To see the other types of publications on this topic, follow the link: Power to gas.

Journal articles on the topic 'Power to gas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Power to gas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Giunta, G., R. Vernazza, R. Salerno, A. Ceppi, G. Ercolani, and M. Mancini. "Hourly weather forecasts for gas turbine power generation." Meteorologische Zeitschrift 26, no. 3 (June 14, 2017): 307–17. http://dx.doi.org/10.1127/metz/2017/0791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

杨, 学军. "Economical Model Analysis of Power to Gas." Journal of Low Carbon Economy 05, no. 04 (2016): 37–42. http://dx.doi.org/10.12677/jlce.2016.54006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mehar, K. U. "Gas Power Generator." International Journal for Research in Applied Science and Engineering Technology 8, no. 7 (July 31, 2020): 575–81. http://dx.doi.org/10.22214/ijraset.2020.30251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ewald, Stefan, Franz Koschany, David Schlereth, Moritz Wolf, and Olaf Hinrichsen. "Power-to-Gas." Chemie in unserer Zeit 49, no. 4 (August 2015): 270–78. http://dx.doi.org/10.1002/ciuz.201500715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khalilpour, Kaveh Rajab, Ignacio E. Grossmann, and Anthony Vassallo. "Integrated Power-to-Gas and Gas-to-Power with Air and Natural-Gas Storage." Industrial & Engineering Chemistry Research 58, no. 3 (December 20, 2018): 1322–40. http://dx.doi.org/10.1021/acs.iecr.8b04711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zeng, Ziyu, Tao Ding, Yiting Xu, Yongheng Yang, and Zhaoyang Dong. "Reliability Evaluation for Integrated Power-Gas Systems With Power-to-Gas and Gas Storages." IEEE Transactions on Power Systems 35, no. 1 (January 2020): 571–83. http://dx.doi.org/10.1109/tpwrs.2019.2935771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Slocum, John C., and William P. Scharfenberg. "Power marketers surge ahead." Natural Gas 13, no. 1 (January 9, 2007): 1–6. http://dx.doi.org/10.1002/gas.3410130102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ye, Jun, and Rongxiang Yuan. "Integrated Natural Gas, Heat, and Power Dispatch Considering Wind Power and Power-to-Gas." Sustainability 9, no. 4 (April 13, 2017): 602. http://dx.doi.org/10.3390/su9040602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rethore, Tara J. "Uneven gas-fired power maturity curve." Natural Gas 13, no. 5 (January 10, 2007): 29–31. http://dx.doi.org/10.1002/gas.3410130509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gruzevich, A. V., and D. A. Derecha. "Gas-powder spraying as a high-efficient method of increasing the operation reliability of power equipment." Paton Welding Journal 2019, no. 5 (May 28, 2019): 28–35. http://dx.doi.org/10.15407/tpwj2019.05.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Willert, Robert E. "Majors expand downstream to power." Natural Gas 11, no. 7 (January 9, 2007): 12–13. http://dx.doi.org/10.1002/gas.3410110704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Backhaus, Richard. "Gas – The Growing Power." MTZ industrial 2, no. 1 (March 2012): 1. http://dx.doi.org/10.1365/s40353-012-0017-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Goossens, M. A. "Landfill gas power plants." Renewable Energy 9, no. 1-4 (September 1996): 1015–18. http://dx.doi.org/10.1016/0960-1481(96)88452-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

UEDA, Kenichi. "High power gas lasers." Review of Laser Engineering 15, no. 6 (1987): 342–46. http://dx.doi.org/10.2184/lsj.15.342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jakob, Joshua, Björn Uhlemeyer, Marlon Koralewicz, James Garzon-Real, Markus Zdrallek, Johannes Ruf, Wolfgang Köppel, and Bastian Bauhaus. "Simulation of an integrated planning of power and gas distribution grids considering power-to-gas and gas-to-power units." CIRED - Open Access Proceedings Journal 2020, no. 1 (January 1, 2020): 70–73. http://dx.doi.org/10.1049/oap-cired.2021.0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Vickers, Frank. "Gas marketing opportunities in electric power generation." Natural Gas 13, no. 7 (January 9, 2007): 13–17. http://dx.doi.org/10.1002/gas.3410130704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Campbell, William. "Clean Power Plan-CO2Regulations for Everyone." Natural Gas & Electricity 32, no. 3 (September 21, 2015): 1–6. http://dx.doi.org/10.1002/gas.21855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Swanson, Carl V. "Market Power at the City Gate." Natural Gas 3, no. 4 (September 11, 2007): 11–16. http://dx.doi.org/10.1002/gas.3410030403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schlesinger, Benjamin. "Power-marketing firms continue to grow." Natural Gas 15, no. 8 (January 9, 2007): 6–10. http://dx.doi.org/10.1002/gas.3410150803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tvrdik, Penelope. "Power contracts: Disasters waiting to happen." Natural Gas 16, no. 5 (January 9, 2007): 8–13. http://dx.doi.org/10.1002/gas.3410160503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Viana, Eduardo M., Miguel E. M. Udaeta, Luiz Claudio R. Galvão, and André Luiz V. Gimenes. "Natural Gas in the Long-Term Energy Planning for Power Sources Diversification within Brazilian Power System." Journal of Clean Energy Technologies 6, no. 3 (May 2018): 188–96. http://dx.doi.org/10.18178/jocet.2018.6.3.458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Langston, Lee S. "Gas Turbines - Major Greenhouse Gas Inhibitors." Mechanical Engineering 137, no. 12 (December 1, 2015): 54–55. http://dx.doi.org/10.1115/1.2015-nov-5.

Full text
Abstract:
This article explains how combined cycle gas turbine (CCGT) power plants can help in reducing greenhouse gas from the atmosphere. In the last 25 years, the development and deployment of CCGT power plants represent a technology breakthrough in efficient energy conversion, and in the reduction of greenhouse gas production. Existing gas turbine CCGT technology can provide a reliable, on-demand electrical power at a reasonable cost along with a minimum of greenhouse gas production. Natural gas, composed mostly of methane, is a hydrocarbon fuel used by CCGT power plants. Methane has the highest heating value per unit mass of any of the hydrocarbon fuels. It is the most environmentally benign of fuels, with impurities such as sulfur removed before it enters the pipeline. If a significant portion of coal-fired Rankine cycle plants are replaced by the latest natural gas-fired CCGT power plants, anthropogenic carbon dioxide released into the earth’s atmosphere would be greatly reduced.
APA, Harvard, Vancouver, ISO, and other styles
23

Belderbos, Andreas, Thomas Valkaert, Kenneth Bruninx, Erik Delarue, and William D’haeseleer. "Facilitating renewables and power-to-gas via integrated electrical power-gas system scheduling." Applied Energy 275 (October 2020): 115082. http://dx.doi.org/10.1016/j.apenergy.2020.115082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Walker, Sean B., Daniel van Lanen, Ushnik Mukherjee, and Michael Fowler. "Greenhouse gas emissions reductions from applications of Power-to-Gas in power generation." Sustainable Energy Technologies and Assessments 20 (April 2017): 25–32. http://dx.doi.org/10.1016/j.seta.2017.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Smead, Richard G. "The Future of Natural Gas in Power Generation." Natural Gas & Electricity 36, no. 8 (February 11, 2020): 26–32. http://dx.doi.org/10.1002/gas.22163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rethore, Tara J. "The ties that bind: Natural gas and power." Natural Gas 12, no. 7 (January 9, 2007): 26–28. http://dx.doi.org/10.1002/gas.3410120709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

DeCotis, Paul A. "Power Supplies Facing an Intermediate-Term Squeeze." Natural Gas & Electricity 33, no. 1 (July 26, 2016): 30–32. http://dx.doi.org/10.1002/gas.21925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

El-Shahat, Adel. "Hydrogen Fuel Cells Progressing as Power Source." Natural Gas & Electricity 33, no. 5 (November 17, 2016): 7–11. http://dx.doi.org/10.1002/gas.21947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

McGuffey, Carroll W. “Mack.” "DC Circuit Reviews the Clean Power Plan." Natural Gas & Electricity 33, no. 5 (November 17, 2016): 23–24. http://dx.doi.org/10.1002/gas.21950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Danton, Ray. "Electric power marketing provides corporate “cross-training”." Natural Gas 12, no. 11 (January 9, 2007): 16–18. http://dx.doi.org/10.1002/gas.3410121105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Marston, Philip M. "“Struggle for legitimacy” spreads to power marketers." Natural Gas 14, no. 3 (January 9, 2007): 24–26. http://dx.doi.org/10.1002/gas.3410140306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Howe, John B. "Laying the superconductivity foundation for future power." Natural Gas 15, no. 9 (January 9, 2007): 13–17. http://dx.doi.org/10.1002/gas.3410150904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Benham, William T. "Market power mitigation lacking in order 637." Natural Gas 16, no. 10 (January 9, 2007): 30–32. http://dx.doi.org/10.1002/gas.3410161008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gravelsins, Armands, Gatis Bazbauers, Andra Blumberga, and Dagnija Blumberga. "Power Sector Flexibility through Power-to-Heat and Power-to-Gas Application – System Dynamics Approach." Environmental and Climate Technologies 23, no. 3 (December 1, 2019): 319–32. http://dx.doi.org/10.2478/rtuect-2019-0098.

Full text
Abstract:
Abstract The European Union has set the target for energy sector decarbonization. Variable renewable energy technologies are necessary to reach this target, but a high level of variable renewable energy raises the flexibility issues. In this research paper, the flexibility issue is addressed by analysing possibility of sector coupling via power-to-heat and power-to-gas applications by using system dynamics approach. The model is applied to the case of Latvia. Model results show that power-to-heat is a viable flexibility measure, and with additional financial incentives, it can even help to move towards decarbonization of the energy sector. In the best scenario, heat from surplus power can cover 37 % from total heat production in 2050. Unfortunately, in spite of a well-developed gas infrastructure, power-to-gas application is still very immature, and, in the best-case scenario with high incentives in power-to-gas technologies, only 7 % from available power surplus could be allocated for power-to-gas technologies in 2050.
APA, Harvard, Vancouver, ISO, and other styles
35

Langston, Lee S. "Gas Turbines and Natural Gas Synergism." Mechanical Engineering 135, no. 02 (February 1, 2013): 30–35. http://dx.doi.org/10.1115/1.2013-feb-4.

Full text
Abstract:
This article presents a study on new electric power gas turbines and the advent of shale natural gas, which now are upending electrical energy markets. Energy Information Administration (EIA) results show that total electrical production cost for a conventional coal plant would be 9.8 cents/kWh, while a conventional natural gas fueled gas turbine combined cycle plant would be a much lower at 6.6 cents/kWh. Furthermore, EIA estimates that 70% of new US power plants will be fueled by natural gas. Gas turbines are the prime movers for the modern combined cycle power plant. On the natural gas side of the recently upended electrical energy markets, new shale gas production and the continued development of worldwide liquefied natural gas (LNG) facilities provide the other element of synergism. The US natural gas prices are now low enough to compete directly with coal. The study concludes that the natural gas fueled gas turbine will continue to be a growing part of the world’s electric power generation.
APA, Harvard, Vancouver, ISO, and other styles
36

TAMANUKI, Shigeru. "Power generation using natural gas." Journal of the Fuel Society of Japan 67, no. 8 (1988): 662–75. http://dx.doi.org/10.3775/jie.67.8_662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gundersen, M. A. "Gas-phase pulsed power switches." IEEE Transactions on Plasma Science 19, no. 6 (1991): 1123–31. http://dx.doi.org/10.1109/27.125035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lee, Duk-Dong, Wan-Young Chung, Man-Sik Choi, and Jong-Mu Baek. "Low-power micro gas sensor." Sensors and Actuators B: Chemical 33, no. 1-3 (July 1996): 147–50. http://dx.doi.org/10.1016/0925-4005(96)01822-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rumyantsev, A. V., and K. V. Gus’kov. "Variable-power thermal gas microflowmeters." Measurement Techniques 50, no. 8 (August 2007): 854–60. http://dx.doi.org/10.1007/s11018-007-0162-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Woltran, Michael. "Power-to-Gas ist #PartOfTheSolution." e & i Elektrotechnik und Informationstechnik 136, no. 8 (November 21, 2019): 402–3. http://dx.doi.org/10.1007/s00502-019-00761-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, Chengfu, Shuai Dong, Shijie Xu, Ming Yang, Suoying He, Xiaoming Dong, and Jun Liang. "Impact of Power-to-Gas Cost Characteristics on Power-Gas-Heating Integrated System Scheduling." IEEE Access 7 (2019): 17654–62. http://dx.doi.org/10.1109/access.2019.2894866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

"GAS POWER." Journal of the American Society for Naval Engineers 23, no. 1 (March 18, 2009): 302–3. http://dx.doi.org/10.1111/j.1559-3584.1911.tb03539.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kumar, Ankit, Ankit Singhania, Abhishek Kumar Sharma, Ranendra Roy, and Bijan Kumar Mandal. "Thermodynamic Analysis of Gas Turbine Power Plant." International Journal of Innovative Research in Engineering & Management, May 2017, 648–54. http://dx.doi.org/10.21276/ijirem.2017.4.3.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

"Gas and power." Oil and Energy Trends 47, no. 10 (October 2022): 7–8. http://dx.doi.org/10.1111/oet.12955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

"Gas and power." Oil and Energy Trends 46, no. 6 (June 2021): 7–8. http://dx.doi.org/10.1111/oet.12869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

"Gas and power." Oil and Energy Trends 45, no. 2 (February 2020): 8–9. http://dx.doi.org/10.1111/oet.12758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

"GAS AND POWER." Oil and Energy Trends 33, no. 6 (October 24, 2008): 7–8. http://dx.doi.org/10.1111/j.1744-7992.2008.330607.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

"GAS AND POWER." Oil and Energy Trends 33, no. 7 (July 2008): 7–8. http://dx.doi.org/10.1111/j.1744-7992.2008.330707.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

"GAS AND POWER." Oil and Energy Trends 33, no. 8 (August 2008): 7–8. http://dx.doi.org/10.1111/j.1744-7992.2008.330807.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

"GAS AND POWER." Oil and Energy Trends 33, no. 9 (September 2008): 7–8. http://dx.doi.org/10.1111/j.1744-7992.2008.330907.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography