Acoustic liners based on porous fiber material were developed for both cold intake and hot exhaust gas silencers to reduce the broadband noise. The source noise simulations combined with the measured silencer noise reduction show noise levels below 50 dBA in all directions. A parametric silencer configuration study was carried out to determine the trade-off between liner volume, surface area, and noise reduction. The liner material was demonstrated to withstand hot gas conditions at 700 °C.
(cont.) A mixer/ejector based cooling scheme was proposed and experimentally investigated using vortex generator rings and multi-walled ejectors to enhance the mixing. Although the augmentations achieved a satisfactory mass flow ratio of 16.8:1, hot spots still exist at the exit of the relatively long mixer duct due to the high area-ratio of the ejector configuration. It was concluded that implementation of the scheme into the package is not practical. To overcome this mixing challenge, an alternative cooling scheme was conceived. An inverted dilution liner mixes hot core gas flowing radially through a perforated cylinder with cold fan air. The mixing length is reduced due to jet induced streamwise vortices. The performance of the device was investigated using three-dimensional computational fluid dynamics simulations, which demonstrated improved mixing and uniform, low temperatures of less than 70 °C at the mixer exit. Noise reduction and flow mixing guidelines are established together with a concept package configuration, generally applicable to small scale gas turbine devices.
by Shinji Tanaka.
S.M.