Academic literature on the topic 'Powertrain control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Powertrain control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Powertrain control"
Karlušić, Juraj, Mihael Cipek, Danijel Pavković, Željko Šitum, Juraj Benić, and Marijan Šušnjar. "Benefit Assessment of Skidder Powertrain Hybridization Utilizing a Novel Cascade Optimization Algorithm." Sustainability 12, no. 24 (December 12, 2020): 10396. http://dx.doi.org/10.3390/su122410396.
Full textArsie, Ivan, Alfonso Di Domenico, Cesare Pianese, and Marco Sorrentino. "Modeling and Analysis of Transient Behavior of Polymer Electrolyte Membrane Fuel Cell Hybrid Vehicles." Journal of Fuel Cell Science and Technology 4, no. 3 (September 9, 2006): 261–71. http://dx.doi.org/10.1115/1.2743071.
Full textWegener, Marius, Thorsten Plum, Markus Eisenbarth, and Jakob Andert. "Energy saving potentials of modern powertrains utilizing predictive driving algorithms in different traffic scenarios." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 4 (August 8, 2019): 992–1005. http://dx.doi.org/10.1177/0954407019867172.
Full textDorey, R. E., D. Maclay, T. Shenton, and Z. Shafiei. "Advanced Powertrain Control Strategies." IFAC Proceedings Volumes 28, no. 1 (March 1995): 151–56. http://dx.doi.org/10.1016/s1474-6670(17)45688-6.
Full textDeaconu, Sorin Ioan, Marcel Topor, Gabriel Nicolae Popa, and Feifei Bu. "Hybrid Electric Vehicle with Matrix Converter and Direct Torque Control in Powertrains Asynchronous Motor Drives." MATEC Web of Conferences 292 (2019): 01066. http://dx.doi.org/10.1051/matecconf/201929201066.
Full textMaddumage, W. U., K. Y. Abeyasighe, M. S. M. Perera, R. A. Attalage, and P. Kelly. "Comparing Fuel Consumption and Emission Levels of Hybrid Powertrain Configurations and a Conventional Powertrain in Varied Drive Cycles and Degree of Hybridization." Science & Technique 19, no. 1 (February 5, 2020): 20–33. http://dx.doi.org/10.21122/2227-1031-2020-19-1-20-33.
Full textAdegbohun, Feyijimi, Annette von Jouanne, Ben Phillips, Emmanuel Agamloh, and Alex Yokochi. "High Performance Electric Vehicle Powertrain Modeling, Simulation and Validation." Energies 14, no. 5 (March 9, 2021): 1493. http://dx.doi.org/10.3390/en14051493.
Full textXiong, Shaoping, Gabriel Wilfong, and John Lumkes. "Components Sizing and Performance Analysis of Hydro-Mechanical Power Split Transmission Applied to a Wheel Loader." Energies 12, no. 9 (April 28, 2019): 1613. http://dx.doi.org/10.3390/en12091613.
Full textCho, D., and J. K. Hedrick. "Automotive Powertrain Modeling for Control." Journal of Dynamic Systems, Measurement, and Control 111, no. 4 (December 1, 1989): 568–76. http://dx.doi.org/10.1115/1.3153093.
Full textCook, Jeffrey A., Jing Sun, Julia H. Buckland, Ilya V. Kolmanovsky, Huei Peng, and Jessy W. Grizzle. "Automotive Powertrain Control - A Survey." Asian Journal of Control 8, no. 3 (October 22, 2008): 237–60. http://dx.doi.org/10.1111/j.1934-6093.2006.tb00275.x.
Full textDissertations / Theses on the topic "Powertrain control"
Zhao, Shiyu. "Nonparametric robust control methods for powertrain control." Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548802.
Full textMarciszko, Fredrik. "Torque Sensor based Powertrain Control." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2248.
Full textThe transmission is probably the drivetrain component with the greatest impact on driveability of an automatic transmission equipped vehicle. Since the driver only has an indirect influence on the gear shift timing, except for situations like kick-down accelerations, it is desirable to improve shift quality as perceived by the driver. However, improving shift quality is a problem normally diametrically opposed to minimizing transmission clutch energy dissipation. The latter has a great impact on transmission lifetime, and has to be defined and taken into consideration along with the notion of shift quality. The main focus of this thesis is the modeling of a drivetrain of an automatic transmission vehicle, and the implementation in MatLab/Simulink, including the first to second gear upshift. The resulting plant based on the derived equations is validated using data from a test vehicle equipped with a torque sensor located at the transmission output shaft. The shaft torque is more or less proportional to the driveline jerk, and hence of great interest for control purposes. Control strategies are discussed and a PID controller structure is developed to control the first to second gear upshift, as opposed to the traditional open-loop upshift control. Furthermore, the proposed controller structure uses the transmission output torque and the differential speed of the engaging clutch as inputs, to control the clutch pressure and the engine output torque, respectively. The structure is unsophisticated and transparent compared to other approaches, but shows great theoretical results in terms of improved shift quality and decreased clutch wear.
Zetterqvist, Carin. "Powertrain modelling and control algorithms for traction control." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10048.
Full textFör att ett fordon ska kunna bromsa, accelerera och svänga är friktion mellan däcken och vägen ett måste. Vid för mycket gaspådrag under en acceleration kan det hända att hjulen förlorar fäste och börjar spinna loss, något som leder till både försämrad kontroll över fordonet och att däcken slits ut i förtid. Traction controlsystemet förhindrar hjulen från att spinna loss och försöker maximera friktionen.
Målet med detta examensarbete är att utvärdera olika reglerprinciper samt att undersöka olika möjligheter för att reglera friktionen mellan däck och väg. Det är ett svårt reglerproblem, dels på grund av dess olinjäritet, dels på grund av det faktum att friktionen är en okänd parameter.
För att kunna undersöka olika reglermöjligheter har en modell över hjuldynamiken och en modell över drivlinan tagits fram i Matlabs simuleringsprogram Simulink. Därutöver har tre regulatorer designats: en fuzzy-regulator, en fuzzy-P-regulator och en PI-regulator. Regulatorerna utvärderades i tre tester som bland annat testade deras robusthet.
Fuzzy-regulatorn och fuzzy-P-regulatorn lyckades reglera systemet bra. PI-regulatorn gjorde däremot inte ett tillfredsställande jobb, mest på grund av dess behov av ett börvärde.
Traction is necessary for a vehicle to be able to brake, accelerate and turn. When pushing the accelerator pedal too hard during an acceleration, the wheel can loose traction and start spinning, which leads to a worsen vehicle control and also wears out the tyres faster. The traction control system prevents the wheels from spinning and tries to make the tyres maintain maximum traction.
The purpose of this master’s thesis is to evaluate different control methods and to investigate possible ways to control the traction. This is a difficult control problem due to its nonlinearity and the fact that the friction is an unknown parameter.
For the investigation, a model of the wheel dynamics and a model of the powertrain have been developed in Matlab’s simulation program Simulink. Furthermore, three different controllers have been designed; a fuzzy controller, a fuzzy-P controller and a PI controller. The controllers were evaluated in three test cycles that among others tested their robustness.
The fuzzy controller and the fuzzy-P controller managed to control the system very well. The PI controller, however, did not work satisfactory, mainly because of its need of a desired value.
Li, Xuchen Mr. "Driving Style Adaptive Electrified Powertrain Control." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524228128758252.
Full textReig, Bernad Alberto. "Optimal Control for Automotive Powertrain Applications." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90624.
Full textEl Control Óptimo (CO) es esencialmente un problema matemático de búsqueda de extremos, consistente en la definición de un criterio a minimizar (o maximizar), restricciones que deben satisfacerse y condiciones de contorno que afectan al sistema. La teoría de CO ofrece métodos para derivar una trayectoria de control que minimiza (o maximiza) ese criterio. Esta Tesis trata la aplicación del CO en automoción, y especialmente en el motor de combustión interna. Las herramientas necesarias son un método de optimización y una representación matemática de la planta motriz. Para ello, se realiza un análisis cuantitativo de las ventajas e inconvenientes de los tres métodos de optimización existentes en la literatura: programación dinámica, principio mínimo de Pontryagin y métodos directos. Se desarrollan y describen los algoritmos para implementar estos métodos así como un modelo de planta motriz, validado experimentalmente, que incluye la dinámica longitudinal del vehículo, modelos para el motor eléctrico y las baterías, y un modelo de motor de combustión de valores medios. El CO puede utilizarse para tres objetivos distintos: 1. Control aplicado, en caso de que las condiciones de contorno estén definidas. Puede aplicarse al control del motor de combustión para un ciclo de conducción dado, traduciéndose en un problema matemático de grandes dimensiones. Se estudian dos casos particulares: la gestión de un sistema de EGR de doble lazo, y el control completo del motor, en particular de las consignas de inyección, SOI, EGR y VGT. 2. Obtención de reglas de control cuasi-óptimas, aplicables en casos en los que no todas las perturbaciones se conocen. A este respecto, se analizan el cálculo de calibraciones de motor específicas para un ciclo, y la gestión energética de un vehículo híbrido mediante un control estocástico en bucle cerrado. 3. Empleo de trayectorias de CO como comparativa o referencia para tareas de diseño y mejora, ofreciendo un criterio objetivo. La ley de combustión así como el dimensionado de una planta motriz híbrida se optimizan mediante el uso de CO. Las estrategias de CO han sido aplicadas experimentalmente en los trabajos referentes al motor de combustión, poniendo de manifiesto sus ventajas sustanciales, pero también analizando dificultades y líneas de actuación para superarlas. Los métodos desarrollados en esta Tesis Doctoral son generales y aplicables a otros criterios si se dispone de los modelos adecuados.
El Control Òptim (CO) és essencialment un problema matemàtic de cerca d'extrems, que consisteix en la definició d'un criteri a minimitzar (o maximitzar), restriccions que es deuen satisfer i condicions de contorn que afecten el sistema. La teoria de CO ofereix mètodes per a derivar una trajectòria de control que minimitza (o maximitza) aquest criteri. Aquesta Tesi tracta l'aplicació del CO en automoció i especialment al motor de combustió interna. Les ferramentes necessàries són un mètode d'optimització i una representació matemàtica de la planta motriu. Per a això, es realitza una anàlisi quantitatiu dels avantatges i inconvenients dels tres mètodes d'optimització existents a la literatura: programació dinàmica, principi mínim de Pontryagin i mètodes directes. Es desenvolupen i descriuen els algoritmes per a implementar aquests mètodes així com un model de planta motriu, validat experimentalment, que inclou la dinàmica longitudinal del vehicle, models per al motor elèctric i les bateries, i un model de motor de combustió de valors mitjans. El CO es pot utilitzar per a tres objectius diferents: 1. Control aplicat, en cas que les condicions de contorn estiguen definides. Es pot aplicar al control del motor de combustió per a un cicle de conducció particular, traduint-se en un problema matemàtic de grans dimensions. S'estudien dos casos particulars: la gestió d'un sistema d'EGR de doble llaç, i el control complet del motor, particularment de les consignes d'injecció, SOI, EGR i VGT. 2. Obtenció de regles de control quasi-òptimes, aplicables als casos on no totes les pertorbacions són conegudes. A aquest respecte, s'analitzen el càlcul de calibratges específics de motor per a un cicle, i la gestió energètica d'un vehicle híbrid mitjançant un control estocàstic en bucle tancat. 3. Utilització de trajectòries de CO com comparativa o referència per a tasques de disseny i millora, oferint un criteri objectiu. La llei de combustió així com el dimensionament d'una planta motriu híbrida s'optimitzen mitjançant l'ús de CO. Les estratègies de CO han sigut aplicades experimentalment als treballs referents al motor de combustió, manifestant els seus substancials avantatges, però també analitzant dificultats i línies d'actuació per superar-les. Els mètodes desenvolupats a aquesta Tesi Doctoral són generals i aplicables a uns altres criteris si es disposen dels models adequats.
Reig Bernad, A. (2017). Optimal Control for Automotive Powertrain Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90624
TESIS
Triantos, Georgios. "NARMAX modelling and control with powertrain applications." Thesis, University of Liverpool, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428216.
Full textCho, Dong-Il. "Nonlinear control methods for automotive powertrain systems." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14682.
Full textGuebeli, Markus. "Optimum efficiency control of the CTX powertrain." Thesis, University of Bath, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359851.
Full textZeng, Xiangrui. "Optimally-Personalized Hybrid Electric Vehicle Powertrain Control." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471342105.
Full textGoetz, Manuel. "Integrated powertrain control for twin clutch transmissions." Thesis, University of Leeds, 2005. http://etheses.whiterose.ac.uk/2894/.
Full textBooks on the topic "Powertrain control"
Garbett, K. S. Multi-objective scheduling and control of a nonlinear automotive powertrain. [s.l.]: typescript, 1991.
Find full textHu, Donghai, and Bifeng Yin. Stability Analysis and Control of Powertrain for New Energy Vehicles. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5051-2.
Full textInstitution of Mechanical Engineers. Automobile Division. and Institution of Mechanical Engineers. Combustion Engines Group., eds. International Seminar on Application of Powertrain and Fuel Technologies to Meet Emissions Standards: 24-26 June 1996. Bury St.Edmunds: Mechanical Engineering Publications for the Institution of Mechanical Engineers, London, 1996.
Find full textInternational Conference on Integrated Powertrain Systems for a Better Environment (1999 Birmingham, England ). International Conference on Integrated Powertrain Systems for a Better Environment: 10-11 November 1999, National Exhibition Centre, Birmingham, UK. Bury St. Edmunds, England: Published by Professional Engineering Pub. for the Institution of Mechanical Engineers, 1999.
Find full textNoonan, Mike. How to Use and Upgrade to GM Gen III LS-Series Powertrain Control Systems. CarTech, Incorporated, 2013.
Find full textHaynes, John Harold. Powertrain Codes and Oxygen Sensors 1990-99: 1995-99 (Chilton's Professional Series Quick-Reference Manuals). Haynes Manuals, Inc., 1999.
Find full textBook chapters on the topic "Powertrain control"
Böhme, Thomas J., and Benjamin Frank. "Optimal Design of Hybrid Powertrain Configurations." In Advances in Industrial Control, 481–518. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51317-1_13.
Full textPowell, B. K. "Applied Mathematics and Systematic Automotive Powertrain Synthesis." In Control Problems in Industry, 271–99. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-2580-5_12.
Full textRizzoni, Giorgio. "Powertrain Control for Hybrid-Electric and Electric Vehicles." In Encyclopedia of Systems and Control, 1090–99. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_75.
Full textRizzoni, Giorgio. "Powertrain Control for Hybrid-Electric and Electric Vehicles." In Encyclopedia of Systems and Control, 1–10. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5102-9_75-1.
Full textRizzoni, Giorgio. "Powertrain Control for Hybrid-Electric and Electric Vehicles." In Encyclopedia of Systems and Control, 1761–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44184-5_75.
Full textButts, Ken. "Hybrid Models for Automotive Powertrain Systems: Revisiting a Vision." In Hybrid Systems: Computation and Control, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46430-1_1.
Full textBeydoun, Ali, Le Yi Wang, Jing Sun, and Shiva Sivashanka. "Hybrid control of automotive powertrain systems: A case study." In Hybrid Systems: Computation and Control, 33–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-64358-3_30.
Full textDi Cairano, Stefano, Diana Yanakiev, Alberto Bemporad, Ilya Kolmanovsky, and Davor Hrovat. "Model Predictive Powertrain Control: An Application to Idle Speed Regulation." In Automotive Model Predictive Control, 183–94. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-071-7_12.
Full textHu, Donghai, and Bifeng Yin. "Control Methodology of Stability Optimization for HEV Powertrain." In Key Technologies on New Energy Vehicles, 107–41. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5051-2_5.
Full textHu, Donghai, and Bifeng Yin. "Control Methodology of Stability Optimization for EV Powertrain." In Key Technologies on New Energy Vehicles, 19–47. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5051-2_2.
Full textConference papers on the topic "Powertrain control"
Yi, Chenyu, and Bogdan Epureanu. "Control and Design Optimization of a Novel Hybrid Electric Powertrain System." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5200.
Full textBai, Shushan, Daniel Brennan, Donald Dusenberry, Xuefeng Tao, and Zhen Zhang. "Integrated Powertrain Control." In SAE 2010 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-0368.
Full textNarumi, N., H. Suzuki, and R. Sakakiyama. "Trends of Powertrain Control." In Convergence International Congress & Exposition On Transportation Electronics. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/901154.
Full textJin, Xiaoqing, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. "Powertrain control verification benchmark." In HSCC'14: 17th International Conference on Hybrid Systems: Computation and Control. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2562059.2562140.
Full textHettich, Gerhard, and Günther Alberter. "Architectures for Electronic Powertrain Control." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970024.
Full textMain, J. J. "Ford ELTEC Integrated Powertrain Control." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/860652.
Full textGupta, Pinaki, and Andrew Alleyne. "Powertrain Optimization for an Earthmoving Vehicle." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60023.
Full textCorti, Enrico, and Luca Solieri. "Rapid Control Prototyping System for Combustion Control." In Powertrain & Fluid Systems Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-3754.
Full textGravel, Dave, Frank Maslar, George Zhang, Srini Nidamarthi, Heping Chen, and Tom Fuhlbrigge. "Toward robotizing powertrain assembly." In 2008 7th World Congress on Intelligent Control and Automation. IEEE, 2008. http://dx.doi.org/10.1109/wcica.2008.4592981.
Full text"Advanced Control for Energy Efficient Powertrain." In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE, 2019. http://dx.doi.org/10.1109/isie.2019.8781088.
Full textReports on the topic "Powertrain control"
Smith, David E. Powertrain Controls Optimization for HD Hybrid Line Haul Trucks - FY2014 Annual Report. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1185822.
Full textSmith, David, Paul Chambon, and Dean Deter. Simulation and controls for medium and heavy duty dual mode hybrid powertrain. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1167675.
Full textJehlik, Forrest, Simeon Iliev, and Thomas Wallner. Testing and Optimization of Powertrain Controls for Hybrid-Electric MD Delivery Truck for XL Hybrids: Final CRADA Report. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1581766.
Full text